Skip to main content
Erschienen in: Breast Cancer Research and Treatment 3/2009

01.06.2009 | Review

Transforming growth factor-β signaling: emerging stem cell target in metastatic breast cancer?

verfasst von: Antoinette R. Tan, Gabriela Alexe, Michael Reiss

Erschienen in: Breast Cancer Research and Treatment | Ausgabe 3/2009

Einloggen, um Zugang zu erhalten

Abstract

In most human breast cancers, lowering of TGFβ receptor- or Smad gene expression combined with increased levels of TGFβs in the tumor microenvironment is sufficient to abrogate TGFβs tumor suppressive effects and to induce a mesenchymal, motile and invasive phenotype. In genetic mouse models, TGFβ signaling suppresses de novo mammary cancer formation but promotes metastasis of tumors that have broken through TGFβ tumor suppression. In mouse models of “triple-negative” or basal-like breast cancer, treatment with TGFβ neutralizing antibodies or receptor kinase inhibitors strongly inhibits development of lung- and bone metastases. These TGFβ antagonists do not significantly affect tumor cell proliferation or apoptosis. Rather, they de-repress anti-tumor immunity, inhibit angiogenesis and reverse the mesenchymal, motile, invasive phenotype characteristic of basal-like and HER2-positive breast cancer cells. Patterns of TGFβ target genes upregulation in human breast cancers suggest that TGFβ may drive tumor progression in estrogen-independent cancer, while it mediates a suppressive host cell response in estrogen-dependent luminal cancers. In addition, TGFβ appears to play a key role in maintaining the mammary epithelial (cancer) stem cell pool, in part by inducing a mesenchymal phenotype, while differentiated, estrogen receptor-positive, luminal cells are unresponsive to TGFβ because the TGFBR2 receptor gene is transcriptionally silent. These same cells respond to estrogen by downregulating TGFβ, while antiestrogens act by upregulating TGFβ. This model predicts that inhibiting TGFβ signaling should drive the differentiation of mammary stem cells into ductal cells. Consequently, TGFβ antagonists may convert basal-like or HER2-positive cancers to a more epithelioid, non-proliferating (and, perhaps, non-metastatic) phenotype. Conversely, these agents might antagonize the therapeutic effects of anti-estrogens in estrogen-dependent luminal cancers. These predictions need to be addressed prospectively in clinical trials and should inform the selection of patient populations most likely to benefit from this novel anti-metastatic therapeutic approach.
Literatur
1.
Zurück zum Zitat Roberts AB, Sporn MB (1993) Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 8(1):1–9PubMed Roberts AB, Sporn MB (1993) Physiological actions and clinical applications of transforming growth factor-beta (TGF-beta). Growth Factors 8(1):1–9PubMed
2.
Zurück zum Zitat Wakefield LM, Smith DM, Flanders KC, Sporn MB (1988) Latent transforming growth factor-beta from human platelets. A high molecular weight complex containing precursor sequences. J Biol Chem 263:7646–7654PubMed Wakefield LM, Smith DM, Flanders KC, Sporn MB (1988) Latent transforming growth factor-beta from human platelets. A high molecular weight complex containing precursor sequences. J Biol Chem 263:7646–7654PubMed
5.
Zurück zum Zitat Massague J, Chen YG (2000) Controlling TGF-beta signaling. Genes Dev 14(6):627–644PubMed Massague J, Chen YG (2000) Controlling TGF-beta signaling. Genes Dev 14(6):627–644PubMed
6.
Zurück zum Zitat Bharathy S, Xie W, Yingling JM, Reiss M (2008) Cancer-associated transforming growth factor beta type II receptor gene mutant causes activation of bone morphogenic protein-Smads and invasive phenotype. Cancer Res 68(6):1656–1666. doi:10.1158/0008-5472.CAN-07-5089 PubMedCrossRef Bharathy S, Xie W, Yingling JM, Reiss M (2008) Cancer-associated transforming growth factor beta type II receptor gene mutant causes activation of bone morphogenic protein-Smads and invasive phenotype. Cancer Res 68(6):1656–1666. doi:10.​1158/​0008-5472.​CAN-07-5089 PubMedCrossRef
7.
9.
Zurück zum Zitat Daly AC, Randall RA, Hill CS (2008) TGF-β-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol Cell Biol. doi:10.1128/MCB.01192-08 Daly AC, Randall RA, Hill CS (2008) TGF-β-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol Cell Biol. doi:10.​1128/​MCB.​01192-08
10.
Zurück zum Zitat Massague J, Chen Y-G (2000) Controlling TGF-β signaling. Genes Dev 14:627–644PubMed Massague J, Chen Y-G (2000) Controlling TGF-β signaling. Genes Dev 14:627–644PubMed
11.
Zurück zum Zitat Cui W, Fowlis DJ, Cousins FM, Duffie E, Bryson S, Balmain A et al (1995) Concerted action of TGF-beta 1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev 9(8):945–955. doi:10.1101/gad.9.8.945 PubMedCrossRef Cui W, Fowlis DJ, Cousins FM, Duffie E, Bryson S, Balmain A et al (1995) Concerted action of TGF-beta 1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev 9(8):945–955. doi:10.​1101/​gad.​9.​8.​945 PubMedCrossRef
12.
Zurück zum Zitat Glick AB, Kulkarni AB, Tennenbaum T, Hennings H, Flanders KC, O’Reilly M et al (1993) Loss of expression of transforming growth factor beta in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc Natl Acad Sci USA 90(13):6076–6080. doi:10.1073/pnas.90.13.6076 PubMedCrossRef Glick AB, Kulkarni AB, Tennenbaum T, Hennings H, Flanders KC, O’Reilly M et al (1993) Loss of expression of transforming growth factor beta in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc Natl Acad Sci USA 90(13):6076–6080. doi:10.​1073/​pnas.​90.​13.​6076 PubMedCrossRef
13.
Zurück zum Zitat Glick AB, Weinberg WC, Wu IH, Quan W, Yuspa SH (1996) Transforming growth factor beta 1 suppresses genomic instability independent of a G1 arrest, p53, and Rb. Cancer Res 56(16):3645–3650 Published erratum appears in Cancer Res 1997 May 15;57(10):2079PubMed Glick AB, Weinberg WC, Wu IH, Quan W, Yuspa SH (1996) Transforming growth factor beta 1 suppresses genomic instability independent of a G1 arrest, p53, and Rb. Cancer Res 56(16):3645–3650 Published erratum appears in Cancer Res 1997 May 15;57(10):2079PubMed
15.
Zurück zum Zitat Xie W, Mertens JC, Reiss DJ, Rimm DL, Camp RL, Haffty BG et al (2002) Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res 62(2):497–505PubMed Xie W, Mertens JC, Reiss DJ, Rimm DL, Camp RL, Haffty BG et al (2002) Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: a tissue microarray study. Cancer Res 62(2):497–505PubMed
16.
Zurück zum Zitat Xie W, Kim D, Haffty BG, Rimm DL, Reiss M (2003) Frequent alterations of Smad signaling in human head-&-neck squamous cell carcinomas-a tissue microarray analysis. Oncol Res 14:61–73PubMed Xie W, Kim D, Haffty BG, Rimm DL, Reiss M (2003) Frequent alterations of Smad signaling in human head-&-neck squamous cell carcinomas-a tissue microarray analysis. Oncol Res 14:61–73PubMed
18.
Zurück zum Zitat Sterner-Kock A, Thorey IS, Koli K, Wempe F, Otte J, Bangsow T et al (2002) Disruption of the gene encoding the latent transforming growth factor-beta binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes Dev 16(17):2264–2273. doi:10.1101/gad.229102 PubMedCrossRef Sterner-Kock A, Thorey IS, Koli K, Wempe F, Otte J, Bangsow T et al (2002) Disruption of the gene encoding the latent transforming growth factor-beta binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes Dev 16(17):2264–2273. doi:10.​1101/​gad.​229102 PubMedCrossRef
19.
Zurück zum Zitat Faure E, Heisterkamp N, Groffen J, Kaartinen V (2000) Differential expression of TGF-beta isoforms during postlactational mammary gland involution. Cell Tissue Res 300(1):89–95PubMed Faure E, Heisterkamp N, Groffen J, Kaartinen V (2000) Differential expression of TGF-beta isoforms during postlactational mammary gland involution. Cell Tissue Res 300(1):89–95PubMed
20.
Zurück zum Zitat D’Cruz CM, Moody SE, Master SR, Hartman JL, Keiper EA, Imielinski MB (2002) Persistent parity-induced changes in growth factors, TGF-beta3, and differentiation in the rodent mammary gland. Mol Endocrinol (Baltimore, MD) 16(9):2034–2051CrossRef D’Cruz CM, Moody SE, Master SR, Hartman JL, Keiper EA, Imielinski MB (2002) Persistent parity-induced changes in growth factors, TGF-beta3, and differentiation in the rodent mammary gland. Mol Endocrinol (Baltimore, MD) 16(9):2034–2051CrossRef
21.
Zurück zum Zitat Yang YA, Tang B, Robinson G, Hennighausen L, Brodie SG, Deng CX et al (2002) Smad3 in the mammary epithelium has a nonredundant role in the induction of apoptosis, but not in the regulation of proliferation or differentiation by transforming growth factor-beta. Cell Growth Differ 13(3):123–130PubMed Yang YA, Tang B, Robinson G, Hennighausen L, Brodie SG, Deng CX et al (2002) Smad3 in the mammary epithelium has a nonredundant role in the induction of apoptosis, but not in the regulation of proliferation or differentiation by transforming growth factor-beta. Cell Growth Differ 13(3):123–130PubMed
22.
Zurück zum Zitat Kirshner J, Jobling MF, Pajares MJ, Ravani SA, Glick AB, Lavin MJ et al (2006) Inhibition of transforming growth factor-beta1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Res 66(22):10861–10869. doi:10.1158/0008-5472.CAN-06-2565 PubMedCrossRef Kirshner J, Jobling MF, Pajares MJ, Ravani SA, Glick AB, Lavin MJ et al (2006) Inhibition of transforming growth factor-beta1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Res 66(22):10861–10869. doi:10.​1158/​0008-5472.​CAN-06-2565 PubMedCrossRef
23.
Zurück zum Zitat Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL et al (2007) Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest 117(5):1305–1313. doi:10.1172/JCI30740 PubMedCrossRef Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL et al (2007) Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest 117(5):1305–1313. doi:10.​1172/​JCI30740 PubMedCrossRef
24.
Zurück zum Zitat Ewan KB, Henshall-Powell RL, Ravani SA, Pajares MJ, Arteaga C, Warters R et al (2002) Transforming growth factor-beta1 mediates cellular response to DNA damage in situ. Cancer Res 62(20):5627–5631PubMed Ewan KB, Henshall-Powell RL, Ravani SA, Pajares MJ, Arteaga C, Warters R et al (2002) Transforming growth factor-beta1 mediates cellular response to DNA damage in situ. Cancer Res 62(20):5627–5631PubMed
32.
Zurück zum Zitat Maharaj AS, Walshe TE, Saint-Geniez M, Venkatesha S, Maldonado AE, Himes NC et al (2008) VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med 205(2):491–501. doi:10.1084/jem.20072041 PubMedCrossRef Maharaj AS, Walshe TE, Saint-Geniez M, Venkatesha S, Maldonado AE, Himes NC et al (2008) VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med 205(2):491–501. doi:10.​1084/​jem.​20072041 PubMedCrossRef
33.
Zurück zum Zitat Stuhrmann M, El-Harith el-HA (2007) Hereditary hemorrhagic telangiectasia. genetics, pathogenesis, clinical manifestation and management. Saudi Med J 28(1):11–21PubMed Stuhrmann M, El-Harith el-HA (2007) Hereditary hemorrhagic telangiectasia. genetics, pathogenesis, clinical manifestation and management. Saudi Med J 28(1):11–21PubMed
34.
Zurück zum Zitat Fernandez LA, Sanz-Rodriguez F, Blanco FJ, Bernabeu C, Botella LM (2006) Hereditary hemorrhagic telangiectasia, a vascular dysplasia affecting the TGF-beta signaling pathway. Clin Med Res 4(1):66–78CrossRef Fernandez LA, Sanz-Rodriguez F, Blanco FJ, Bernabeu C, Botella LM (2006) Hereditary hemorrhagic telangiectasia, a vascular dysplasia affecting the TGF-beta signaling pathway. Clin Med Res 4(1):66–78CrossRef
35.
39.
Zurück zum Zitat Barcellos-Hoff MH (1998) How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues. Radiat Res 150(Suppl 5):S109–S120. doi:10.2307/3579813 PubMedCrossRef Barcellos-Hoff MH (1998) How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues. Radiat Res 150(Suppl 5):S109–S120. doi:10.​2307/​3579813 PubMedCrossRef
43.
Zurück zum Zitat Tang B, Bottinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR et al (1998) Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med 4(7):802–807. doi:10.1038/nm0798-802 PubMedCrossRef Tang B, Bottinger EP, Jakowlew SB, Bagnall KM, Mariano J, Anver MR et al (1998) Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med 4(7):802–807. doi:10.​1038/​nm0798-802 PubMedCrossRef
44.
Zurück zum Zitat Ewan KB, Shyamala G, Ravani SA, Tang Y, Akhurst R, Wakefield L et al (2002) Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol 160(6):2081–2093PubMed Ewan KB, Shyamala G, Ravani SA, Tang Y, Akhurst R, Wakefield L et al (2002) Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol 160(6):2081–2093PubMed
45.
Zurück zum Zitat Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J et al (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109(12):1607–1615PubMed Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J et al (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109(12):1607–1615PubMed
46.
Zurück zum Zitat Gorska AE, Joseph H, Derynck R, Moses HL, Serra R (1998) Dominant-negative interference of the transforming growth factor beta type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. Cell Growth Differ 9(3):229–238PubMed Gorska AE, Joseph H, Derynck R, Moses HL, Serra R (1998) Dominant-negative interference of the transforming growth factor beta type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. Cell Growth Differ 9(3):229–238PubMed
47.
Zurück zum Zitat Lenferink AE, Magoon J, Pepin MC, Guimond A, O’Connor-McCourt MD (2003) Expression of TGF-beta type II receptor antisense RNA impairs TGF-beta signaling in vitro and promotes mammary gland differentiation in vivo. Int J Cancer 107(6):919–928. doi:10.1002/ijc.11494 PubMedCrossRef Lenferink AE, Magoon J, Pepin MC, Guimond A, O’Connor-McCourt MD (2003) Expression of TGF-beta type II receptor antisense RNA impairs TGF-beta signaling in vitro and promotes mammary gland differentiation in vivo. Int J Cancer 107(6):919–928. doi:10.​1002/​ijc.​11494 PubMedCrossRef
48.
Zurück zum Zitat Gorska AE, Jensen RA, Shyr Y, Aakre ME, Bhowmick NA, Moses HL (2003) Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am J Pathol 163(4):1539–1549PubMed Gorska AE, Jensen RA, Shyr Y, Aakre ME, Bhowmick NA, Moses HL (2003) Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am J Pathol 163(4):1539–1549PubMed
49.
Zurück zum Zitat Forrester E, Chytil A, Bierie B, Aakre M, Gorska AE, Sharif-Afshar AR et al (2005) Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res 65(6):2296–2302. doi:10.1158/0008-5472.CAN-04-3272 PubMedCrossRef Forrester E, Chytil A, Bierie B, Aakre M, Gorska AE, Sharif-Afshar AR et al (2005) Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res 65(6):2296–2302. doi:10.​1158/​0008-5472.​CAN-04-3272 PubMedCrossRef
51.
Zurück zum Zitat Gold LI (1999) The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog 10(4):303–360 (In Process Citation)PubMed Gold LI (1999) The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit Rev Oncog 10(4):303–360 (In Process Citation)PubMed
52.
Zurück zum Zitat Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851. doi:10.1126/science.1090922 PubMedCrossRef Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S et al (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303(5659):848–851. doi:10.​1126/​science.​1090922 PubMedCrossRef
53.
Zurück zum Zitat Bierie B, Stover DG, Abel TW, Chytil A, Gorska AE, Aakre M et al (2008) Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res 68(6):1809–1819. doi:10.1158/0008-5472.CAN-07-5597 PubMedCrossRef Bierie B, Stover DG, Abel TW, Chytil A, Gorska AE, Aakre M et al (2008) Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res 68(6):1809–1819. doi:10.​1158/​0008-5472.​CAN-07-5597 PubMedCrossRef
56.
Zurück zum Zitat Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76. doi:10.1186/gb-2007-8-5-r76 PubMedCrossRef Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76. doi:10.​1186/​gb-2007-8-5-r76 PubMedCrossRef
59.
Zurück zum Zitat Lichtner RB, Julian JA, North SM, Glasser SR, Nicolson GL (1991) Coexpression of cytokeratins characteristic for myoepithelial and luminal cell lineages in rat 13762NF mammary adenocarcinoma tumors and their spontaneous metastases. Cancer Res 51(21):5943–5950PubMed Lichtner RB, Julian JA, North SM, Glasser SR, Nicolson GL (1991) Coexpression of cytokeratins characteristic for myoepithelial and luminal cell lineages in rat 13762NF mammary adenocarcinoma tumors and their spontaneous metastases. Cancer Res 51(21):5943–5950PubMed
61.
Zurück zum Zitat Pierce DF Jr, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF et al (1993) Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev 7(12A):2308–2317. doi:10.1101/gad.7.12a.2308 PubMedCrossRef Pierce DF Jr, Johnson MD, Matsui Y, Robinson SD, Gold LI, Purchio AF et al (1993) Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev 7(12A):2308–2317. doi:10.​1101/​gad.​7.​12a.​2308 PubMedCrossRef
62.
63.
Zurück zum Zitat Booth BW, Jhappan C, Merlino G, Smith GH (2007) TGFbeta1 and TGFalpha contrarily affect alveolar survival and tumorigenesis in mouse mammary epithelium. Int J Cancer 120(3):493–499. doi:10.1002/ijc.22310 PubMedCrossRef Booth BW, Jhappan C, Merlino G, Smith GH (2007) TGFbeta1 and TGFalpha contrarily affect alveolar survival and tumorigenesis in mouse mammary epithelium. Int J Cancer 120(3):493–499. doi:10.​1002/​ijc.​22310 PubMedCrossRef
65.
Zurück zum Zitat Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J (2003) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100(14):8430–8435. doi:10.1073/pnas.0932636100 PubMedCrossRef Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J (2003) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100(14):8430–8435. doi:10.​1073/​pnas.​0932636100 PubMedCrossRef
66.
Zurück zum Zitat Muraoka-Cook RS, Shin I, Yi JY, Easterly E, Barcellos-Hoff MH, Yingling JM et al (2006) Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene 25(24):3408–3423. doi:10.1038/sj.onc.1208964 PubMedCrossRef Muraoka-Cook RS, Shin I, Yi JY, Easterly E, Barcellos-Hoff MH, Yingling JM et al (2006) Activated type I TGFbeta receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene 25(24):3408–3423. doi:10.​1038/​sj.​onc.​1208964 PubMedCrossRef
67.
Zurück zum Zitat Kareddula A, Zachariah E, Notterman D, Reiss M (2008) Transforming growth factor-β signaling strength determines target gene expression profile in human keratinocytes. J Epithel Biol Pharmacol 1:40–94CrossRef Kareddula A, Zachariah E, Notterman D, Reiss M (2008) Transforming growth factor-β signaling strength determines target gene expression profile in human keratinocytes. J Epithel Biol Pharmacol 1:40–94CrossRef
70.
Zurück zum Zitat Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R et al (1999) TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103(2):197–206. doi:10.1172/JCI3523 PubMedCrossRef Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R et al (1999) TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103(2):197–206. doi:10.​1172/​JCI3523 PubMedCrossRef
71.
Zurück zum Zitat Dumont N, Arteaga CL (2000) Transforming growth factor-beta and breast cancer: tumor promoting effects of transforming growth factor-beta. Breast Cancer Res 2(2):125–132. doi:10.1186/bcr44 PubMedCrossRef Dumont N, Arteaga CL (2000) Transforming growth factor-beta and breast cancer: tumor promoting effects of transforming growth factor-beta. Breast Cancer Res 2(2):125–132. doi:10.​1186/​bcr44 PubMedCrossRef
72.
Zurück zum Zitat Fynan TM, Reiss M (1993) Resistance to inhibition of cell growth by transforming growth factor-β and its role in oncogenesis. Crit Rev Oncog 4:493–540PubMed Fynan TM, Reiss M (1993) Resistance to inhibition of cell growth by transforming growth factor-β and its role in oncogenesis. Crit Rev Oncog 4:493–540PubMed
73.
Zurück zum Zitat Valverius EM, Walker-Jones D, Bates SE, Stampfer MR, Clark R, McCormick F et al (1989) Production of and responsiveness to transforming growth factor-beta in normal and oncogene-transformed human mammary epithelial cells. Cancer Res 49(22):6269–6274PubMed Valverius EM, Walker-Jones D, Bates SE, Stampfer MR, Clark R, McCormick F et al (1989) Production of and responsiveness to transforming growth factor-beta in normal and oncogene-transformed human mammary epithelial cells. Cancer Res 49(22):6269–6274PubMed
74.
Zurück zum Zitat Zugmaier G, Paik S, Wilding G, Knabbe C, Bano M, Lupu R et al (1991) Transforming growth factor β1 induces cachexia and systemic fibrosis without an antitumor effect in nude mice. Cancer Res 51:3590–3594PubMed Zugmaier G, Paik S, Wilding G, Knabbe C, Bano M, Lupu R et al (1991) Transforming growth factor β1 induces cachexia and systemic fibrosis without an antitumor effect in nude mice. Cancer Res 51:3590–3594PubMed
75.
Zurück zum Zitat Arteaga CL, Tandon AK, Von Hoff DD, Osborne CK (1988) Transforming growth factor beta: potential autocrine growth inhibitor of estrogen receptor-negative human breast cancer cells. Cancer Res 48(14):3898–3904PubMed Arteaga CL, Tandon AK, Von Hoff DD, Osborne CK (1988) Transforming growth factor beta: potential autocrine growth inhibitor of estrogen receptor-negative human breast cancer cells. Cancer Res 48(14):3898–3904PubMed
76.
Zurück zum Zitat Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R et al (1987) Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48(3):417–428. doi:10.1016/0092-8674(87)90193-0 PubMedCrossRef Knabbe C, Lippman ME, Wakefield LM, Flanders KC, Kasid A, Derynck R et al (1987) Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48(3):417–428. doi:10.​1016/​0092-8674(87)90193-0 PubMedCrossRef
77.
Zurück zum Zitat Zugmaier G, Ennis BW, Deschauer B, Katz D, Knabbe C, Wilding G et al (1989) Transforming growth factor type β1 and β2 are equipotent growth inhibitors of human breast cancer cell lines. J Cell Physiol 141:353–361. doi:10.1002/jcp.1041410217 PubMedCrossRef Zugmaier G, Ennis BW, Deschauer B, Katz D, Knabbe C, Wilding G et al (1989) Transforming growth factor type β1 and β2 are equipotent growth inhibitors of human breast cancer cell lines. J Cell Physiol 141:353–361. doi:10.​1002/​jcp.​1041410217 PubMedCrossRef
79.
Zurück zum Zitat Herman ME, Katzenellenbogen BS (1994) Alterations in transforming growth factor-alpha and -beta production and cell responsiveness during the progression of MCF-7 human breast cancer cells to estrogen-autonomous growth. Cancer Res 54(22):5867–5874PubMed Herman ME, Katzenellenbogen BS (1994) Alterations in transforming growth factor-alpha and -beta production and cell responsiveness during the progression of MCF-7 human breast cancer cells to estrogen-autonomous growth. Cancer Res 54(22):5867–5874PubMed
80.
Zurück zum Zitat Jeng MH, Jordan VC (1991) Growth stimulation and differential regulation of transforming growth factor-beta 1 (TGF beta 1), TGF beta 2, and TGF beta 3 messenger RNA levels by norethindrone in MCF-7 human breast cancer cells. Mol Endocrinol (Baltimore, MD) 5(8):1120–1128CrossRef Jeng MH, Jordan VC (1991) Growth stimulation and differential regulation of transforming growth factor-beta 1 (TGF beta 1), TGF beta 2, and TGF beta 3 messenger RNA levels by norethindrone in MCF-7 human breast cancer cells. Mol Endocrinol (Baltimore, MD) 5(8):1120–1128CrossRef
81.
Zurück zum Zitat Jeng MH, ten Dijke P, Iwata KK, Jordan VC (1993) Regulation of the levels of three transforming growth factor beta mRNAs by estrogen and their effects on the proliferation of human breast cancer cells. Mol Cell Endocrinol 97(1–2):115–123. doi:10.1016/0303-7207(93)90217-8 PubMedCrossRef Jeng MH, ten Dijke P, Iwata KK, Jordan VC (1993) Regulation of the levels of three transforming growth factor beta mRNAs by estrogen and their effects on the proliferation of human breast cancer cells. Mol Cell Endocrinol 97(1–2):115–123. doi:10.​1016/​0303-7207(93)90217-8 PubMedCrossRef
82.
Zurück zum Zitat Manni A, Wright C, Buck H (1991) Growth factor involvement in the multihormonal regulation of MCF-7 breast cancer cell growth in soft agar. Breast Cancer Res Treat 20(1):43–52. doi:10.1007/BF01833356 PubMedCrossRef Manni A, Wright C, Buck H (1991) Growth factor involvement in the multihormonal regulation of MCF-7 breast cancer cell growth in soft agar. Breast Cancer Res Treat 20(1):43–52. doi:10.​1007/​BF01833356 PubMedCrossRef
83.
Zurück zum Zitat Ge R, Rajeev V, Ray P, Lattime E, Rittling S, Medicherla S et al (2006) Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-beta type I receptor kinase in vivo. Clin Cancer Res 12(14 Pt 1):4315–4330. doi:10.1158/1078-0432.CCR-06-0162 PubMedCrossRef Ge R, Rajeev V, Ray P, Lattime E, Rittling S, Medicherla S et al (2006) Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-beta type I receptor kinase in vivo. Clin Cancer Res 12(14 Pt 1):4315–4330. doi:10.​1158/​1078-0432.​CCR-06-0162 PubMedCrossRef
84.
Zurück zum Zitat Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994) TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127(6 Pt 2):2021–2036. doi:10.1083/jcb.127.6.2021 PubMedCrossRef Miettinen PJ, Ebner R, Lopez AR, Derynck R (1994) TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol 127(6 Pt 2):2021–2036. doi:10.​1083/​jcb.​127.​6.​2021 PubMedCrossRef
85.
Zurück zum Zitat Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P (1999) TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 112(Pt 24):4557–4568PubMed Piek E, Moustakas A, Kurisaki A, Heldin CH, ten Dijke P (1999) TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 112(Pt 24):4557–4568PubMed
86.
Zurück zum Zitat Buck M, Der Fecht JV, Knabbe C (2002) Antiestrogenic regulation of transforming growth factor beta receptors I and II in human breast cancer cells. Ann N Y Acad Sci 963:140–143PubMed Buck M, Der Fecht JV, Knabbe C (2002) Antiestrogenic regulation of transforming growth factor beta receptors I and II in human breast cancer cells. Ann N Y Acad Sci 963:140–143PubMed
88.
Zurück zum Zitat Pink JJ, Bilimoria MM, Assikis J, Jordan VC (1996) Irreversible loss of the oestrogen receptor in T47D breast cancer cells following prolonged oestrogen deprivation. Br J Cancer 74(8):1227–1236PubMed Pink JJ, Bilimoria MM, Assikis J, Jordan VC (1996) Irreversible loss of the oestrogen receptor in T47D breast cancer cells following prolonged oestrogen deprivation. Br J Cancer 74(8):1227–1236PubMed
89.
Zurück zum Zitat Knabbe C, Zugmaier G, Schmahl M, Dietel M, Lippman ME, Dickson RB (1991) Induction of transforming growth factor beta by the antiestrogens droloxifene, tamoxifen, and toremifene in MCF-7 cells. Am J Clin Oncol 14(Suppl 2):S15–S20. doi:10.1097/00000421-199112002-00005 PubMedCrossRef Knabbe C, Zugmaier G, Schmahl M, Dietel M, Lippman ME, Dickson RB (1991) Induction of transforming growth factor beta by the antiestrogens droloxifene, tamoxifen, and toremifene in MCF-7 cells. Am J Clin Oncol 14(Suppl 2):S15–S20. doi:10.​1097/​00000421-199112002-00005 PubMedCrossRef
90.
Zurück zum Zitat Muller V, Jensen EV, Knabbe C (1998) Partial antagonism between steroidal and nonsteroidal antiestrogens in human breast cancer cell lines. Cancer Res 58(2):263–267PubMed Muller V, Jensen EV, Knabbe C (1998) Partial antagonism between steroidal and nonsteroidal antiestrogens in human breast cancer cell lines. Cancer Res 58(2):263–267PubMed
91.
Zurück zum Zitat Buck MB, Coller JK, Murdter TE, Eichelbaum M, Knabbe C (2008) TGFbeta2 and TbetaRII are valid molecular biomarkers for the antiproliferative effects of tamoxifen and tamoxifen metabolites in breast cancer cells. Breast Cancer Res Treat 107(1):15–24. doi:10.1007/s10549-007-9526-7 PubMedCrossRef Buck MB, Coller JK, Murdter TE, Eichelbaum M, Knabbe C (2008) TGFbeta2 and TbetaRII are valid molecular biomarkers for the antiproliferative effects of tamoxifen and tamoxifen metabolites in breast cancer cells. Breast Cancer Res Treat 107(1):15–24. doi:10.​1007/​s10549-007-9526-7 PubMedCrossRef
92.
Zurück zum Zitat Kopp A, Jonat W, Schmahl M, Knabbe C (1995) Transforming growth factor beta 2 (TGF-beta 2) levels in plasma of patients with metastatic breast cancer treated with tamoxifen. Cancer Res 55(20):4512–4515PubMed Kopp A, Jonat W, Schmahl M, Knabbe C (1995) Transforming growth factor beta 2 (TGF-beta 2) levels in plasma of patients with metastatic breast cancer treated with tamoxifen. Cancer Res 55(20):4512–4515PubMed
93.
Zurück zum Zitat MacCallum J, Keen JC, Bartlett JM, Thompson AM, Dixon JM, Miller WR (1996) Changes in expression of transforming growth factor beta mRNA isoforms in patients undergoing tamoxifen therapy. Br J Cancer 74(3):474–478PubMed MacCallum J, Keen JC, Bartlett JM, Thompson AM, Dixon JM, Miller WR (1996) Changes in expression of transforming growth factor beta mRNA isoforms in patients undergoing tamoxifen therapy. Br J Cancer 74(3):474–478PubMed
94.
Zurück zum Zitat Butta A, MacLennan K, Flanders KC, Sacks NP, Smith I, McKinna A et al (1992) Induction of transforming growth factor beta 1 in human breast cancer in vivo following tamoxifen treatment. Cancer Res 52(15):4261–4264PubMed Butta A, MacLennan K, Flanders KC, Sacks NP, Smith I, McKinna A et al (1992) Induction of transforming growth factor beta 1 in human breast cancer in vivo following tamoxifen treatment. Cancer Res 52(15):4261–4264PubMed
95.
Zurück zum Zitat Morena AM, Oshima CT, Gebrim LH, Egami MI, Silva MR, Segreto RA et al (2004) Early nuclear alterations and immunohistochemical expression of Ki-67, Erb-B2, vascular endothelial growth factor (VEGF), transforming growth factor (TGF-beta1) and integrine-linked kinase (ILK) two days after tamoxifen in breast carcinoma. Neoplasma 51(6):481–486PubMed Morena AM, Oshima CT, Gebrim LH, Egami MI, Silva MR, Segreto RA et al (2004) Early nuclear alterations and immunohistochemical expression of Ki-67, Erb-B2, vascular endothelial growth factor (VEGF), transforming growth factor (TGF-beta1) and integrine-linked kinase (ILK) two days after tamoxifen in breast carcinoma. Neoplasma 51(6):481–486PubMed
96.
Zurück zum Zitat Colletta AA, Wakefield LM, Howell FV, van Roozendaal KE, Danielpour D, Ebbs SR et al (1990) Anti-oestrogens induce the secretion of active transforming growth factor beta from human fetal fibroblasts. Br J Cancer 62(3):405–409PubMed Colletta AA, Wakefield LM, Howell FV, van Roozendaal KE, Danielpour D, Ebbs SR et al (1990) Anti-oestrogens induce the secretion of active transforming growth factor beta from human fetal fibroblasts. Br J Cancer 62(3):405–409PubMed
98.
Zurück zum Zitat van Roozendaal CE, Klijn JG, van Ooijen B, Claassen C, Eggermont AM, Henzen-Logmans SC et al (1995) Transforming growth factor beta secretion from primary breast cancer fibroblasts. Mol Cell Endocrinol 111(1):1–6. doi:10.1016/0303-7207(95)03539-J PubMedCrossRef van Roozendaal CE, Klijn JG, van Ooijen B, Claassen C, Eggermont AM, Henzen-Logmans SC et al (1995) Transforming growth factor beta secretion from primary breast cancer fibroblasts. Mol Cell Endocrinol 111(1):1–6. doi:10.​1016/​0303-7207(95)03539-J PubMedCrossRef
99.
Zurück zum Zitat Thompson AM, Kerr DJ, Steel CM (1991) Transforming growth factor beta 1 is implicated in the failure of tamoxifen therapy in human breast cancer. Br J Cancer 63(4):609–614PubMed Thompson AM, Kerr DJ, Steel CM (1991) Transforming growth factor beta 1 is implicated in the failure of tamoxifen therapy in human breast cancer. Br J Cancer 63(4):609–614PubMed
100.
Zurück zum Zitat Arteaga CL, Koli KM, Dugger TC, Clarke R (1999) Reversal of tamoxifen resistance of human breast carcinomas in vivo by neutralizing antibodies to transforming growth factor-beta. J Natl Cancer Inst 91(1):46–53. doi:10.1093/jnci/91.1.46 PubMedCrossRef Arteaga CL, Koli KM, Dugger TC, Clarke R (1999) Reversal of tamoxifen resistance of human breast carcinomas in vivo by neutralizing antibodies to transforming growth factor-beta. J Natl Cancer Inst 91(1):46–53. doi:10.​1093/​jnci/​91.​1.​46 PubMedCrossRef
101.
Zurück zum Zitat McEarchern JA, Kobie JJ, Mack V, Wu RS, Meade-Tollin L, Arteaga CL et al (2001) Invasion and metastasis of a mammary tumor involves TGF-beta signaling. Int J Cancer 91(1):76–82. doi:10.1002/1097-0215(20010101)91:1<76::AID-IJC1012>3.0.CO;2-8PubMedCrossRef McEarchern JA, Kobie JJ, Mack V, Wu RS, Meade-Tollin L, Arteaga CL et al (2001) Invasion and metastasis of a mammary tumor involves TGF-beta signaling. Int J Cancer 91(1):76–82. doi:10.1002/1097-0215(20010101)91:1<76::AID-IJC1012>3.0.CO;2-8PubMedCrossRef
102.
Zurück zum Zitat Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR et al (2003) TGF-{beta} switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 112(7):1116–1124PubMed Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR et al (2003) TGF-{beta} switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 112(7):1116–1124PubMed
103.
104.
Zurück zum Zitat Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G et al (2006) The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66(4):2202–2209. doi:10.1158/0008-5472.CAN-05-3560 PubMedCrossRef Deckers M, van Dinther M, Buijs J, Que I, Lowik C, van der Pluijm G et al (2006) The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res 66(4):2202–2209. doi:10.​1158/​0008-5472.​CAN-05-3560 PubMedCrossRef
105.
Zurück zum Zitat Kakonen SM, Selander KS, Chirgwin JM, Yin JJ, Burns S, Rankin WA et al (2002) Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 277(27):24571–24578. doi:10.1074/jbc.M202561200 PubMedCrossRef Kakonen SM, Selander KS, Chirgwin JM, Yin JJ, Burns S, Rankin WA et al (2002) Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 277(27):24571–24578. doi:10.​1074/​jbc.​M202561200 PubMedCrossRef
106.
Zurück zum Zitat Tian F, DaCosta Byfield S, Parks WT, Yoo S, Felici A, Tang B et al (2003) Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 63(23):8284–8292PubMed Tian F, DaCosta Byfield S, Parks WT, Yoo S, Felici A, Tang B et al (2003) Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 63(23):8284–8292PubMed
107.
Zurück zum Zitat Kang Y (2006) New tricks against an old foe: molecular dissection of metastasis tissue tropism in breast cancer. Breast Dis 26:129–138PubMed Kang Y (2006) New tricks against an old foe: molecular dissection of metastasis tissue tropism in breast cancer. Breast Dis 26:129–138PubMed
109.
Zurück zum Zitat Kang Y (2004) Breast cancer bone metastasis: molecular basis of tissue tropism. J Musculoskelet Neuronal Interact 4(4):379–380PubMed Kang Y (2004) Breast cancer bone metastasis: molecular basis of tissue tropism. J Musculoskelet Neuronal Interact 4(4):379–380PubMed
110.
Zurück zum Zitat Guise TA (2000) Molecular mechanisms of osteolytic bone metastases. Cancer 88(S12):2892–2898. doi:10.1002/1097-0142(20000615)88:12+<2892::AID-CNCR2>3.0.CO;2-YPubMedCrossRef Guise TA (2000) Molecular mechanisms of osteolytic bone metastases. Cancer 88(S12):2892–2898. doi:10.1002/1097-0142(20000615)88:12+<2892::AID-CNCR2>3.0.CO;2-YPubMedCrossRef
111.
Zurück zum Zitat van der Pluijm G, Sijmons B, Vloedgraven H, Deckers M, Papapoulos S, Lowik C (2001) Monitoring metastatic behavior of human tumor cells in mice with species-specific polymerase chain reaction: elevated expression of angiogenesis and bone resorption stimulators by breast cancer in bone metastases. J Bone Miner Res 16(6):1077–1091. doi:10.1359/jbmr.2001.16.6.1077 PubMedCrossRef van der Pluijm G, Sijmons B, Vloedgraven H, Deckers M, Papapoulos S, Lowik C (2001) Monitoring metastatic behavior of human tumor cells in mice with species-specific polymerase chain reaction: elevated expression of angiogenesis and bone resorption stimulators by breast cancer in bone metastases. J Bone Miner Res 16(6):1077–1091. doi:10.​1359/​jbmr.​2001.​16.​6.​1077 PubMedCrossRef
112.
Zurück zum Zitat Carano R, Li Y, Bao M, Li J, Berry L, Ross J et al (2004) Effect of anti-TGF-beta antibodies in syngeneic mouse models of metastasis. J Musculoskelet Neuronal Interact 4(4):377–378PubMed Carano R, Li Y, Bao M, Li J, Berry L, Ross J et al (2004) Effect of anti-TGF-beta antibodies in syngeneic mouse models of metastasis. J Musculoskelet Neuronal Interact 4(4):377–378PubMed
113.
114.
Zurück zum Zitat Yin JJ, Mohammad KS, Kakonen SM, Harris S, Wu-Wong JR, Wessale JL et al (2003) A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA 100(19):10954–10959. doi:10.1073/pnas.1830978100 PubMedCrossRef Yin JJ, Mohammad KS, Kakonen SM, Harris S, Wu-Wong JR, Wessale JL et al (2003) A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA 100(19):10954–10959. doi:10.​1073/​pnas.​1830978100 PubMedCrossRef
116.
Zurück zum Zitat Guise TA, Kozlow WM, Heras-Herzig A, Padalecki SS, Yin JJ, Chirgwin JM (2005) Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer 5(Suppl 2):S46–S53PubMedCrossRef Guise TA, Kozlow WM, Heras-Herzig A, Padalecki SS, Yin JJ, Chirgwin JM (2005) Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer 5(Suppl 2):S46–S53PubMedCrossRef
117.
Zurück zum Zitat Lee SD, Lee DS, Chun YG, Paik SH, Kim WS, Kim DS et al (2000) Transforming growth factor-beta1 induces endothelin-1 in a bovine pulmonary artery endothelial cell line and rat lungs via cAMP. Pulm Pharmacol Ther 13(6):257–265. doi:10.1006/pupt.2000.0252 PubMedCrossRef Lee SD, Lee DS, Chun YG, Paik SH, Kim WS, Kim DS et al (2000) Transforming growth factor-beta1 induces endothelin-1 in a bovine pulmonary artery endothelial cell line and rat lungs via cAMP. Pulm Pharmacol Ther 13(6):257–265. doi:10.​1006/​pupt.​2000.​0252 PubMedCrossRef
118.
Zurück zum Zitat Trompezinski S, Pernet I, Mayoux C, Schmitt D, Viac J (2000) Transforming growth factor-beta1 and ultraviolet A1 radiation increase production of vascular endothelial growth factor but not endothelin-1 in human dermal fibroblasts. Br J Dermatol 143(3):539–545. doi:10.1111/j.1365-2133.2000.03707.x PubMedCrossRef Trompezinski S, Pernet I, Mayoux C, Schmitt D, Viac J (2000) Transforming growth factor-beta1 and ultraviolet A1 radiation increase production of vascular endothelial growth factor but not endothelin-1 in human dermal fibroblasts. Br J Dermatol 143(3):539–545. doi:10.​1111/​j.​1365-2133.​2000.​03707.​x PubMedCrossRef
120.
Zurück zum Zitat Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446(7137):765–770. doi:10.1038/nature05760 PubMedCrossRef Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C et al (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446(7137):765–770. doi:10.​1038/​nature05760 PubMedCrossRef
121.
Zurück zum Zitat Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J et al (2002) Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156(2):299–313. doi:10.1083/jcb.200109037 PubMedCrossRef Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J et al (2002) Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156(2):299–313. doi:10.​1083/​jcb.​200109037 PubMedCrossRef
122.
Zurück zum Zitat Seton-Rogers SE, Brugge JS (2004) ErbB2 and TGF-beta: a cooperative role in mammary tumor progression? Cell Cycle 3(5):597–600PubMed Seton-Rogers SE, Brugge JS (2004) ErbB2 and TGF-beta: a cooperative role in mammary tumor progression? Cell Cycle 3(5):597–600PubMed
123.
Zurück zum Zitat Seton-Rogers SE, Lu Y, Hines LM, Koundinya M, LaBaer J, Muthuswamy SK et al (2004) Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci USA 101(5):1257–1262. doi:10.1073/pnas.0308090100 PubMedCrossRef Seton-Rogers SE, Lu Y, Hines LM, Koundinya M, LaBaer J, Muthuswamy SK et al (2004) Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci USA 101(5):1257–1262. doi:10.​1073/​pnas.​0308090100 PubMedCrossRef
124.
Zurück zum Zitat Ueda Y, Wang S, Dumont N, Yi JY, Koh Y, Arteaga CL (2004) Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility. J Biol Chem 279(23):24505–24513. doi:10.1074/jbc.M400081200 PubMedCrossRef Ueda Y, Wang S, Dumont N, Yi JY, Koh Y, Arteaga CL (2004) Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility. J Biol Chem 279(23):24505–24513. doi:10.​1074/​jbc.​M400081200 PubMedCrossRef
125.
Zurück zum Zitat Northey JJ, Chmielecki J, Ngan E, Russo C, Annis MG, Muller WJ et al (2008) Signaling through ShcA is required for transforming growth factor beta- and Neu/ErbB-2-induced breast cancer cell motility and invasion. Mol Cell Biol 28(10):3162–3176. doi:10.1128/MCB.01734-07 PubMedCrossRef Northey JJ, Chmielecki J, Ngan E, Russo C, Annis MG, Muller WJ et al (2008) Signaling through ShcA is required for transforming growth factor beta- and Neu/ErbB-2-induced breast cancer cell motility and invasion. Mol Cell Biol 28(10):3162–3176. doi:10.​1128/​MCB.​01734-07 PubMedCrossRef
126.
Zurück zum Zitat Reiss M (2008) Transforming growth factor-β in metastasis: in vitro and in vivo mechanisms. In: Jakowlew SB (ed) Transforming growth factor-beta in cancer therapy. The Humana, Totowa, pp 609–634 Reiss M (2008) Transforming growth factor-β in metastasis: in vitro and in vivo mechanisms. In: Jakowlew SB (ed) Transforming growth factor-beta in cancer therapy. The Humana, Totowa, pp 609–634
128.
129.
Zurück zum Zitat MacCallum J, Bartlett JM, Thompson AM, Keen JC, Dixon JM, Miller WR (1994) Expression of transforming growth factor beta mRNA isoforms in human breast cancer. Br J Cancer 69(6):1006–1009PubMed MacCallum J, Bartlett JM, Thompson AM, Keen JC, Dixon JM, Miller WR (1994) Expression of transforming growth factor beta mRNA isoforms in human breast cancer. Br J Cancer 69(6):1006–1009PubMed
130.
Zurück zum Zitat Travers MT, Barrett-Lee PJ, Berger U, Luqmani YA, Gazet JC, Powles TJ et al (1988) Growth factor expression in normal, benign, and malignant breast tissue. Br Med J (Clin Res Ed) 296(6637):1621–1624CrossRef Travers MT, Barrett-Lee PJ, Berger U, Luqmani YA, Gazet JC, Powles TJ et al (1988) Growth factor expression in normal, benign, and malignant breast tissue. Br Med J (Clin Res Ed) 296(6637):1621–1624CrossRef
133.
Zurück zum Zitat Dalal BI, Keown PA, Greenberg AH (1993) Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 143:381–389PubMed Dalal BI, Keown PA, Greenberg AH (1993) Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 143:381–389PubMed
134.
Zurück zum Zitat Auvinen P, Lipponen P, Johansson R, Syrjanen K (1995) Prognostic significance of TGF-beta 1 and TGF-beta 2 expressions in female breast cancer. Anticancer Res 15(6B):2627–2631PubMed Auvinen P, Lipponen P, Johansson R, Syrjanen K (1995) Prognostic significance of TGF-beta 1 and TGF-beta 2 expressions in female breast cancer. Anticancer Res 15(6B):2627–2631PubMed
135.
Zurück zum Zitat de Jong JS, van Diest PJ, van der Valk P, Baak JP (1998) Expression of growth factors, growth inhibiting factors, and their receptors in invasive breast cancer. I: an inventory in search of autocrine and paracrine loops. J Pathol 184(1):44–52. doi:10.1002/(SICI)1096-9896(199801)184:1<44::AID-PATH984>3.0.CO;2-HPubMedCrossRef de Jong JS, van Diest PJ, van der Valk P, Baak JP (1998) Expression of growth factors, growth inhibiting factors, and their receptors in invasive breast cancer. I: an inventory in search of autocrine and paracrine loops. J Pathol 184(1):44–52. doi:10.1002/(SICI)1096-9896(199801)184:1<44::AID-PATH984>3.0.CO;2-HPubMedCrossRef
136.
Zurück zum Zitat Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA (1992) Immunohistochemical staining for transforming growth factor beta 1 associates with disease progression in human breast cancer. Cancer Res 52(24):6949–6952PubMed Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA (1992) Immunohistochemical staining for transforming growth factor beta 1 associates with disease progression in human breast cancer. Cancer Res 52(24):6949–6952PubMed
137.
Zurück zum Zitat Sminia P, Barten AD, van Waarde MA, Vujaskovic Z, van Tienhoven G (1998) Plasma transforming growth factor beta levels in breast cancer patients. Oncol Rep 5(2):485–488PubMed Sminia P, Barten AD, van Waarde MA, Vujaskovic Z, van Tienhoven G (1998) Plasma transforming growth factor beta levels in breast cancer patients. Oncol Rep 5(2):485–488PubMed
139.
Zurück zum Zitat Kong FM, Anscher MS, Murase T, Abbott BD, Iglehart JD, Jirtle RL (1995) Elevated plasma transforming growth factor-beta 1 levels in breast cancer patients decrease after surgical removal of the tumor. Ann Surg 222(2):155–162. doi:10.1097/00000658-199508000-00007 PubMedCrossRef Kong FM, Anscher MS, Murase T, Abbott BD, Iglehart JD, Jirtle RL (1995) Elevated plasma transforming growth factor-beta 1 levels in breast cancer patients decrease after surgical removal of the tumor. Ann Surg 222(2):155–162. doi:10.​1097/​00000658-199508000-00007 PubMedCrossRef
140.
Zurück zum Zitat Grau AM, Wen W, Ramroopsingh DS, Gao YT, Zi J, Cai Q et al (2007) Circulating transforming growth factor-beta-1 and breast cancer prognosis: results from the Shanghai breast cancer study. Breast Cancer Res Treat 106:205–213CrossRef Grau AM, Wen W, Ramroopsingh DS, Gao YT, Zi J, Cai Q et al (2007) Circulating transforming growth factor-beta-1 and breast cancer prognosis: results from the Shanghai breast cancer study. Breast Cancer Res Treat 106:205–213CrossRef
142.
Zurück zum Zitat Chakravarthy D, Green AR, Green VL, Kerin MJ, Speirs V (1999) Expression and secretion of TGF-beta isoforms and expression of TGF- beta-receptors I, II and III in normal and neoplastic human breast. Int J Oncol 15(1):187–194PubMed Chakravarthy D, Green AR, Green VL, Kerin MJ, Speirs V (1999) Expression and secretion of TGF-beta isoforms and expression of TGF- beta-receptors I, II and III in normal and neoplastic human breast. Int J Oncol 15(1):187–194PubMed
143.
Zurück zum Zitat Gobbi H, Dupont WD, Simpson JF, Plummer WD Jr, Schuyler PA, Olson SJ et al (1999) Transforming growth factor-beta and breast cancer risk in women with mammary epithelial hyperplasia. J Natl Cancer Inst 91(24):2096–2101. doi:10.1093/jnci/91.24.2096 PubMedCrossRef Gobbi H, Dupont WD, Simpson JF, Plummer WD Jr, Schuyler PA, Olson SJ et al (1999) Transforming growth factor-beta and breast cancer risk in women with mammary epithelial hyperplasia. J Natl Cancer Inst 91(24):2096–2101. doi:10.​1093/​jnci/​91.​24.​2096 PubMedCrossRef
144.
Zurück zum Zitat Gobbi H, Arteaga CL, Jensen RA, Simpson JF, Dupont WD, Olson SJ et al (2000) Loss of expression of transforming growth factor beta type II receptor correlates with high tumour grade in human breast in-situ and invasive carcinomas. Histopathology 36(2):168–177. doi:10.1046/j.1365-2559.2000.00841.x PubMedCrossRef Gobbi H, Arteaga CL, Jensen RA, Simpson JF, Dupont WD, Olson SJ et al (2000) Loss of expression of transforming growth factor beta type II receptor correlates with high tumour grade in human breast in-situ and invasive carcinomas. Histopathology 36(2):168–177. doi:10.​1046/​j.​1365-2559.​2000.​00841.​x PubMedCrossRef
145.
146.
Zurück zum Zitat Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679PubMed Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679PubMed
148.
Zurück zum Zitat Takenoshita S, Mogi A, Tani M, Osawa H, Sunaga H, Kakegawa H et al (1998) Absence of mutations in the analysis of coding sequences of the entire transforming growth factor-beta type II receptor gene in sporadic human breast cancers. Oncol Rep 5(2):367–371PubMed Takenoshita S, Mogi A, Tani M, Osawa H, Sunaga H, Kakegawa H et al (1998) Absence of mutations in the analysis of coding sequences of the entire transforming growth factor-beta type II receptor gene in sporadic human breast cancers. Oncol Rep 5(2):367–371PubMed
149.
Zurück zum Zitat Chen T, Carter D, Garrigue-Antar L, Reiss M (1998) Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res 58(21):4805–4810PubMed Chen T, Carter D, Garrigue-Antar L, Reiss M (1998) Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res 58(21):4805–4810PubMed
150.
Zurück zum Zitat Lucke CD, Philpott A, Metcalfe JC, Thompson AM, Hughes-Davies L, Kemp PR et al (2001) Inhibiting mutations in the transforming growth factor beta type 2 receptor in recurrent human breast cancer. Cancer Res 61(2):482–485PubMed Lucke CD, Philpott A, Metcalfe JC, Thompson AM, Hughes-Davies L, Kemp PR et al (2001) Inhibiting mutations in the transforming growth factor beta type 2 receptor in recurrent human breast cancer. Cancer Res 61(2):482–485PubMed
151.
Zurück zum Zitat Baxter SW, Choong DY, Eccles DM, Campbell IG (2002) Transforming growth factor beta receptor 1 polyalanine polymorphism and exon 5 mutation analysis in breast and ovarian cancer. Cancer Epidemiol Biomarkers Prev 11(2):211–214PubMed Baxter SW, Choong DY, Eccles DM, Campbell IG (2002) Transforming growth factor beta receptor 1 polyalanine polymorphism and exon 5 mutation analysis in breast and ovarian cancer. Cancer Epidemiol Biomarkers Prev 11(2):211–214PubMed
152.
Zurück zum Zitat Kang JS, Saunier EF, Akhurst RJ, Derynck R (2008) The type I TGF- β receptor is covalently modified and regulated by sumoylation. Nat Cell Biol 10(6):654–664PubMedCrossRef Kang JS, Saunier EF, Akhurst RJ, Derynck R (2008) The type I TGF- β receptor is covalently modified and regulated by sumoylation. Nat Cell Biol 10(6):654–664PubMedCrossRef
154.
Zurück zum Zitat Jeruss JS, Sturgis CD, Rademaker AW, Woodruff TK (2003) Down-regulation of activin, activin receptors, and Smads in high-grade breast cancer. Cancer Res 63(13):3783–3790PubMed Jeruss JS, Sturgis CD, Rademaker AW, Woodruff TK (2003) Down-regulation of activin, activin receptors, and Smads in high-grade breast cancer. Cancer Res 63(13):3783–3790PubMed
156.
158.
Zurück zum Zitat Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25. doi:10.1186/bcr1982 PubMedCrossRef Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10(2):R25. doi:10.​1186/​bcr1982 PubMedCrossRef
159.
Zurück zum Zitat Horwitz KB, Dye WW, Harrell JC, Kabos P, Sartorius CA (2008) Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci USA 105(15):5774–5779. doi:10.1073/pnas.0706216105 PubMedCrossRef Horwitz KB, Dye WW, Harrell JC, Kabos P, Sartorius CA (2008) Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci USA 105(15):5774–5779. doi:10.​1073/​pnas.​0706216105 PubMedCrossRef
161.
Zurück zum Zitat Fillmore C, Kuperwasser C (2007) Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man? Breast Cancer Res 9(3):303. doi:10.1186/bcr1673 PubMedCrossRef Fillmore C, Kuperwasser C (2007) Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man? Breast Cancer Res 9(3):303. doi:10.​1186/​bcr1673 PubMedCrossRef
162.
163.
Zurück zum Zitat Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adelaide J, Cervera N et al (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25(15):2273–2284. doi:10.1038/sj.onc.1209254 PubMedCrossRef Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adelaide J, Cervera N et al (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25(15):2273–2284. doi:10.​1038/​sj.​onc.​1209254 PubMedCrossRef
165.
Zurück zum Zitat Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL et al (2001) Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15(1):50–65. doi:10.1101/gad.828901 PubMedCrossRef Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL et al (2001) Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15(1):50–65. doi:10.​1101/​gad.​828901 PubMedCrossRef
166.
Zurück zum Zitat Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359(6397):693–699. doi:10.1038/359693a0 PubMedCrossRef Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359(6397):693–699. doi:10.​1038/​359693a0 PubMedCrossRef
167.
Zurück zum Zitat Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J et al (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96(3):319–328. doi:10.1016/S0092-8674(00)80545-0 PubMedCrossRef Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J et al (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96(3):319–328. doi:10.​1016/​S0092-8674(00)80545-0 PubMedCrossRef
169.
Zurück zum Zitat Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176PubMed Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14(2):163–176PubMed
172.
Zurück zum Zitat Acharya PS, Majumdar S, Jacob M, Hayden J, Mrass P, Weninger W et al (2008) Fibroblast migration is mediated by CD44-dependent TGF beta activation. J Cell Sci 121(Pt 9):1393–1402. doi:10.1242/jcs.021683 PubMedCrossRef Acharya PS, Majumdar S, Jacob M, Hayden J, Mrass P, Weninger W et al (2008) Fibroblast migration is mediated by CD44-dependent TGF beta activation. J Cell Sci 121(Pt 9):1393–1402. doi:10.​1242/​jcs.​021683 PubMedCrossRef
173.
Zurück zum Zitat Bourguignon LY, Singleton PA, Zhu H, Zhou B (2002) Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J Biol Chem 277(42):39703–39712. doi:10.1074/jbc.M204320200 PubMedCrossRef Bourguignon LY, Singleton PA, Zhu H, Zhou B (2002) Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J Biol Chem 277(42):39703–39712. doi:10.​1074/​jbc.​M204320200 PubMedCrossRef
174.
Zurück zum Zitat Mackillop WJ, Ciampi A, Till JE, Buick RN (1983) A stem cell model of human tumor growth: implications for tumor cell clonogenic assays. J Natl Cancer Inst 70(1):9–16PubMed Mackillop WJ, Ciampi A, Till JE, Buick RN (1983) A stem cell model of human tumor growth: implications for tumor cell clonogenic assays. J Natl Cancer Inst 70(1):9–16PubMed
175.
Zurück zum Zitat James D, Levine AJ, Besser D, Hemmati-Brivanlou A (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132(6):1273–1282. doi:10.1242/dev.01706 PubMedCrossRef James D, Levine AJ, Besser D, Hemmati-Brivanlou A (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132(6):1273–1282. doi:10.​1242/​dev.​01706 PubMedCrossRef
176.
Zurück zum Zitat Poon E, Clermont F, Firpo MT, Akhurst RJ (2006) TGFbeta inhibition of yolk-sac-like differentiation of human embryonic stem-cell-derived embryoid bodies illustrates differences between early mouse and human development. J Cell Sci 119(Pt 4):759–768. doi:10.1242/jcs.02788 PubMedCrossRef Poon E, Clermont F, Firpo MT, Akhurst RJ (2006) TGFbeta inhibition of yolk-sac-like differentiation of human embryonic stem-cell-derived embryoid bodies illustrates differences between early mouse and human development. J Cell Sci 119(Pt 4):759–768. doi:10.​1242/​jcs.​02788 PubMedCrossRef
180.
Zurück zum Zitat Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B et al (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13(11):3207–3214. doi:10.1158/1078-0432.CCR-06-2765 PubMedCrossRef Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B et al (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13(11):3207–3214. doi:10.​1158/​1078-0432.​CCR-06-2765 PubMedCrossRef
183.
Zurück zum Zitat Desai KV, Xiao N, Wang W, Gangi L, Greene J, Powell JI et al (2002) Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA 99(10):6967–6972. doi:10.1073/pnas.102172399 PubMedCrossRef Desai KV, Xiao N, Wang W, Gangi L, Greene J, Powell JI et al (2002) Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc Natl Acad Sci USA 99(10):6967–6972. doi:10.​1073/​pnas.​102172399 PubMedCrossRef
184.
Zurück zum Zitat Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ et al (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163(5):2113–2126PubMed Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ et al (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163(5):2113–2126PubMed
185.
Zurück zum Zitat Maglione JE, Moghanaki D, Young LJ, Manner CK, Ellies LG, Joseph SO et al (2001) Transgenic polyoma middle-T mice model premalignant mammary disease. Cancer Res 61(22):8298–8305PubMed Maglione JE, Moghanaki D, Young LJ, Manner CK, Ellies LG, Joseph SO et al (2001) Transgenic polyoma middle-T mice model premalignant mammary disease. Cancer Res 61(22):8298–8305PubMed
186.
Zurück zum Zitat Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT (1993) Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest 92(6):2569–2576. doi:10.1172/JCI116871 PubMedCrossRef Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT (1993) Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest 92(6):2569–2576. doi:10.​1172/​JCI116871 PubMedCrossRef
188.
Zurück zum Zitat Nam JS, Suchar AM, Kang MJ, Stuelten CH, Tang B, Michalowska AM et al (2006) Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor beta in a mouse model of breast cancer. Cancer Res 66(12):6327–6335. doi:10.1158/0008-5472.CAN-06-0068 PubMedCrossRef Nam JS, Suchar AM, Kang MJ, Stuelten CH, Tang B, Michalowska AM et al (2006) Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor beta in a mouse model of breast cancer. Cancer Res 66(12):6327–6335. doi:10.​1158/​0008-5472.​CAN-06-0068 PubMedCrossRef
189.
190.
Zurück zum Zitat Nam JS, Terabe M, Mamura M, Kang MJ, Chae H, Stuelten C et al (2008) An anti-transforming growth factor beta antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res 68(10):3835–3843. doi:10.1158/0008-5472.CAN-08-0215 PubMedCrossRef Nam JS, Terabe M, Mamura M, Kang MJ, Chae H, Stuelten C et al (2008) An anti-transforming growth factor beta antibody suppresses metastasis via cooperative effects on multiple cell compartments. Cancer Res 68(10):3835–3843. doi:10.​1158/​0008-5472.​CAN-08-0215 PubMedCrossRef
191.
Zurück zum Zitat Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J et al (2002) Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109(12):1551–1559PubMed Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J et al (2002) Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109(12):1551–1559PubMed
192.
Zurück zum Zitat Bandyopadhyay A, Zhu Y, Cibull ML, Bao L, Chen C, Sun L (1999) A soluble transforming growth factor beta type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Res 59(19):5041–5046PubMed Bandyopadhyay A, Zhu Y, Cibull ML, Bao L, Chen C, Sun L (1999) A soluble transforming growth factor beta type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Res 59(19):5041–5046PubMed
193.
Zurück zum Zitat Bandyopadhyay A, Lopez-Casillas F, Malik SN, Montiel JL, Mendoza V, Yang J et al (2002) Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Res 62(16):4690–4695PubMed Bandyopadhyay A, Lopez-Casillas F, Malik SN, Montiel JL, Mendoza V, Yang J et al (2002) Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Res 62(16):4690–4695PubMed
194.
Zurück zum Zitat Bandyopadhyay A, Zhu Y, Malik SN, Kreisberg J, Brattain MG, Sprague EA et al (2002) Extracellular domain of TGFbeta type III receptor inhibits angiogenesis and tumor growth in human cancer cells. Oncogene 21(22):3541–3551. doi:10.1038/sj.onc.1205439 PubMedCrossRef Bandyopadhyay A, Zhu Y, Malik SN, Kreisberg J, Brattain MG, Sprague EA et al (2002) Extracellular domain of TGFbeta type III receptor inhibits angiogenesis and tumor growth in human cancer cells. Oncogene 21(22):3541–3551. doi:10.​1038/​sj.​onc.​1205439 PubMedCrossRef
195.
Zurück zum Zitat Park JA, Wang E, Kurt RA, Schluter SF, Hersh EM, Akporiaye ET (1997) Expression of an antisense transforming growth factor-beta-1 transgene reduces tumorigenicity of EMT6 mammary tumor cells. Cancer Gene Ther 4(1):42–50PubMed Park JA, Wang E, Kurt RA, Schluter SF, Hersh EM, Akporiaye ET (1997) Expression of an antisense transforming growth factor-beta-1 transgene reduces tumorigenicity of EMT6 mammary tumor cells. Cancer Gene Ther 4(1):42–50PubMed
196.
Zurück zum Zitat Schlingensiepen KH, Fischer-Blass B, Schmaus S, Ludwig S (2008) Antisense therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development against malignant tumors. Recent Results in Cancer Res 177:137–150CrossRef Schlingensiepen KH, Fischer-Blass B, Schmaus S, Ludwig S (2008) Antisense therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development against malignant tumors. Recent Results in Cancer Res 177:137–150CrossRef
197.
Zurück zum Zitat Hau P, Jachimczak P, Schlingensiepen R, Schulmeyer F, Jauch T, Steinbrecher A et al (2007) Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 17(2):201–212. doi:10.1089/oli.2006.0053 PubMedCrossRef Hau P, Jachimczak P, Schlingensiepen R, Schulmeyer F, Jauch T, Steinbrecher A et al (2007) Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 17(2):201–212. doi:10.​1089/​oli.​2006.​0053 PubMedCrossRef
199.
Zurück zum Zitat Schlingensiepen R, Goldbrunner M, Szyrach MN, Stauder G, Jachimczak P, Bogdahn U et al (2005) Intracerebral and intrathecal infusion of the TGF-beta 2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 15(2):94–104. doi:10.1089/oli.2005.15.94 PubMedCrossRef Schlingensiepen R, Goldbrunner M, Szyrach MN, Stauder G, Jachimczak P, Bogdahn U et al (2005) Intracerebral and intrathecal infusion of the TGF-beta 2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 15(2):94–104. doi:10.​1089/​oli.​2005.​15.​94 PubMedCrossRef
200.
Zurück zum Zitat DaCosta Byfield S, Major C, Laping NJ, Roberts AB (2004) SB-505124 is a selective inhibitor of transforming growth factor-{beta} type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65(3):744–752. doi:10.1124/mol.65.3.744 PubMedCrossRef DaCosta Byfield S, Major C, Laping NJ, Roberts AB (2004) SB-505124 is a selective inhibitor of transforming growth factor-{beta} type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65(3):744–752. doi:10.​1124/​mol.​65.​3.​744 PubMedCrossRef
202.
Zurück zum Zitat Bandyopadhyay A, Agyin JK, Wang L, Tang Y, Lei X, Story BM et al (2006) Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-beta type I receptor kinase inhibitor. Cancer Res 66(13):6714–6721. doi:10.1158/0008-5472.CAN-05-3565 PubMedCrossRef Bandyopadhyay A, Agyin JK, Wang L, Tang Y, Lei X, Story BM et al (2006) Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-beta type I receptor kinase inhibitor. Cancer Res 66(13):6714–6721. doi:10.​1158/​0008-5472.​CAN-05-3565 PubMedCrossRef
203.
Zurück zum Zitat Mohammad K, Stebbins E, Kingsley L, Fournier P, Niewolna M, McKenna C et al (2008) Transforming growth factor β receptor I kinase inhibitor and bisphosphonates are additive to reduce breast cancer bone metastases. Cancer Treat Rev 34:37–38. doi:10.1016/j.ctrv.2008.03.106 CrossRef Mohammad K, Stebbins E, Kingsley L, Fournier P, Niewolna M, McKenna C et al (2008) Transforming growth factor β receptor I kinase inhibitor and bisphosphonates are additive to reduce breast cancer bone metastases. Cancer Treat Rev 34:37–38. doi:10.​1016/​j.​ctrv.​2008.​03.​106 CrossRef
204.
Zurück zum Zitat Vieth M, Brooks HB, Hamdouchi C, McMillen W, Sawyer JS, Yingling JM et al (2003) Combining medicinal chemistry with chemogenomic and computer-aided structure-based design in development of novel kinase inhibitors. Cell Mol Biol Lett 8(2A):566–567 Vieth M, Brooks HB, Hamdouchi C, McMillen W, Sawyer JS, Yingling JM et al (2003) Combining medicinal chemistry with chemogenomic and computer-aided structure-based design in development of novel kinase inhibitors. Cell Mol Biol Lett 8(2A):566–567
205.
Zurück zum Zitat Sawyer JS, Anderson BD, Beight DW, Campbell RM, Jones ML, Herron DK et al (2003) Synthesis and activity of new aryl- and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain. J Med Chem 46(19):3953–3956. doi:10.1021/jm0205705 PubMedCrossRef Sawyer JS, Anderson BD, Beight DW, Campbell RM, Jones ML, Herron DK et al (2003) Synthesis and activity of new aryl- and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain. J Med Chem 46(19):3953–3956. doi:10.​1021/​jm0205705 PubMedCrossRef
206.
Zurück zum Zitat Sawyer JS, Beight DW, Britt KS, Anderson BD, Campbell RM, Goodson T Jr et al (2004) Synthesis and activity of new aryl- and heteroaryl-substituted 5, 6-dihydro-4H-pyrrolo[1, 2-b]pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain. Bioorg Med Chem Lett 14(13):3581–3584. doi:10.1016/j.bmcl.2004.04.007 PubMedCrossRef Sawyer JS, Beight DW, Britt KS, Anderson BD, Campbell RM, Goodson T Jr et al (2004) Synthesis and activity of new aryl- and heteroaryl-substituted 5, 6-dihydro-4H-pyrrolo[1, 2-b]pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain. Bioorg Med Chem Lett 14(13):3581–3584. doi:10.​1016/​j.​bmcl.​2004.​04.​007 PubMedCrossRef
207.
Zurück zum Zitat Peng SB, Yan L, Xia X, Watkins SA, Brooks HB, Beight D et al (2005) Kinetic characterization of novel pyrazole TGF-beta receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition. Biochemistry 44(7):2293–2304. doi:10.1021/bi048851x PubMedCrossRef Peng SB, Yan L, Xia X, Watkins SA, Brooks HB, Beight D et al (2005) Kinetic characterization of novel pyrazole TGF-beta receptor I kinase inhibitors and their blockade of the epithelial-mesenchymal transition. Biochemistry 44(7):2293–2304. doi:10.​1021/​bi048851x PubMedCrossRef
208.
Zurück zum Zitat Li HY, Wang Y, Heap CR, King CH, Mundla SR, Voss M et al (2006) Dihydropyrrolopyrazole transforming growth factor-beta type I receptor kinase domain inhibitors: a novel benzimidazole series with selectivity versus transforming growth factor-beta type II receptor kinase and mixed lineage kinase-7. J Med Chem 49(6):2138–2142. doi:10.1021/jm058209g PubMedCrossRef Li HY, Wang Y, Heap CR, King CH, Mundla SR, Voss M et al (2006) Dihydropyrrolopyrazole transforming growth factor-beta type I receptor kinase domain inhibitors: a novel benzimidazole series with selectivity versus transforming growth factor-beta type II receptor kinase and mixed lineage kinase-7. J Med Chem 49(6):2138–2142. doi:10.​1021/​jm058209g PubMedCrossRef
209.
Zurück zum Zitat Li HY, McMillen WT, Heap CR, McCann DJ, Yan L, Campbell RM et al (2008) Optimization of a dihydropyrrolopyrazole series of transforming growth factor-beta type I receptor kinase domain inhibitors: discovery of an orally bioavailable transforming growth factor-beta receptor type I inhibitor as antitumor agent. J Med Chem 51(7):2302–2306. doi:10.1021/jm701199p PubMedCrossRef Li HY, McMillen WT, Heap CR, McCann DJ, Yan L, Campbell RM et al (2008) Optimization of a dihydropyrrolopyrazole series of transforming growth factor-beta type I receptor kinase domain inhibitors: discovery of an orally bioavailable transforming growth factor-beta receptor type I inhibitor as antitumor agent. J Med Chem 51(7):2302–2306. doi:10.​1021/​jm701199p PubMedCrossRef
210.
Zurück zum Zitat Bueno L, de Alwis DP, Pitou C, Yingling J, Lahn M, Glatt S et al (2008) Semi-mechanistic modelling of the tumour growth inhibitory effects of LY2157299, a new type I receptor TGF-beta kinase antagonist, in mice. Eur J Cancer 44(1):142–150. doi:10.1016/j.ejca.2007.10.008 PubMedCrossRef Bueno L, de Alwis DP, Pitou C, Yingling J, Lahn M, Glatt S et al (2008) Semi-mechanistic modelling of the tumour growth inhibitory effects of LY2157299, a new type I receptor TGF-beta kinase antagonist, in mice. Eur J Cancer 44(1):142–150. doi:10.​1016/​j.​ejca.​2007.​10.​008 PubMedCrossRef
211.
Zurück zum Zitat Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto K et al (2007) Ki26894, a novel transforming growth factor-beta type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci 98(1):127–133. doi:10.1111/j.1349-7006.2006.00357.x PubMedCrossRef Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto K et al (2007) Ki26894, a novel transforming growth factor-beta type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci 98(1):127–133. doi:10.​1111/​j.​1349-7006.​2006.​00357.​x PubMedCrossRef
212.
Zurück zum Zitat Ohmori T, Yang JL, Price JO, Arteaga CL (1998) Blockade of tumor cell transforming growth factor-betas enhances cell cycle progression and sensitizes human breast carcinoma cells to cytotoxic chemotherapy. Exp Cell Res 245(2):350–359. doi:10.1006/excr.1998.4261 PubMedCrossRef Ohmori T, Yang JL, Price JO, Arteaga CL (1998) Blockade of tumor cell transforming growth factor-betas enhances cell cycle progression and sensitizes human breast carcinoma cells to cytotoxic chemotherapy. Exp Cell Res 245(2):350–359. doi:10.​1006/​excr.​1998.​4261 PubMedCrossRef
214.
Zurück zum Zitat Bandyopadhyay A, Wang L, Agyin J, De K, Sun L (2008) Enhanced inhibition of tumor growth and lung metastasis by the administration of a small molecule TGFβ inhibitor during doxorubicin treatment in a murine xenograft model of breast cancer. Proc Am Assoc Cancer Res 99: Abstract #1323 Bandyopadhyay A, Wang L, Agyin J, De K, Sun L (2008) Enhanced inhibition of tumor growth and lung metastasis by the administration of a small molecule TGFβ inhibitor during doxorubicin treatment in a murine xenograft model of breast cancer. Proc Am Assoc Cancer Res 99: Abstract #1323
215.
Zurück zum Zitat Ehrhart EJ, Segarini P, Tsang ML, Carroll AG, Barcellos-Hoff MH (1997) Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation. FASEB J 11(12):991–1002PubMed Ehrhart EJ, Segarini P, Tsang ML, Carroll AG, Barcellos-Hoff MH (1997) Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation. FASEB J 11(12):991–1002PubMed
216.
Zurück zum Zitat Hahn T, Akporiaye ET (2006) Targeting transforming growth factor beta to enhance cancer immunotherapy. Curr oncology (Toronto, Ont) 13(4):141–143 Hahn T, Akporiaye ET (2006) Targeting transforming growth factor beta to enhance cancer immunotherapy. Curr oncology (Toronto, Ont) 13(4):141–143
217.
Zurück zum Zitat Kobie JJ, Wu RS, Kurt RA, Lou S, Adelman MK, Whitesell LJ et al (2003) Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res 63(8):1860–1864PubMed Kobie JJ, Wu RS, Kurt RA, Lou S, Adelman MK, Whitesell LJ et al (2003) Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res 63(8):1860–1864PubMed
218.
Zurück zum Zitat Seth P, Wang ZG, Pister A, Zafar MB, Kim S, Guise T et al (2006) Development of oncolytic adenovirus armed with a fusion of soluble transforming growth factor-beta receptor II and human immunoglobulin Fc for breast cancer therapy. Hum Gene Ther 17(11):1152–1160. doi:10.1089/hum.2006.17.1152 PubMedCrossRef Seth P, Wang ZG, Pister A, Zafar MB, Kim S, Guise T et al (2006) Development of oncolytic adenovirus armed with a fusion of soluble transforming growth factor-beta receptor II and human immunoglobulin Fc for breast cancer therapy. Hum Gene Ther 17(11):1152–1160. doi:10.​1089/​hum.​2006.​17.​1152 PubMedCrossRef
219.
220.
Zurück zum Zitat Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90(2):770–774. doi:10.1073/pnas.90.2.770 PubMedCrossRef Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC et al (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 90(2):770–774. doi:10.​1073/​pnas.​90.​2.​770 PubMedCrossRef
222.
Zurück zum Zitat Ruzek MC, Hawes M, Pratt B, McPherson J, Ledbetter S, Richards SM et al (2003) Minimal effects on immune parameters following chronic anti-TGF-beta monoclonal antibody administration to normal mice. Immunopharmacol Immunotoxicol 25(2):235–257. doi:10.1081/IPH-120020473 PubMedCrossRef Ruzek MC, Hawes M, Pratt B, McPherson J, Ledbetter S, Richards SM et al (2003) Minimal effects on immune parameters following chronic anti-TGF-beta monoclonal antibody administration to normal mice. Immunopharmacol Immunotoxicol 25(2):235–257. doi:10.​1081/​IPH-120020473 PubMedCrossRef
224.
Zurück zum Zitat Arteaga CL, McPherson JM (2008) Development of TGFß-based therapeutic agents: capitalizing on TGFß’s mechanisms of action and signal transduction pathways. In: Derynck R, Miyazono K (eds) The TGF-β family. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1023–1061 Arteaga CL, McPherson JM (2008) Development of TGFß-based therapeutic agents: capitalizing on TGFß’s mechanisms of action and signal transduction pathways. In: Derynck R, Miyazono K (eds) The TGF-β family. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1023–1061
227.
Zurück zum Zitat Maratea K, Donnelly K, Reams R, Snyder P (2007) Evidence of enhanced TGF-beta signaling in heart valve lesions of Sprague–Dawley rats treated with a TGF-beta receptor I (ALK5) kinase inhibitor. Vet Pathol 44:733. doi:10.1354/vp.44-4-513 CrossRef Maratea K, Donnelly K, Reams R, Snyder P (2007) Evidence of enhanced TGF-beta signaling in heart valve lesions of Sprague–Dawley rats treated with a TGF-beta receptor I (ALK5) kinase inhibitor. Vet Pathol 44:733. doi:10.​1354/​vp.​44-4-513 CrossRef
230.
Zurück zum Zitat Hilbig A, Seufferlein T, Schmid RM, Luger T, Oettle H, Schneider G et al (2008) Preliminary results of a phase I/II study in patients with pancreatic carcinoma, malignant melanoma, or colorectal carcinoma using systemic i.v. administration of AP 12009. J Clin Oncol 26: Abstract 4621 Hilbig A, Seufferlein T, Schmid RM, Luger T, Oettle H, Schneider G et al (2008) Preliminary results of a phase I/II study in patients with pancreatic carcinoma, malignant melanoma, or colorectal carcinoma using systemic i.v. administration of AP 12009. J Clin Oncol 26: Abstract 4621
231.
Zurück zum Zitat Morris J, Shapiro G, Tan AR, Lawrence D, Olencki T, Dezube B et al (2008) Phase 1/2 Study of GC1008: a human anti transforming growth factor-beta (TGFβ) monoclonal antibody (MAb) in patients with advanced malignant melanoma or renal cell Carcinoma. J Clin Oncol 26: Abstract# 9028 Morris J, Shapiro G, Tan AR, Lawrence D, Olencki T, Dezube B et al (2008) Phase 1/2 Study of GC1008: a human anti transforming growth factor-beta (TGFβ) monoclonal antibody (MAb) in patients with advanced malignant melanoma or renal cell Carcinoma. J Clin Oncol 26: Abstract# 9028
232.
Zurück zum Zitat Calvo-Aller E, Baselga J, Glatt S, Cleverly A, Lahn M, Arteaga CL et al (2008) First human dose escalation study in patients with metastatic malignancies to determine safety and pharmacokinetics of LY2157299, a small molecule inhibitor of the transforming growth factor-beta receptor I kinase. J Clin Oncol 26: Abstract 14554 Calvo-Aller E, Baselga J, Glatt S, Cleverly A, Lahn M, Arteaga CL et al (2008) First human dose escalation study in patients with metastatic malignancies to determine safety and pharmacokinetics of LY2157299, a small molecule inhibitor of the transforming growth factor-beta receptor I kinase. J Clin Oncol 26: Abstract 14554
234.
Zurück zum Zitat Jayson GC, Zweit J, Jackson A, Mulatero C, Julyan P, Ranson M et al (2002) Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 94(19):1484–1493PubMed Jayson GC, Zweit J, Jackson A, Mulatero C, Julyan P, Ranson M et al (2002) Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 94(19):1484–1493PubMed
235.
237.
Zurück zum Zitat Akhurst RJ (2006) Large- and small-molecule inhibitors of transforming growth factor-beta signaling. Curr Opin Investig Drugs 7(6):513–521PubMed Akhurst RJ (2006) Large- and small-molecule inhibitors of transforming growth factor-beta signaling. Curr Opin Investig Drugs 7(6):513–521PubMed
238.
Zurück zum Zitat Biswas S, Criswell TL, Wang SE, Arteaga CL (2006) Inhibition of transforming growth factor-{beta} signaling in human cancer: targeting a tumor suppressor network as a therapeutic strategy. Clin Cancer Res 12(14):4142–4146. doi:10.1158/1078-0432.CCR-06-0952 PubMedCrossRef Biswas S, Criswell TL, Wang SE, Arteaga CL (2006) Inhibition of transforming growth factor-{beta} signaling in human cancer: targeting a tumor suppressor network as a therapeutic strategy. Clin Cancer Res 12(14):4142–4146. doi:10.​1158/​1078-0432.​CCR-06-0952 PubMedCrossRef
239.
Zurück zum Zitat Reiss M (2006) Targeting transforming growth factor-β in metastasis: in vitro and in vivo mechanisms. In: Jakowlew SB (ed) Transforming growth factor-beta in cancer therapy. The Humana, Totowa Reiss M (2006) Targeting transforming growth factor-β in metastasis: in vitro and in vivo mechanisms. In: Jakowlew SB (ed) Transforming growth factor-beta in cancer therapy. The Humana, Totowa
240.
Zurück zum Zitat Bonniaud P, Margetts PJ, Kolb M, Schroeder JA, Kapoun AM, Damm D et al (2005) Progressive transforming growth factor {beta}1-induced lung fibrosis is blocked by an orally active alk5 kinase inhibitor. Am J Respir Crit Care Med 171(8):889–898. doi:10.1164/rccm.200405-612OC PubMedCrossRef Bonniaud P, Margetts PJ, Kolb M, Schroeder JA, Kapoun AM, Damm D et al (2005) Progressive transforming growth factor {beta}1-induced lung fibrosis is blocked by an orally active alk5 kinase inhibitor. Am J Respir Crit Care Med 171(8):889–898. doi:10.​1164/​rccm.​200405-612OC PubMedCrossRef
241.
Zurück zum Zitat de Gouville AC, Boullay V, Krysa G, Pilot J, Brusq JM, Loriolle F et al (2005) Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br J Pharmacol 145(2):166–177. doi:10.1038/sj.bjp.0706172 PubMedCrossRef de Gouville AC, Boullay V, Krysa G, Pilot J, Brusq JM, Loriolle F et al (2005) Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br J Pharmacol 145(2):166–177. doi:10.​1038/​sj.​bjp.​0706172 PubMedCrossRef
244.
246.
Zurück zum Zitat Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550. doi:10.1073/pnas.0506580102 PubMedCrossRef Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550. doi:10.​1073/​pnas.​0506580102 PubMedCrossRef
248.
Zurück zum Zitat Fakhrai H, Mantil JC, Liu L, Nicholson GL, Murphy-Satter CS, Ruppert J et al (2006) Phase I clinical trial of a TGF-beta antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther 13(12):1052–1060. doi:10.1038/sj.cgt.7700975 PubMedCrossRef Fakhrai H, Mantil JC, Liu L, Nicholson GL, Murphy-Satter CS, Ruppert J et al (2006) Phase I clinical trial of a TGF-beta antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther 13(12):1052–1060. doi:10.​1038/​sj.​cgt.​7700975 PubMedCrossRef
249.
Zurück zum Zitat Nemunaitis J, Dillman RO, Schwarzenberger PO, Senzer N, Cunningham C, Cutler J et al (2006) Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol 24(29):4721–4730. doi:10.1200/JCO.2005.05.5335 PubMedCrossRef Nemunaitis J, Dillman RO, Schwarzenberger PO, Senzer N, Cunningham C, Cutler J et al (2006) Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol 24(29):4721–4730. doi:10.​1200/​JCO.​2005.​05.​5335 PubMedCrossRef
250.
Zurück zum Zitat Cordeiro MF, Mead A, Ali RR, Alexander RA, Murray S, Chen C et al (2003) Novel antisense oligonucleotides targeting TGF-beta inhibit in vivo scarring and improve surgical outcome. Gene Ther 10(1):59–71. doi:10.1038/sj.gt.3301865 PubMedCrossRef Cordeiro MF, Mead A, Ali RR, Alexander RA, Murray S, Chen C et al (2003) Novel antisense oligonucleotides targeting TGF-beta inhibit in vivo scarring and improve surgical outcome. Gene Ther 10(1):59–71. doi:10.​1038/​sj.​gt.​3301865 PubMedCrossRef
251.
Zurück zum Zitat Mead AL, Wong TT, Cordeiro MF, Anderson IK, Khaw PT (2003) Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest Ophthalmol Vis Sci 44(8):3394–3401. doi:10.1167/iovs.02-0978 PubMedCrossRef Mead AL, Wong TT, Cordeiro MF, Anderson IK, Khaw PT (2003) Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest Ophthalmol Vis Sci 44(8):3394–3401. doi:10.​1167/​iovs.​02-0978 PubMedCrossRef
Metadaten
Titel
Transforming growth factor-β signaling: emerging stem cell target in metastatic breast cancer?
verfasst von
Antoinette R. Tan
Gabriela Alexe
Michael Reiss
Publikationsdatum
01.06.2009
Verlag
Springer US
Erschienen in
Breast Cancer Research and Treatment / Ausgabe 3/2009
Print ISSN: 0167-6806
Elektronische ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-008-0184-1

Weitere Artikel der Ausgabe 3/2009

Breast Cancer Research and Treatment 3/2009 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.