Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2014

01.12.2014

Role of MTA1 in cancer progression and metastasis

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

The MTA1 protein contributes to the process of cancer progression and metastasis through multiple genes and protein targets and interacting proteins with roles in transformation, anchorage-independent growth, invasion, survival, DNA repair, angiogenesis, hormone independence, metastasis, and therapeutic resistance. Because the roles and clinical significance of MTA proteins in human cancer are discussed by other contributors in this issue, this review will focus on our current understanding of the underlying principles of action behind the biological effects of MTA1. MTA proteins control a spectrum of cancer-promoting processes by modulating the expression of target genes and/or the activity of MTA-interacting proteins. In the case of MTA1, these functions are manifested through posttranslational modifications of MTA1 in response to upstream signals, MTA1 interaction with binding proteins, and the expression of target gene products. Studies delineating the molecular basis of dual functionality of MTA1 reveal that the functions of MTA1-chromatin-modifying complexes in the context of target gene regulation are dynamic in nature. The nature and targets of MTA1-chromatin-modifying complexes are also governed by the dynamic plasticity of the nucleosome landscape as well as kinetics of activation and inactivation of enzymes responsible for posttranslational modifications on the MTA1 protein. These broadly applicable functions also explain why MTA1 may be a “hub” gene in cancer. Because the deregulation of enzymes and their substrates with roles in MTA1 biology is not necessarily limited to cancer, we speculate that the lessons from MTA1 as a prototype dual master coregulator will be relevant for other human diseases. In this context, the concept of the dynamic nature of corepressor versus coactivator complexes and the MTA1 proteome as a function of time to signal is likely to be generally applicable to other multiprotein regulatory complexes in living systems.
Literatur
1.
Zurück zum Zitat Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. The Journal of Biological Chemistry, 269(37), 22958–22963.PubMed Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. The Journal of Biological Chemistry, 269(37), 22958–22963.PubMed
2.
Zurück zum Zitat Kumar, R., Wang, R. A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminars in Oncology, 30(5 Suppl 16), 30–37.PubMedCrossRef Kumar, R., Wang, R. A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminars in Oncology, 30(5 Suppl 16), 30–37.PubMedCrossRef
3.
Zurück zum Zitat Bowen, N. J., Fujita, N., Kajita, M., & Wade, P. A. (2004). Mi-2/NuRD: multiple complexes for many purposes. Biochimica et Biophysica Acta, 1677(1–3), 52–57.PubMedCrossRef Bowen, N. J., Fujita, N., Kajita, M., & Wade, P. A. (2004). Mi-2/NuRD: multiple complexes for many purposes. Biochimica et Biophysica Acta, 1677(1–3), 52–57.PubMedCrossRef
4.
Zurück zum Zitat Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. The Journal of Biological Chemistry, 282(3), 1529–1533.PubMedCrossRef Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. The Journal of Biological Chemistry, 282(3), 1529–1533.PubMedCrossRef
5.
6.
Zurück zum Zitat Denslow, S. A., & Wade, P. A. (2007). The human Mi-2/NuRD complex and gene regulation. Oncogene, 26(37), 5433–5438.PubMedCrossRef Denslow, S. A., & Wade, P. A. (2007). The human Mi-2/NuRD complex and gene regulation. Oncogene, 26(37), 5433–5438.PubMedCrossRef
7.
Zurück zum Zitat Li, D. Q., Pakala, S. B., Nair, S. S., Eswaran, J., & Kumar, R. Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Res, 72(2), 387–394. Li, D. Q., Pakala, S. B., Nair, S. S., Eswaran, J., & Kumar, R. Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Res, 72(2), 387–394.
8.
Zurück zum Zitat Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30–37.PubMedCrossRef Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30–37.PubMedCrossRef
9.
Zurück zum Zitat Li, W., Ma, L., Zhao, J., Liu, X., Li, Z., & Zhang, Y. (2009). Expression profile of MTA1 in adult mouse tissues. Tissue and Cell, 41(6), 390–399.PubMedCrossRef Li, W., Ma, L., Zhao, J., Liu, X., Li, Z., & Zhang, Y. (2009). Expression profile of MTA1 in adult mouse tissues. Tissue and Cell, 41(6), 390–399.PubMedCrossRef
10.
Zurück zum Zitat Liu, J., Xu, D., Wang, H., Zhang, Y., Chang, Y., Zhang, J., et al. The subcellular distribution and function of MTA1 in cancer differentiation. Oncotarget, 5(13), 5153–5164. Liu, J., Xu, D., Wang, H., Zhang, Y., Chang, Y., Zhang, J., et al. The subcellular distribution and function of MTA1 in cancer differentiation. Oncotarget, 5(13), 5153–5164.
11.
Zurück zum Zitat Ohshiro, K., Rayala, S. K., Wigerup, C., Pakala, S. B., Natha, R. S., Gururaj, A. E., et al. Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator. EMBO Rep, 11(9), 691–697. Ohshiro, K., Rayala, S. K., Wigerup, C., Pakala, S. B., Natha, R. S., Gururaj, A. E., et al. Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator. EMBO Rep, 11(9), 691–697.
12.
Zurück zum Zitat Kumar, R., Balasenthil, S., Manavathi, B., Rayala, S. K., & Pakala, S. B. Metastasis-associated protein 1 and its short form variant stimulates Wnt1 transcription through promoting its derepression from Six3 corepressor. Cancer Res, 70(16), 6649–6658. Kumar, R., Balasenthil, S., Manavathi, B., Rayala, S. K., & Pakala, S. B. Metastasis-associated protein 1 and its short form variant stimulates Wnt1 transcription through promoting its derepression from Six3 corepressor. Cancer Res, 70(16), 6649–6658.
13.
Zurück zum Zitat Kumar, R., Balasenthil, S., Pakala, S. B., Rayala, S. K., Sahin, A. A., & Ohshiro, K. Metastasis-associated protein 1 short form stimulates Wnt1 pathway in mammary epithelial and cancer cells. Cancer Res, 70(16), 6598–6608. Kumar, R., Balasenthil, S., Pakala, S. B., Rayala, S. K., Sahin, A. A., & Ohshiro, K. Metastasis-associated protein 1 short form stimulates Wnt1 pathway in mammary epithelial and cancer cells. Cancer Res, 70(16), 6598–6608.
14.
Zurück zum Zitat Pakala, S. B., Rayala, S. K., Wang, R. A., Ohshiro, K., Mudvari, P., Reddy, S. D., et al. MTA1 promotes STAT3 transcription and pulmonary metastasis in breast cancer. Cancer Res, 73(12), 3761–3770. Pakala, S. B., Rayala, S. K., Wang, R. A., Ohshiro, K., Mudvari, P., Reddy, S. D., et al. MTA1 promotes STAT3 transcription and pulmonary metastasis in breast cancer. Cancer Res, 73(12), 3761–3770.
15.
Zurück zum Zitat Zhang, X. Y., DeSalle, L. M., Patel, J. H., Capobianco, A. J., Yu, D., Thomas-Tikhonenko, A., et al. (2005). Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13968–13973.PubMedCentralPubMedCrossRef Zhang, X. Y., DeSalle, L. M., Patel, J. H., Capobianco, A. J., Yu, D., Thomas-Tikhonenko, A., et al. (2005). Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13968–13973.PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Li, D. Q., Divijendra Natha Reddy, S., Pakala, S. B., Wu, X., Zhang, Y., Rayala, S. K., et al. (2009). MTA1 coregulator regulates p53 stability and function. The Journal of Biological Chemistry, 284(50), 34545–34552.PubMedCentralPubMedCrossRef Li, D. Q., Divijendra Natha Reddy, S., Pakala, S. B., Wu, X., Zhang, Y., Rayala, S. K., et al. (2009). MTA1 coregulator regulates p53 stability and function. The Journal of Biological Chemistry, 284(50), 34545–34552.PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Li, D. Q., Pakala, S. B., Reddy, S. D., Ohshiro, K., Peng, S. H., Lian, Y., et al. Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. J Biol Chem, 285(13), 10044–10052. Li, D. Q., Pakala, S. B., Reddy, S. D., Ohshiro, K., Peng, S. H., Lian, Y., et al. Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. J Biol Chem, 285(13), 10044–10052.
18.
Zurück zum Zitat Li, D. Q., & Kumar, R. Mi-2/NuRD complex making inroads into DNA-damage response pathway. Cell Cycle, 9(11), 2071–2079. Li, D. Q., & Kumar, R. Mi-2/NuRD complex making inroads into DNA-damage response pathway. Cell Cycle, 9(11), 2071–2079.
19.
Zurück zum Zitat Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.PubMedCrossRef Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.PubMedCrossRef
20.
Zurück zum Zitat Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes and Development, 13(15), 1924–1935.PubMedCentralPubMedCrossRef Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes and Development, 13(15), 1924–1935.PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Yao, Y. L., & Yang, W. M. (2003). The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. The Journal of Biological Chemistry, 278(43), 42560–42568.PubMedCrossRef Yao, Y. L., & Yang, W. M. (2003). The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. The Journal of Biological Chemistry, 278(43), 42560–42568.PubMedCrossRef
22.
Zurück zum Zitat Liu, X. F., & Bagchi, M. K. (2004). Recruitment of distinct chromatin-modifying complexes by tamoxifen-complexed estrogen receptor at natural target gene promoters in vivo. The Journal of Biological Chemistry, 279(15), 15050–15058.PubMedCrossRef Liu, X. F., & Bagchi, M. K. (2004). Recruitment of distinct chromatin-modifying complexes by tamoxifen-complexed estrogen receptor at natural target gene promoters in vivo. The Journal of Biological Chemistry, 279(15), 15050–15058.PubMedCrossRef
23.
Zurück zum Zitat Singh, R. R., Barnes, C. J., Talukder, A. H., Fuqua, S. A., & Kumar, R. (2005). Negative regulation of estrogen receptor alpha transactivation functions by LIM domain only 4 protein. Cancer Research, 65(22), 10594–10601.PubMedCrossRef Singh, R. R., Barnes, C. J., Talukder, A. H., Fuqua, S. A., & Kumar, R. (2005). Negative regulation of estrogen receptor alpha transactivation functions by LIM domain only 4 protein. Cancer Research, 65(22), 10594–10601.PubMedCrossRef
24.
Zurück zum Zitat Khaleque, M. A., Bharti, A., Gong, J., Gray, P. J., Sachdev, V., Ciocca, D. R., et al. (2008). Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene, 27(13), 1886–1893.PubMedCrossRef Khaleque, M. A., Bharti, A., Gong, J., Gray, P. J., Sachdev, V., Ciocca, D. R., et al. (2008). Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene, 27(13), 1886–1893.PubMedCrossRef
25.
Zurück zum Zitat Mishra, S. K., Mazumdar, A., Vadlamudi, R. K., Li, F., Wang, R. A., Yu, W., et al. (2003). MICoA, a novel metastasis-associated protein 1 (MTA1) interacting protein coactivator, regulates estrogen receptor-alpha transactivation functions. The Journal of Biological Chemistry, 278(21), 19209–19219.PubMedCrossRef Mishra, S. K., Mazumdar, A., Vadlamudi, R. K., Li, F., Wang, R. A., Yu, W., et al. (2003). MICoA, a novel metastasis-associated protein 1 (MTA1) interacting protein coactivator, regulates estrogen receptor-alpha transactivation functions. The Journal of Biological Chemistry, 278(21), 19209–19219.PubMedCrossRef
26.
Zurück zum Zitat Talukder, A. H., Gururaj, A., Mishra, S. K., Vadlamudi, R. K., & Kumar, R. (2004). Metastasis-associated protein 1 interacts with NRIF3, an estrogen-inducible nuclear receptor coregulator. Molecular and Cellular Biology, 24(15), 6581–6591.PubMedCentralPubMedCrossRef Talukder, A. H., Gururaj, A., Mishra, S. K., Vadlamudi, R. K., & Kumar, R. (2004). Metastasis-associated protein 1 interacts with NRIF3, an estrogen-inducible nuclear receptor coregulator. Molecular and Cellular Biology, 24(15), 6581–6591.PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Talukder, A. H., Mishra, S. K., Mandal, M., Balasenthil, S., Mehta, S., Sahin, A. A., et al. (2003). MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions. The Journal of Biological Chemistry, 278(13), 11676–11685.PubMedCrossRef Talukder, A. H., Mishra, S. K., Mandal, M., Balasenthil, S., Mehta, S., Sahin, A. A., et al. (2003). MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions. The Journal of Biological Chemistry, 278(13), 11676–11685.PubMedCrossRef
28.
Zurück zum Zitat Covington, K. R., Brusco, L., Barone, I., Tsimelzon, A., Selever, J., Corona-Rodriguez, A., et al. Metastasis tumor-associated protein 2 enhances metastatic behavior and is associated with poor outcomes in estrogen receptor-negative breast cancer. Breast Cancer Res Treat. doi:10.1007/s10549-013-2709-5. Covington, K. R., Brusco, L., Barone, I., Tsimelzon, A., Selever, J., Corona-Rodriguez, A., et al. Metastasis tumor-associated protein 2 enhances metastatic behavior and is associated with poor outcomes in estrogen receptor-negative breast cancer. Breast Cancer Res Treat. doi:10.​1007/​s10549-013-2709-5.
29.
Zurück zum Zitat Cui, Y., Niu, A., Pestell, R., Kumar, R., Curran, E. M., Liu, Y., et al. (2006). Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. Molecular Endocrinology, 20(9), 2020–2035.PubMedCrossRef Cui, Y., Niu, A., Pestell, R., Kumar, R., Curran, E. M., Liu, Y., et al. (2006). Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. Molecular Endocrinology, 20(9), 2020–2035.PubMedCrossRef
30.
Zurück zum Zitat Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 113(2), 207–219.PubMedCrossRef Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 113(2), 207–219.PubMedCrossRef
31.
Zurück zum Zitat Kumar, R. (2003). Another tie that binds the MTA family to breast cancer. Cell, 113(2), 142–143.PubMedCrossRef Kumar, R. (2003). Another tie that binds the MTA family to breast cancer. Cell, 113(2), 142–143.PubMedCrossRef
32.
Zurück zum Zitat Zhang, H., Stephens, L. C., & Kumar, R. (2006). Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clinical Cancer Research, 12(5), 1479–1486.PubMedCrossRef Zhang, H., Stephens, L. C., & Kumar, R. (2006). Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clinical Cancer Research, 12(5), 1479–1486.PubMedCrossRef
33.
Zurück zum Zitat Kumar, R., Wang, R. A., Mazumdar, A., Talukder, A. H., Mandal, M., Yang, Z., et al. (2002). A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature, 418(6898), 654–657.PubMedCrossRef Kumar, R., Wang, R. A., Mazumdar, A., Talukder, A. H., Mandal, M., Yang, Z., et al. (2002). A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature, 418(6898), 654–657.PubMedCrossRef
34.
Zurück zum Zitat Mishra, S. K., Yang, Z., Mazumdar, A., Talukder, A. H., Larose, L., & Kumar, R. (2004). Metastatic tumor antigen 1 short form (MTA1s) associates with casein kinase I-gamma2, an estrogen-responsive kinase. Oncogene, 23(25), 4422–4429.PubMedCrossRef Mishra, S. K., Yang, Z., Mazumdar, A., Talukder, A. H., Larose, L., & Kumar, R. (2004). Metastatic tumor antigen 1 short form (MTA1s) associates with casein kinase I-gamma2, an estrogen-responsive kinase. Oncogene, 23(25), 4422–4429.PubMedCrossRef
35.
Zurück zum Zitat Gururaj, A. E., Singh, R. R., Rayala, S. K., Holm, C., den Hollander, P., Zhang, H., et al. (2006). MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6670–6675.PubMedCentralPubMedCrossRef Gururaj, A. E., Singh, R. R., Rayala, S. K., Holm, C., den Hollander, P., Zhang, H., et al. (2006). MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6670–6675.PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Zhou, J., Zhan, S., Tan, W., Cheng, R., Gong, H., & Zhu, Q. P300 binds to and acetylates MTA2 to promote colorectal cancer cells growth. Biochem Biophys. Res Commun, 444(3), 387–390. Zhou, J., Zhan, S., Tan, W., Cheng, R., Gong, H., & Zhu, Q. P300 binds to and acetylates MTA2 to promote colorectal cancer cells growth. Biochem Biophys. Res Commun, 444(3), 387–390.
37.
Zurück zum Zitat Li, D. Q., Ohshiro, K., Reddy, S. D., Pakala, S. B., Lee, M. H., Zhang, Y., et al. (2009). E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17493–17498.PubMedCentralPubMedCrossRef Li, D. Q., Ohshiro, K., Reddy, S. D., Pakala, S. B., Lee, M. H., Zhang, Y., et al. (2009). E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17493–17498.PubMedCentralPubMedCrossRef
38.
Zurück zum Zitat Cong, L., Pakala, S. B., Ohshiro, K., Li, D. Q., & Kumar, R. SUMOylation and SUMO-interacting motif (SIM) of metastasis tumor antigen 1 (MTA1) synergistically regulate its transcriptional repressor function. J Biol Chem, 286(51), 43793–43808. Cong, L., Pakala, S. B., Ohshiro, K., Li, D. Q., & Kumar, R. SUMOylation and SUMO-interacting motif (SIM) of metastasis tumor antigen 1 (MTA1) synergistically regulate its transcriptional repressor function. J Biol Chem, 286(51), 43793–43808.
39.
Zurück zum Zitat Van Rechem, C., Boulay, G., Pinte, S., Stankovic-Valentin, N., Guerardel, C., & Leprince, D. Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Mol Cell Biol, 30(16), 4045–4059. Van Rechem, C., Boulay, G., Pinte, S., Stankovic-Valentin, N., Guerardel, C., & Leprince, D. Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Mol Cell Biol, 30(16), 4045–4059.
40.
Zurück zum Zitat Nair, S. S., Li, D. Q., & Kumar, R. A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. Mol Cell, 49(4), 704–718. Nair, S. S., Li, D. Q., & Kumar, R. A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. Mol Cell, 49(4), 704–718.
42.
Zurück zum Zitat Yoo, Y. G., Kong, G., & Lee, M. O. (2006). Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. The EMBO Journal, 25(6), 1231–1241.PubMedCentralPubMedCrossRef Yoo, Y. G., Kong, G., & Lee, M. O. (2006). Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. The EMBO Journal, 25(6), 1231–1241.PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Deng, X., Du, L., Wang, C., Yang, Y., Li, J., Liu, H., et al. Close association of metastasis-associated protein 1 overexpression with increased angiogenesis and poor survival in patients with histologically node-negative gastric cancer. World J Surg, 37(4), 792–798. Deng, X., Du, L., Wang, C., Yang, Y., Li, J., Liu, H., et al. Close association of metastasis-associated protein 1 overexpression with increased angiogenesis and poor survival in patients with histologically node-negative gastric cancer. World J Surg, 37(4), 792–798.
44.
Zurück zum Zitat Jang, K. S., Paik, S. S., Chung, H., Oh, Y. H., & Kong, G. (2006). MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. Cancer Science, 97(5), 374–379.PubMedCrossRef Jang, K. S., Paik, S. S., Chung, H., Oh, Y. H., & Kong, G. (2006). MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. Cancer Science, 97(5), 374–379.PubMedCrossRef
45.
Zurück zum Zitat Li, S. H., Tian, H., Yue, W. M., Li, L., Gao, C., et al. (2012). Metastasis-associated protein 1 nuclear expression is closely associated with tumor progression and angiogenesis in patients with esophageal squamous cell cancer. World Journal of Surgery, 36(3), 623–631.PubMedCrossRef Li, S. H., Tian, H., Yue, W. M., Li, L., Gao, C., et al. (2012). Metastasis-associated protein 1 nuclear expression is closely associated with tumor progression and angiogenesis in patients with esophageal squamous cell cancer. World Journal of Surgery, 36(3), 623–631.PubMedCrossRef
46.
Zurück zum Zitat Li, S. H., Tian, H., Yue, W. M., Li, L., Li, W. J., Chen, Z. T., et al. (2011). Overexpression of metastasis-associated protein 1 is significantly correlated with tumor angiogenesis and poor survival in patients with early-stage non-small cell lung cancer. Annals of Surgical Oncology, 18(7), 2048–2056.PubMedCrossRef Li, S. H., Tian, H., Yue, W. M., Li, L., Li, W. J., Chen, Z. T., et al. (2011). Overexpression of metastasis-associated protein 1 is significantly correlated with tumor angiogenesis and poor survival in patients with early-stage non-small cell lung cancer. Annals of Surgical Oncology, 18(7), 2048–2056.PubMedCrossRef
47.
Zurück zum Zitat Kai, L., Wang, J., Ivanovic, M., Chung, Y. T., Laskin, W. B., Schulze-Hoepfner, F., et al. Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). Prostate, 71(3), 268–280. Kai, L., Wang, J., Ivanovic, M., Chung, Y. T., Laskin, W. B., Schulze-Hoepfner, F., et al. Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). Prostate, 71(3), 268–280.
48.
Zurück zum Zitat Weng, W., Yin, J., Zhang, Y., Qiu, J., & Wang, X. Metastasis-associated protein 1 promotes tumor invasion by downregulation of E-cadherin. Int J Oncol, 44(3), 812–818. Weng, W., Yin, J., Zhang, Y., Qiu, J., & Wang, X. Metastasis-associated protein 1 promotes tumor invasion by downregulation of E-cadherin. Int J Oncol, 44(3), 812–818.
49.
Zurück zum Zitat Kang, H. J., Lee, M. H., Kang, H. L., Kim, S. H., Ahn, J. R., Na, H., et al. Differential regulation of estrogen receptor alpha expression in breast cancer cells by metastasis-associated protein 1. Cancer Res, 74(5), 1484–1494. Kang, H. J., Lee, M. H., Kang, H. L., Kim, S. H., Ahn, J. R., Na, H., et al. Differential regulation of estrogen receptor alpha expression in breast cancer cells by metastasis-associated protein 1. Cancer Res, 74(5), 1484–1494.
50.
Zurück zum Zitat Dhasarathy, A., Kajita, M., & Wade, P. A. (2007). The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-alpha. Molecular Endocrinology, 21(12), 2907–2918.PubMedCentralPubMedCrossRef Dhasarathy, A., Kajita, M., & Wade, P. A. (2007). The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-alpha. Molecular Endocrinology, 21(12), 2907–2918.PubMedCentralPubMedCrossRef
51.
Zurück zum Zitat Salot, S., & Gude, R. MTA1-mediated transcriptional repression of SMAD7 in breast cancer cell lines. Eur J Cancer, 49(2), 492–499. Salot, S., & Gude, R. MTA1-mediated transcriptional repression of SMAD7 in breast cancer cell lines. Eur J Cancer, 49(2), 492–499.
52.
Zurück zum Zitat Gururaj, A. E., Holm, C., Landberg, G., & Kumar, R. (2006). Breast cancer-amplified sequence 3, a target of metastasis-associated protein 1, contributes to tamoxifen resistance in premenopausal patients with breast cancer. Cell Cycle, 5(13), 1407–1410.PubMedCrossRef Gururaj, A. E., Holm, C., Landberg, G., & Kumar, R. (2006). Breast cancer-amplified sequence 3, a target of metastasis-associated protein 1, contributes to tamoxifen resistance in premenopausal patients with breast cancer. Cell Cycle, 5(13), 1407–1410.PubMedCrossRef
53.
Zurück zum Zitat Hofer, M. D., Kuefer, R., Varambally, S., Li, H., Ma, J., Shapiro, G. I., et al. (2004). The role of metastasis-associated protein 1 in prostate cancer progression. Cancer Research, 64(3), 825–829.PubMedCrossRef Hofer, M. D., Kuefer, R., Varambally, S., Li, H., Ma, J., Shapiro, G. I., et al. (2004). The role of metastasis-associated protein 1 in prostate cancer progression. Cancer Research, 64(3), 825–829.PubMedCrossRef
54.
Zurück zum Zitat Li, K., Dias, S. J., Rimando, A. M., Dhar, S., Mizuno, C. S., Penman, A. D., et al. (2013). Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. PLoS ONE, 8(3), e57542.PubMedCentralPubMedCrossRef Li, K., Dias, S. J., Rimando, A. M., Dhar, S., Mizuno, C. S., Penman, A. D., et al. (2013). Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. PLoS ONE, 8(3), e57542.PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Yu, L., Su, Y. S., Zhao, J., Wang, H., & Li, W. Repression of NR4A1 by a chromatin modifier promotes docetaxel resistance in PC-3 human prostate cancer cells. FEBS Lett, 587(16), 2542–2551. Yu, L., Su, Y. S., Zhao, J., Wang, H., & Li, W. Repression of NR4A1 by a chromatin modifier promotes docetaxel resistance in PC-3 human prostate cancer cells. FEBS Lett, 587(16), 2542–2551.
56.
Zurück zum Zitat Feng, X., Zhang, Q., Xia, S., Xia, B., Zhang, Y., Deng, X., et al. (2014). MTA1 overexpression induces cisplatin resistance in nasopharyngeal carcinoma by promoting cancer stem cells properties. Molecules and Cells. doi:10.14348/molcells.2014.0029. Feng, X., Zhang, Q., Xia, S., Xia, B., Zhang, Y., Deng, X., et al. (2014). MTA1 overexpression induces cisplatin resistance in nasopharyngeal carcinoma by promoting cancer stem cells properties. Molecules and Cells. doi:10.​14348/​molcells.​2014.​0029.
57.
Zurück zum Zitat Ghanta, K. S., Li, D. Q., Eswaran, J., & Kumar, R. Gene profiling of MTA1 identifies novel gene targets and functions. PLoS One, 6(2), e17135. Ghanta, K. S., Li, D. Q., Eswaran, J., & Kumar, R. Gene profiling of MTA1 identifies novel gene targets and functions. PLoS One, 6(2), e17135.
58.
Zurück zum Zitat Lehner, B., Crombie, C., Tischler, J., Fortunato, A., & Fraser, A. G. (2006). Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature Genetics, 38(8), 896–903.PubMedCrossRef Lehner, B., Crombie, C., Tischler, J., Fortunato, A., & Fraser, A. G. (2006). Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature Genetics, 38(8), 896–903.PubMedCrossRef
59.
Zurück zum Zitat Wu, M., Wang, L., Li, Q., Li, J., Qin, J., & Wong, J. (2013). The MTA family proteins as novel histone H3 binding proteins. Cell Bioscience, 3(1), 1.PubMedCentralPubMedCrossRef Wu, M., Wang, L., Li, Q., Li, J., Qin, J., & Wong, J. (2013). The MTA family proteins as novel histone H3 binding proteins. Cell Bioscience, 3(1), 1.PubMedCentralPubMedCrossRef
60.
Zurück zum Zitat Toh, Y., Ohga, T., Endo, K., Adachi, E., Kusumoto, H., Haraguchi, M., et al. (2004). Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. International Journal of Cancer, 110(3), 362–367.CrossRef Toh, Y., Ohga, T., Endo, K., Adachi, E., Kusumoto, H., Haraguchi, M., et al. (2004). Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. International Journal of Cancer, 110(3), 362–367.CrossRef
61.
62.
Zurück zum Zitat Metzger, E., Wissmann, M., Yin, N., Muller, J. M., Schneider, R., Peters, A. H., et al. (2005). LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature, 437(7057), 436–439.PubMed Metzger, E., Wissmann, M., Yin, N., Muller, J. M., Schneider, R., Peters, A. H., et al. (2005). LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature, 437(7057), 436–439.PubMed
Metadaten
Titel
Role of MTA1 in cancer progression and metastasis
Publikationsdatum
01.12.2014
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2014
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9515-3

Weitere Artikel der Ausgabe 4/2014

Cancer and Metastasis Reviews 4/2014 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.