Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2014

01.12.2014 | Non-Thematic Review

New approaches to selectively target cancer-associated matrix metalloproteinase activity

verfasst von: Marilena Tauro, Jeremy McGuire, Conor C. Lynch

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

Heightened matrix metalloproteinase (MMP) activity has been noted in the context of the tumor microenvironment for many years, and causal roles for MMPs have been defined across the spectrum of cancer progression. This is primarily due to the ability of the MMPs to process extracellular matrix (ECM) components and to regulate the bioavailability/activity of a large repertoire of cytokines and growth factors. These characteristics made MMPs an attractive target for therapeutic intervention but notably clinical trials performed in the 1990s did not fulfill the promise of preclinical studies. The reason for the failure of early MMP inhibitor (MMPI) clinical trials that are multifold but arguably principal among them was the inability of early MMP-based inhibitors to selectively target individual MMPs and to distinguish between MMPs and other members of the metzincin family. In the decades that have followed the MMP inhibitor trials, innovations in chemical design, antibody-based strategies, and nanotechnologies have greatly enhanced our ability to specifically target and measure the activity of MMPs. These advances provide us with the opportunity to generate new lines of highly selective MMPIs that will not only extend the overall survival of cancer patients, but will also afford us the ability to utilize heightened MMP activity in the tumor microenvironment as a means by which to deliver MMPIs or MMP activatable prodrugs.
Literatur
1.
Zurück zum Zitat Overall, C. M., & Lopez-Otin, C. (2002). Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nature Reviews Cancer, 2(9), 657–72. doi:10.1038/nrc884.PubMed Overall, C. M., & Lopez-Otin, C. (2002). Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nature Reviews Cancer, 2(9), 657–72. doi:10.​1038/​nrc884.PubMed
2.
Zurück zum Zitat Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2(3), 161–74.PubMed Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2(3), 161–74.PubMed
3.
Zurück zum Zitat Nagase, H., & Woessner, J. F., Jr. (1999). Matrix metalloproteinases. Journal Biological Chemistry, 274(31), 21491–4. Nagase, H., & Woessner, J. F., Jr. (1999). Matrix metalloproteinases. Journal Biological Chemistry, 274(31), 21491–4.
4.
Zurück zum Zitat Khokha, R., Murthy, A., & Weiss, A. (2013). Metalloproteinases and their natural inhibitors in inflammation and immunity. Nature Reviews Immunology, 13(9), 649–65. doi:10.1038/nri3499.PubMed Khokha, R., Murthy, A., & Weiss, A. (2013). Metalloproteinases and their natural inhibitors in inflammation and immunity. Nature Reviews Immunology, 13(9), 649–65. doi:10.​1038/​nri3499.PubMed
5.
Zurück zum Zitat Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., & Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284(5751), 67–8.PubMed Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., & Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284(5751), 67–8.PubMed
6.
Zurück zum Zitat Devel, L., Czarny, B., Beau, F., Georgiadis, D., Stura, E., & Dive, V. (2010). Third generation of matrix metalloprotease inhibitors: Gain in selectivity by targeting the depth of the S1′ cavity. Biochimie, 92(11), 1501–8. doi:10.1016/j.biochi.2010.07.017.PubMed Devel, L., Czarny, B., Beau, F., Georgiadis, D., Stura, E., & Dive, V. (2010). Third generation of matrix metalloprotease inhibitors: Gain in selectivity by targeting the depth of the S1′ cavity. Biochimie, 92(11), 1501–8. doi:10.​1016/​j.​biochi.​2010.​07.​017.PubMed
7.
Zurück zum Zitat Coussens, L. M., Fingleton, B., & Matrisian, L. M. (2002). Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science, 295(5564), 2387–92.PubMed Coussens, L. M., Fingleton, B., & Matrisian, L. M. (2002). Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science, 295(5564), 2387–92.PubMed
8.
Zurück zum Zitat Fingleton, B. (2007). Matrix metalloproteinases as valid clinical targets. Current Pharmaceutical Design, 13(3), 333–46.PubMed Fingleton, B. (2007). Matrix metalloproteinases as valid clinical targets. Current Pharmaceutical Design, 13(3), 333–46.PubMed
9.
Zurück zum Zitat Lopez-Otin, C., & Overall, C. M. (2002). Protease degradomics: a new challenge for proteomics. Nature Reviews Molecular Cell Biology, 3(7), 509–19. doi:10.1038/nrm858.PubMed Lopez-Otin, C., & Overall, C. M. (2002). Protease degradomics: a new challenge for proteomics. Nature Reviews Molecular Cell Biology, 3(7), 509–19. doi:10.​1038/​nrm858.PubMed
10.
Zurück zum Zitat Zucker, S., & Cao, J. (2009). Selective matrix metalloproteinase (MMP) inhibitors in cancer therapy: Ready for prime time? Cancer Biology and Therapy, 8(24), 2371–3.PubMedCentralPubMed Zucker, S., & Cao, J. (2009). Selective matrix metalloproteinase (MMP) inhibitors in cancer therapy: Ready for prime time? Cancer Biology and Therapy, 8(24), 2371–3.PubMedCentralPubMed
12.
Zurück zum Zitat Rodriguez, D., Morrison, C. J., & Overall, C. M. (2010). Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochimica et Biophysica Acta, 1803(1), 39–54. doi:10.1016/j.bbamcr.2009.09.015.PubMed Rodriguez, D., Morrison, C. J., & Overall, C. M. (2010). Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochimica et Biophysica Acta, 1803(1), 39–54. doi:10.​1016/​j.​bbamcr.​2009.​09.​015.PubMed
13.
Zurück zum Zitat Overall, C. M., & Blobel, C. P. (2007). In search of partners: Linking extracellular proteases to substrates. Nature Reviews Molecular Cell Biology, 8(3), 245–57. doi:10.1038/nrm2120.PubMed Overall, C. M., & Blobel, C. P. (2007). In search of partners: Linking extracellular proteases to substrates. Nature Reviews Molecular Cell Biology, 8(3), 245–57. doi:10.​1038/​nrm2120.PubMed
14.
Zurück zum Zitat Lopez-Otin, C., & Matrisian, L. M. (2007). Emerging roles of proteases in tumour suppression. Nature Reviews Cancer, 7(10), 800–8. doi:10.1038/nrc2228.PubMed Lopez-Otin, C., & Matrisian, L. M. (2007). Emerging roles of proteases in tumour suppression. Nature Reviews Cancer, 7(10), 800–8. doi:10.​1038/​nrc2228.PubMed
16.
Zurück zum Zitat Correia, A. L., Mori, H., Chen, E. I., Schmitt, F. C., & Bissell, M. J. (2013). The hemopexin domain of MMP3 is responsible for mammary epithelial invasion and morphogenesis through extracellular interaction with HSP90beta. Genes and Development, 27(7), 805–17. doi:10.1101/gad.211383.112.PubMedCentralPubMed Correia, A. L., Mori, H., Chen, E. I., Schmitt, F. C., & Bissell, M. J. (2013). The hemopexin domain of MMP3 is responsible for mammary epithelial invasion and morphogenesis through extracellular interaction with HSP90beta. Genes and Development, 27(7), 805–17. doi:10.​1101/​gad.​211383.​112.PubMedCentralPubMed
17.
Zurück zum Zitat Saghatelian, A., Jessani, N., Joseph, A., Humphrey, M., & Cravatt, B. F. (2004). Activity-based probes for the proteomic profiling of metalloproteases. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 10000–5. doi:10.1073/pnas.0402784101.PubMedCentralPubMed Saghatelian, A., Jessani, N., Joseph, A., Humphrey, M., & Cravatt, B. F. (2004). Activity-based probes for the proteomic profiling of metalloproteases. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 10000–5. doi:10.​1073/​pnas.​0402784101.PubMedCentralPubMed
18.
Zurück zum Zitat Browner, M. F., Smith, W. W., & Castelhano, A. L. (1995). Matrilysin-inhibitor complexes: Common themes among metalloproteases. Biochemistry, 34(20), 6602–10.PubMed Browner, M. F., Smith, W. W., & Castelhano, A. L. (1995). Matrilysin-inhibitor complexes: Common themes among metalloproteases. Biochemistry, 34(20), 6602–10.PubMed
19.
Zurück zum Zitat Puerta, D. T., Lewis, J. A., & Cohen, S. M. (2004). New beginnings for matrix metalloproteinase inhibitors: Identification of high-affinity zinc-binding groups. Journal of the American Chemical Society, 126(27), 8388–9. doi:10.1021/ja0485513.PubMed Puerta, D. T., Lewis, J. A., & Cohen, S. M. (2004). New beginnings for matrix metalloproteinase inhibitors: Identification of high-affinity zinc-binding groups. Journal of the American Chemical Society, 126(27), 8388–9. doi:10.​1021/​ja0485513.PubMed
20.
Zurück zum Zitat Quantin, B., Murphy, G., & Breathnach, R. (1989). Pump-1 cDNA codes for a protein with characteristics similar to those of classical collagenase family members. Biochemistry, 28(13), 5327–34.PubMed Quantin, B., Murphy, G., & Breathnach, R. (1989). Pump-1 cDNA codes for a protein with characteristics similar to those of classical collagenase family members. Biochemistry, 28(13), 5327–34.PubMed
21.
Zurück zum Zitat Chandler, S., Cossins, J., Lury, J., & Wells, G. (1996). Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-alpha fusion protein. Biochemical and Biophysical Research Communications, 228(2), 421–9. doi:10.1006/bbrc.1996.1677.PubMed Chandler, S., Cossins, J., Lury, J., & Wells, G. (1996). Macrophage metalloelastase degrades matrix and myelin proteins and processes a tumour necrosis factor-alpha fusion protein. Biochemical and Biophysical Research Communications, 228(2), 421–9. doi:10.​1006/​bbrc.​1996.​1677.PubMed
22.
Zurück zum Zitat Tochowicz, A., Maskos, K., Huber, R., Oltenfreiter, R., Dive, V., Yiotakis, A., et al. (2007). Crystal structures of MMP-9 complexes with five inhibitors: Contribution of the flexible Arg424 side-chain to selectivity. Journal of Molecular Biology, 371(4), 989–1006. doi:10.1016/j.jmb.2007.05.068.PubMed Tochowicz, A., Maskos, K., Huber, R., Oltenfreiter, R., Dive, V., Yiotakis, A., et al. (2007). Crystal structures of MMP-9 complexes with five inhibitors: Contribution of the flexible Arg424 side-chain to selectivity. Journal of Molecular Biology, 371(4), 989–1006. doi:10.​1016/​j.​jmb.​2007.​05.​068.PubMed
23.
Zurück zum Zitat Tao, P., Fisher, J. F., Mobashery, S., & Schlegel, H. B. (2009). DFT studies of the ring-opening mechanism of SB-3CT, a potent inhibitor of matrix metalloproteinase 2. Organic Letters, 11(12), 2559–62. doi:10.1021/ol9008393.PubMedCentralPubMed Tao, P., Fisher, J. F., Mobashery, S., & Schlegel, H. B. (2009). DFT studies of the ring-opening mechanism of SB-3CT, a potent inhibitor of matrix metalloproteinase 2. Organic Letters, 11(12), 2559–62. doi:10.​1021/​ol9008393.PubMedCentralPubMed
24.
Zurück zum Zitat Kleifeld, O., Kotra, L. P., Gervasi, D. C., Brown, S., Bernardo, M. M., Fridman, R., et al. (2001). X-ray absorption studies of human matrix metalloproteinase-2 (MMP-2) bound to a highly selective mechanism-based inhibitor. Comparison with the latent and active forms of the enzyme. Journal of Biological Chemistry, 276(20), 17125–31.PubMed Kleifeld, O., Kotra, L. P., Gervasi, D. C., Brown, S., Bernardo, M. M., Fridman, R., et al. (2001). X-ray absorption studies of human matrix metalloproteinase-2 (MMP-2) bound to a highly selective mechanism-based inhibitor. Comparison with the latent and active forms of the enzyme. Journal of Biological Chemistry, 276(20), 17125–31.PubMed
25.
Zurück zum Zitat Weinspach, D., Seubert, B., Schaten, S., Honert, K., Sebens, S., Altevogt, P., et al. (2014). Role of L1 cell adhesion molecule (L1CAM) in the metastatic cascade: Promotion of dissemination, colonization, and metastatic growth. Clinical and Experimental Metastasis, 31(1), 87–100. doi:10.1007/s10585-013-9613-6.PubMed Weinspach, D., Seubert, B., Schaten, S., Honert, K., Sebens, S., Altevogt, P., et al. (2014). Role of L1 cell adhesion molecule (L1CAM) in the metastatic cascade: Promotion of dissemination, colonization, and metastatic growth. Clinical and Experimental Metastasis, 31(1), 87–100. doi:10.​1007/​s10585-013-9613-6.PubMed
26.
Zurück zum Zitat Bonfil, R. D., Sabbota, A., Nabha, S., Bernardo, M. M., Dong, Z., Meng, H., et al. (2006). Inhibition of human prostate cancer growth, osteolysis and angiogenesis in a bone metastasis model by a novel mechanism-based selective gelatinase inhibitor. International Journal of Cancer, 118(11), 2721–6. Bonfil, R. D., Sabbota, A., Nabha, S., Bernardo, M. M., Dong, Z., Meng, H., et al. (2006). Inhibition of human prostate cancer growth, osteolysis and angiogenesis in a bone metastasis model by a novel mechanism-based selective gelatinase inhibitor. International Journal of Cancer, 118(11), 2721–6.
27.
Zurück zum Zitat Gooyit, M., Song, W., Mahasenan, K. V., Lichtenwalter, K., Suckow, M. A., Schroeder, V. A., et al. (2013). O-phenyl carbamate and phenyl urea thiiranes as selective matrix metalloproteinase-2 inhibitors that cross the blood–brain barrier. Journal of Medicinal Chemistry, 56(20), 8139–50. doi:10.1021/jm401217d.PubMed Gooyit, M., Song, W., Mahasenan, K. V., Lichtenwalter, K., Suckow, M. A., Schroeder, V. A., et al. (2013). O-phenyl carbamate and phenyl urea thiiranes as selective matrix metalloproteinase-2 inhibitors that cross the blood–brain barrier. Journal of Medicinal Chemistry, 56(20), 8139–50. doi:10.​1021/​jm401217d.PubMed
28.
Zurück zum Zitat Puerta, D. T., Griffin, M. O., Lewis, J. A., Romero-Perez, D., Garcia, R., Villarreal, F. J., et al. (2006). Heterocyclic zinc-binding groups for use in next-generation matrix metalloproteinase inhibitors: Potency, toxicity, and reactivity. Journal of Biological Inorganic Chemistry: JBIC: a Publication of the Society of Biological Inorganic Chemistry, 11(2), 131–8. doi:10.1007/s00775-005-0053-x. Puerta, D. T., Griffin, M. O., Lewis, J. A., Romero-Perez, D., Garcia, R., Villarreal, F. J., et al. (2006). Heterocyclic zinc-binding groups for use in next-generation matrix metalloproteinase inhibitors: Potency, toxicity, and reactivity. Journal of Biological Inorganic Chemistry: JBIC: a Publication of the Society of Biological Inorganic Chemistry, 11(2), 131–8. doi:10.​1007/​s00775-005-0053-x.
29.
Zurück zum Zitat Rubino, M. T., Agamennone, M., Campestre, C., Campiglia, P., Cremasco, V., Faccio, R., et al. (2011). Biphenyl sulfonylamino methyl bisphosphonic acids as inhibitors of matrix metalloproteinases and bone resorption. ChemMedChem, 6(7), 1258–68. doi:10.1002/cmdc.201000540.PubMed Rubino, M. T., Agamennone, M., Campestre, C., Campiglia, P., Cremasco, V., Faccio, R., et al. (2011). Biphenyl sulfonylamino methyl bisphosphonic acids as inhibitors of matrix metalloproteinases and bone resorption. ChemMedChem, 6(7), 1258–68. doi:10.​1002/​cmdc.​201000540.PubMed
31.
Zurück zum Zitat Tauro, M., Laghezza, A., Loiodice, F., Agamennone, M., Campestre, C., Tortorella, P. (2013). Arylamino methylene bisphosphonate derivatives as bone seeking matrix metalloproteinase inhibitors. Bioorganic & Medicinal Chemistry, 21(21), 6456–6465. Tauro, M., Laghezza, A., Loiodice, F., Agamennone, M., Campestre, C., Tortorella, P. (2013). Arylamino methylene bisphosphonate derivatives as bone seeking matrix metalloproteinase inhibitors. Bioorganic & Medicinal Chemistry, 21(21), 6456–6465.
32.
Zurück zum Zitat Kolb, H. C., & Sharpless, K. B. (2003). The growing impact of click chemistry on drug discovery. Drug Discovery Today, 8(24), 1128–37.PubMed Kolb, H. C., & Sharpless, K. B. (2003). The growing impact of click chemistry on drug discovery. Drug Discovery Today, 8(24), 1128–37.PubMed
33.
Zurück zum Zitat Lewis, W. G., Green, L. G., Grynszpan, F., Radic, Z., Carlier, P. R., Taylor, P., et al. (2002). Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angewandte Chemie, 41(6), 1053–7.PubMed Lewis, W. G., Green, L. G., Grynszpan, F., Radic, Z., Carlier, P. R., Taylor, P., et al. (2002). Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angewandte Chemie, 41(6), 1053–7.PubMed
34.
Zurück zum Zitat Hu, M., Li, J., & Yao, S. Q. (2008). In situ “click” assembly of small molecule matrix metalloprotease inhibitors containing zinc-chelating groups. Organic Letters, 10(24), 5529–31. doi:10.1021/ol802286g.PubMed Hu, M., Li, J., & Yao, S. Q. (2008). In situ “click” assembly of small molecule matrix metalloprotease inhibitors containing zinc-chelating groups. Organic Letters, 10(24), 5529–31. doi:10.​1021/​ol802286g.PubMed
37.
Zurück zum Zitat Payne, J. B., & Golub, L. M. (2011). Using tetracyclines to treat osteoporotic/osteopenic bone loss: from the basic science laboratory to the clinic. Pharmacological Research: The Official Journal of the Italian Pharmacological Society, 63(2), 121–9. doi:10.1016/j.phrs.2010.10.006. Payne, J. B., & Golub, L. M. (2011). Using tetracyclines to treat osteoporotic/osteopenic bone loss: from the basic science laboratory to the clinic. Pharmacological Research: The Official Journal of the Italian Pharmacological Society, 63(2), 121–9. doi:10.​1016/​j.​phrs.​2010.​10.​006.
38.
Zurück zum Zitat Fingleton, B. (2003). CMT-3. CollaGenex. Current Opinion in Investigational Drugs, 4(12), 1460–7.PubMed Fingleton, B. (2003). CMT-3. CollaGenex. Current Opinion in Investigational Drugs, 4(12), 1460–7.PubMed
39.
Zurück zum Zitat Furlow, B. (2006). COL-3 benefits patients with AIDS-related Kaposi’s sarcoma. The Lancet Oncology, 7(5), 368.PubMed Furlow, B. (2006). COL-3 benefits patients with AIDS-related Kaposi’s sarcoma. The Lancet Oncology, 7(5), 368.PubMed
41.
Zurück zum Zitat Miyata, Y., Sato, T., Yano, M., & Ito, A. (2004). Activation of protein kinase C betaII/epsilon-c-Jun NH2-terminal kinase pathway and inhibition of mitogen-activated protein/extracellular signal-regulated kinase 1/2 phosphorylation in antitumor invasive activity induced by the polymethoxy flavonoid, nobiletin. Molecular Cancer Therapeutics, 3(7), 839–47.PubMed Miyata, Y., Sato, T., Yano, M., & Ito, A. (2004). Activation of protein kinase C betaII/epsilon-c-Jun NH2-terminal kinase pathway and inhibition of mitogen-activated protein/extracellular signal-regulated kinase 1/2 phosphorylation in antitumor invasive activity induced by the polymethoxy flavonoid, nobiletin. Molecular Cancer Therapeutics, 3(7), 839–47.PubMed
42.
Zurück zum Zitat Rooprai, H. K., Kandanearatchi, A., Maidment, S. L., Christidou, M., Trillo-Pazos, G., Dexter, D. T., et al. (2001). Evaluation of the effects of swainsonine, captopril, tangeretin and nobiletin on the biological behaviour of brain tumour cells in vitro. Neuropathology and Applied Neurobiology, 27(1), 29–39.PubMed Rooprai, H. K., Kandanearatchi, A., Maidment, S. L., Christidou, M., Trillo-Pazos, G., Dexter, D. T., et al. (2001). Evaluation of the effects of swainsonine, captopril, tangeretin and nobiletin on the biological behaviour of brain tumour cells in vitro. Neuropathology and Applied Neurobiology, 27(1), 29–39.PubMed
43.
44.
Zurück zum Zitat Minagawa, A., Otani, Y., Kubota, T., Wada, N., Furukawa, T., Kumai, K., et al. (2001). The citrus flavonoid, nobiletin, inhibits peritoneal dissemination of human gastric carcinoma in SCID mice. Japanese Journal of Cancer Research: Gann, 92(12), 1322–8.PubMed Minagawa, A., Otani, Y., Kubota, T., Wada, N., Furukawa, T., Kumai, K., et al. (2001). The citrus flavonoid, nobiletin, inhibits peritoneal dissemination of human gastric carcinoma in SCID mice. Japanese Journal of Cancer Research: Gann, 92(12), 1322–8.PubMed
45.
Zurück zum Zitat Shao, Z. M., Wu, J., Shen, Z. Z., & Barsky, S. H. (1998). Genistein inhibits both constitutive and EGF-stimulated invasion in ER-negative human breast carcinoma cell lines. Anticancer Research, 18(3A), 1435–9.PubMed Shao, Z. M., Wu, J., Shen, Z. Z., & Barsky, S. H. (1998). Genistein inhibits both constitutive and EGF-stimulated invasion in ER-negative human breast carcinoma cell lines. Anticancer Research, 18(3A), 1435–9.PubMed
46.
Zurück zum Zitat Kousidou, O. C., Mitropoulou, T. N., Roussidis, A. E., Kletsas, D., Theocharis, A. D., & Karamanos, N. K. (2005). Genistein suppresses the invasive potential of human breast cancer cells through transcriptional regulation of metalloproteinases and their tissue inhibitors. International Journal of Oncology, 26(4), 1101–9.PubMed Kousidou, O. C., Mitropoulou, T. N., Roussidis, A. E., Kletsas, D., Theocharis, A. D., & Karamanos, N. K. (2005). Genistein suppresses the invasive potential of human breast cancer cells through transcriptional regulation of metalloproteinases and their tissue inhibitors. International Journal of Oncology, 26(4), 1101–9.PubMed
47.
Zurück zum Zitat Agarwal, C., Tyagi, A., Kaur, M., & Agarwal, R. (2007). Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells. Carcinogenesis, 28(7), 1463–70. doi:10.1093/carcin/bgm042.PubMed Agarwal, C., Tyagi, A., Kaur, M., & Agarwal, R. (2007). Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells. Carcinogenesis, 28(7), 1463–70. doi:10.​1093/​carcin/​bgm042.PubMed
48.
Zurück zum Zitat Agarwal, R., Agarwal, C., Ichikawa, H., Singh, R. P., & Aggarwal, B. B. (2006). Anticancer potential of silymarin: from bench to bed side. Anticancer Research, 26(6B), 4457–98.PubMed Agarwal, R., Agarwal, C., Ichikawa, H., Singh, R. P., & Aggarwal, B. B. (2006). Anticancer potential of silymarin: from bench to bed side. Anticancer Research, 26(6B), 4457–98.PubMed
49.
Zurück zum Zitat Dell’Aica, I., Caniato, R., Biggin, S., & Garbisa, S. (2007). Matrix proteases, green tea, and St. John’s wort: biomedical research catches up with folk medicine. Clinica Chimica Acta; International Journal of Clinical Chemistry, 381(1), 69–77. doi:10.1016/j.cca.2007.02.022.PubMed Dell’Aica, I., Caniato, R., Biggin, S., & Garbisa, S. (2007). Matrix proteases, green tea, and St. John’s wort: biomedical research catches up with folk medicine. Clinica Chimica Acta; International Journal of Clinical Chemistry, 381(1), 69–77. doi:10.​1016/​j.​cca.​2007.​02.​022.PubMed
50.
Zurück zum Zitat Yamakawa, S., Asai, T., Uchida, T., Matsukawa, M., Akizawa, T., & Oku, N. (2004). (−)-Epigallocatechin gallate inhibits membrane-type 1 matrix metalloproteinase, MT1-MMP, and tumor angiogenesis. Cancer Letters, 210(1), 47–55. doi:10.1016/j.canlet.2004.03.008.PubMed Yamakawa, S., Asai, T., Uchida, T., Matsukawa, M., Akizawa, T., & Oku, N. (2004). (−)-Epigallocatechin gallate inhibits membrane-type 1 matrix metalloproteinase, MT1-MMP, and tumor angiogenesis. Cancer Letters, 210(1), 47–55. doi:10.​1016/​j.​canlet.​2004.​03.​008.PubMed
51.
Zurück zum Zitat Cao, Y., Fu, Z. D., Wang, F., Liu, H. Y., & Han, R. (2005). Anti-angiogenic activity of resveratrol, a natural compound from medicinal plants. Journal of Asian Natural Products Research, 7(3), 205–13. doi:10.1080/10286020410001690190.PubMed Cao, Y., Fu, Z. D., Wang, F., Liu, H. Y., & Han, R. (2005). Anti-angiogenic activity of resveratrol, a natural compound from medicinal plants. Journal of Asian Natural Products Research, 7(3), 205–13. doi:10.​1080/​1028602041000169​0190.PubMed
52.
Zurück zum Zitat Tang, Z., Liu, X. Y., & Zou, P. (2007). Resveratrol inhibits the secretion of vascular endothelial growth factor and subsequent proliferation in human leukemia U937 cells. Journal of Huazhong University of Science and Technology Medical sciences =Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban =Huazhong keji daxue xuebao Yixue Yingdewen ban, 27(5), 508–12. doi:10.1007/s11596-007-0508-0. Tang, Z., Liu, X. Y., & Zou, P. (2007). Resveratrol inhibits the secretion of vascular endothelial growth factor and subsequent proliferation in human leukemia U937 cells. Journal of Huazhong University of Science and Technology Medical sciences =Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban =Huazhong keji daxue xuebao Yixue Yingdewen ban, 27(5), 508–12. doi:10.​1007/​s11596-007-0508-0.
53.
Zurück zum Zitat Woo, J. H., Lim, J. H., Kim, Y. H., Suh, S. I., Min, D. S., Chang, J. S., et al. (2004). Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene, 23(10), 1845–53. doi:10.1038/sj.onc.1207307.PubMed Woo, J. H., Lim, J. H., Kim, Y. H., Suh, S. I., Min, D. S., Chang, J. S., et al. (2004). Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene, 23(10), 1845–53. doi:10.​1038/​sj.​onc.​1207307.PubMed
54.
Zurück zum Zitat Vayalil, P. K., Mittal, A., & Katiyar, S. K. (2004). Proanthocyanidins from grape seeds inhibit expression of matrix metalloproteinases in human prostate carcinoma cells, which is associated with the inhibition of activation of MAPK and NF kappa B. Carcinogenesis, 25(6), 987–95. doi:10.1093/carcin/bgh095.PubMed Vayalil, P. K., Mittal, A., & Katiyar, S. K. (2004). Proanthocyanidins from grape seeds inhibit expression of matrix metalloproteinases in human prostate carcinoma cells, which is associated with the inhibition of activation of MAPK and NF kappa B. Carcinogenesis, 25(6), 987–95. doi:10.​1093/​carcin/​bgh095.PubMed
55.
Zurück zum Zitat Bodet, C., Chandad, F., & Grenier, D. (2007). Inhibition of host extracellular matrix destructive enzyme production and activity by a high-molecular-weight cranberry fraction. Journal of Periodontal Research, 42(2), 159–68. doi:10.1111/j.1600-0765.2006.00929.x.PubMed Bodet, C., Chandad, F., & Grenier, D. (2007). Inhibition of host extracellular matrix destructive enzyme production and activity by a high-molecular-weight cranberry fraction. Journal of Periodontal Research, 42(2), 159–68. doi:10.​1111/​j.​1600-0765.​2006.​00929.​x.PubMed
57.
Zurück zum Zitat Lin, L. I., Ke, Y. F., Ko, Y. C., & Lin, J. K. (1998). Curcumin inhibits SK-Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase-9 secretion. Oncology (Williston Park), 55(4), 349–53. Lin, L. I., Ke, Y. F., Ko, Y. C., & Lin, J. K. (1998). Curcumin inhibits SK-Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase-9 secretion. Oncology (Williston Park), 55(4), 349–53.
58.
Zurück zum Zitat Chen, H. W., Yu, S. L., Chen, J. J., Li, H. N., Lin, Y. C., Yao, P. L., et al. (2004). Anti-invasive gene expression profile of curcumin in lung adenocarcinoma based on a high throughput microarray analysis. Molecular Pharmacology, 65(1), 99–110. doi:10.1124/mol.65.1.99.PubMed Chen, H. W., Yu, S. L., Chen, J. J., Li, H. N., Lin, Y. C., Yao, P. L., et al. (2004). Anti-invasive gene expression profile of curcumin in lung adenocarcinoma based on a high throughput microarray analysis. Molecular Pharmacology, 65(1), 99–110. doi:10.​1124/​mol.​65.​1.​99.PubMed
59.
Zurück zum Zitat Chen, H., Yan, X., Lin, J., Wang, F., & Xu, W. (2007). Depolymerized products of lambda-carrageenan as a potent angiogenesis inhibitor. Journal of Agricultural and Food Chemistry, 55(17), 6910–7. doi:10.1021/jf070183+.PubMed Chen, H., Yan, X., Lin, J., Wang, F., & Xu, W. (2007). Depolymerized products of lambda-carrageenan as a potent angiogenesis inhibitor. Journal of Agricultural and Food Chemistry, 55(17), 6910–7. doi:10.​1021/​jf070183+.PubMed
60.
Zurück zum Zitat Kim, J. A., Ahn, B. N., Kong, C. S., Park, S. H., Park, B. J., & Kim, S. K. (2012). Antiphotoaging effect of chitooligosaccharides on human dermal fibroblasts. Photodermatology, Photoimmunology & Photomedicine, 28(6), 299–306. doi:10.1111/phpp.12004. Kim, J. A., Ahn, B. N., Kong, C. S., Park, S. H., Park, B. J., & Kim, S. K. (2012). Antiphotoaging effect of chitooligosaccharides on human dermal fibroblasts. Photodermatology, Photoimmunology & Photomedicine, 28(6), 299–306. doi:10.​1111/​phpp.​12004.
61.
Zurück zum Zitat Mannello, F. (2006). Natural bio-drugs as matrix metalloproteinase inhibitors: New perspectives on the horizon? Recent Patents on Anti-Cancer Drug Discovery, 1(1), 91–103.PubMed Mannello, F. (2006). Natural bio-drugs as matrix metalloproteinase inhibitors: New perspectives on the horizon? Recent Patents on Anti-Cancer Drug Discovery, 1(1), 91–103.PubMed
62.
Zurück zum Zitat Dredge, K. (2004). AE-941 (AEterna). Current Opinion in Investigational Drugs, 5(6), 668–77.PubMed Dredge, K. (2004). AE-941 (AEterna). Current Opinion in Investigational Drugs, 5(6), 668–77.PubMed
64.
Zurück zum Zitat Babu, P. V., & Liu, D. (2008). Green tea catechins and cardiovascular health: an update. Current Medicinal Chemistry, 15(18), 1840–50.PubMedCentralPubMed Babu, P. V., & Liu, D. (2008). Green tea catechins and cardiovascular health: an update. Current Medicinal Chemistry, 15(18), 1840–50.PubMedCentralPubMed
65.
Zurück zum Zitat Annabi, B., Lachambre, M. P., Bousquet-Gagnon, N., Page, M., Gingras, D., & Beliveau, R. (2002). Green tea polyphenol (−)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells. Biochimica et Biophysica Acta, 1542(1–3), 209–20.PubMed Annabi, B., Lachambre, M. P., Bousquet-Gagnon, N., Page, M., Gingras, D., & Beliveau, R. (2002). Green tea polyphenol (−)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells. Biochimica et Biophysica Acta, 1542(1–3), 209–20.PubMed
66.
Zurück zum Zitat Demeule, M., Brossard, M., Page, M., Gingras, D., & Beliveau, R. (2000). Matrix metalloproteinase inhibition by green tea catechins. Biochimica et Biophysica Acta, 1478(1), 51–60.PubMed Demeule, M., Brossard, M., Page, M., Gingras, D., & Beliveau, R. (2000). Matrix metalloproteinase inhibition by green tea catechins. Biochimica et Biophysica Acta, 1478(1), 51–60.PubMed
67.
Zurück zum Zitat Fujita, M., Nakao, Y., Matsunaga, S., Seiki, M., Itoh, Y., Yamashita, J., et al. (2003). Ageladine A: an antiangiogenic matrixmetalloproteinase inhibitor from the marine sponge Agelas nakamurai. Journal of the American Chemical Society, 125(51), 15700–1. doi:10.1021/ja038025w.PubMed Fujita, M., Nakao, Y., Matsunaga, S., Seiki, M., Itoh, Y., Yamashita, J., et al. (2003). Ageladine A: an antiangiogenic matrixmetalloproteinase inhibitor from the marine sponge Agelas nakamurai. Journal of the American Chemical Society, 125(51), 15700–1. doi:10.​1021/​ja038025w.PubMed
68.
Zurück zum Zitat Shengule, S. R., Loa-Kum-Cheung, W. L., Parish, C. R., Blairvacq, M., Meijer, L., Nakao, Y., et al. (2011). A one-pot synthesis and biological activity of ageladine A and analogues. Journal of Medicinal Chemistry, 54(7), 2492–503. doi:10.1021/jm200039m.PubMed Shengule, S. R., Loa-Kum-Cheung, W. L., Parish, C. R., Blairvacq, M., Meijer, L., Nakao, Y., et al. (2011). A one-pot synthesis and biological activity of ageladine A and analogues. Journal of Medicinal Chemistry, 54(7), 2492–503. doi:10.​1021/​jm200039m.PubMed
69.
Zurück zum Zitat Falardeau, P., Champagne, P., Poyet, P., Hariton, C., & Dupont, E. (2001). Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials. Seminars in Oncology, 28(6), 620–5.PubMed Falardeau, P., Champagne, P., Poyet, P., Hariton, C., & Dupont, E. (2001). Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials. Seminars in Oncology, 28(6), 620–5.PubMed
70.
Zurück zum Zitat Lu, C., Lee, J. J., Komaki, R., Herbst, R. S., Feng, L., Evans, W. K., et al. (2010). Chemoradiotherapy with or without AE-941 in stage III non-small cell lung cancer: a randomized phase III trial. Journal of the National Cancer Institute, 102(12), 859–65. doi:10.1093/jnci/djq179.PubMedCentralPubMed Lu, C., Lee, J. J., Komaki, R., Herbst, R. S., Feng, L., Evans, W. K., et al. (2010). Chemoradiotherapy with or without AE-941 in stage III non-small cell lung cancer: a randomized phase III trial. Journal of the National Cancer Institute, 102(12), 859–65. doi:10.​1093/​jnci/​djq179.PubMedCentralPubMed
71.
Zurück zum Zitat Loprinzi, C. L., Levitt, R., Barton, D. L., Sloan, J. A., Atherton, P. J., Smith, D. J., et al. (2005). Evaluation of shark cartilage in patients with advanced cancer: a north central cancer treatment group trial. Cancer, 104(1), 176–82. doi:10.1002/cncr.21107.PubMed Loprinzi, C. L., Levitt, R., Barton, D. L., Sloan, J. A., Atherton, P. J., Smith, D. J., et al. (2005). Evaluation of shark cartilage in patients with advanced cancer: a north central cancer treatment group trial. Cancer, 104(1), 176–82. doi:10.​1002/​cncr.​21107.PubMed
72.
Zurück zum Zitat Vacchelli, E., Aranda, F., Eggermont, A., Galon, J., Sautes-Fridman, C., Zitvogel, L., et al. (2014). Trial watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology, 3(1), e27048. doi:10.4161/onci.27048.PubMedCentralPubMed Vacchelli, E., Aranda, F., Eggermont, A., Galon, J., Sautes-Fridman, C., Zitvogel, L., et al. (2014). Trial watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology, 3(1), e27048. doi:10.​4161/​onci.​27048.PubMedCentralPubMed
73.
Zurück zum Zitat Acharya, U. H., & Jeter, J. M. (2013). Use of ipilimumab in the treatment of melanoma. Clinical Pharmacology: Advances and Applications, 5(Suppl 1), 21–7. doi:10.2147/CPAA.S45884. Acharya, U. H., & Jeter, J. M. (2013). Use of ipilimumab in the treatment of melanoma. Clinical Pharmacology: Advances and Applications, 5(Suppl 1), 21–7. doi:10.​2147/​CPAA.​S45884.
74.
Zurück zum Zitat Braghiroli, M. I., Sabbaga, J., & Hoff, P. M. (2012). Bevacizumab: Overview of the literature. Expert Review of Anticancer Therapy, 12(5), 567–80. doi:10.1586/era.12.13.PubMed Braghiroli, M. I., Sabbaga, J., & Hoff, P. M. (2012). Bevacizumab: Overview of the literature. Expert Review of Anticancer Therapy, 12(5), 567–80. doi:10.​1586/​era.​12.​13.PubMed
75.
Zurück zum Zitat Devy, L., Huang, L., Naa, L., Yanamandra, N., Pieters, H., Frans, N., et al. (2009). Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Research, 69(4), 1517–26. doi:10.1158/0008-5472.CAN-08-3255.PubMed Devy, L., Huang, L., Naa, L., Yanamandra, N., Pieters, H., Frans, N., et al. (2009). Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Research, 69(4), 1517–26. doi:10.​1158/​0008-5472.​CAN-08-3255.PubMed
76.
Zurück zum Zitat Naito, S., Takahashi, T., Onoda, J., Yamauchi, A., Kawai, T., Kishino, J., et al. (2012). Development of a neutralizing antibody specific for the active form of matrix metalloproteinase-13. Biochemistry, 51(44), 8877–84. doi:10.1021/bi301228d.PubMed Naito, S., Takahashi, T., Onoda, J., Yamauchi, A., Kawai, T., Kishino, J., et al. (2012). Development of a neutralizing antibody specific for the active form of matrix metalloproteinase-13. Biochemistry, 51(44), 8877–84. doi:10.​1021/​bi301228d.PubMed
77.
Zurück zum Zitat Shiryaev, S. A., Remacle, A. G., Golubkov, V. S., Ingvarsen, S., Porse, A., Behrendt, N., et al. (2013). A monoclonal antibody interferes with TIMP-2 binding and incapacitates the MMP-2-activating function of multifunctional, pro-tumorigenic MMP-14/MT1-MMP. Oncogenesis, 2, e80. doi:10.1038/oncsis.2013.44.PubMedCentralPubMed Shiryaev, S. A., Remacle, A. G., Golubkov, V. S., Ingvarsen, S., Porse, A., Behrendt, N., et al. (2013). A monoclonal antibody interferes with TIMP-2 binding and incapacitates the MMP-2-activating function of multifunctional, pro-tumorigenic MMP-14/MT1-MMP. Oncogenesis, 2, e80. doi:10.​1038/​oncsis.​2013.​44.PubMedCentralPubMed
78.
Zurück zum Zitat Fingleton, B., Powell, W. C., Crawford, H. C., Couchman, J. R., & Matrisian, L. M. (2007). A rat monoclonal antibody that recognizes pro- and active MMP-7 indicates polarized expression in vivo. Hybridoma (Larchmt), 26(1), 22–7. doi:10.1089/hyb.2006.028. Fingleton, B., Powell, W. C., Crawford, H. C., Couchman, J. R., & Matrisian, L. M. (2007). A rat monoclonal antibody that recognizes pro- and active MMP-7 indicates polarized expression in vivo. Hybridoma (Larchmt), 26(1), 22–7. doi:10.​1089/​hyb.​2006.​028.
79.
Zurück zum Zitat Lolmede, K., Campana, L., Vezzoli, M., Bosurgi, L., Tonlorenzi, R., Clementi, E., et al. (2009). Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. Journal of Leukocyte Biology, 85(5), 779–87. doi:10.1189/jlb.0908579.PubMed Lolmede, K., Campana, L., Vezzoli, M., Bosurgi, L., Tonlorenzi, R., Clementi, E., et al. (2009). Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. Journal of Leukocyte Biology, 85(5), 779–87. doi:10.​1189/​jlb.​0908579.PubMed
80.
Zurück zum Zitat Sela-Passwell, N., Kikkeri, R., Dym, O., Rozenberg, H., Margalit, R., Arad-Yellin, R., et al. (2012). Antibodies targeting the catalytic zinc complex of activated matrix metalloproteinases show therapeutic potential. Nature Medicine, 18(1), 143–7. doi:10.1038/nm.2582. Sela-Passwell, N., Kikkeri, R., Dym, O., Rozenberg, H., Margalit, R., Arad-Yellin, R., et al. (2012). Antibodies targeting the catalytic zinc complex of activated matrix metalloproteinases show therapeutic potential. Nature Medicine, 18(1), 143–7. doi:10.​1038/​nm.​2582.
81.
Zurück zum Zitat Pei, D., Kang, T., & Qi, H. (2000). Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. The Journal of Biological Chemistry, 275(43), 33988–97. doi:10.1074/jbc.M006493200.PubMed Pei, D., Kang, T., & Qi, H. (2000). Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. The Journal of Biological Chemistry, 275(43), 33988–97. doi:10.​1074/​jbc.​M006493200.PubMed
82.
Zurück zum Zitat Sato, H., Okada, Y., & Seiki, M. (1997). Membrane-type matrix metalloproteinases (MT-MMPs) in cell invasion. Thrombosis and Haemostasis, 78(1), 497–500.PubMed Sato, H., Okada, Y., & Seiki, M. (1997). Membrane-type matrix metalloproteinases (MT-MMPs) in cell invasion. Thrombosis and Haemostasis, 78(1), 497–500.PubMed
83.
84.
Zurück zum Zitat Ota, I., Li, X. Y., Hu, Y., & Weiss, S. J. (2009). Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20318–23. doi:10.1073/pnas.0910962106.PubMedCentralPubMed Ota, I., Li, X. Y., Hu, Y., & Weiss, S. J. (2009). Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20318–23. doi:10.​1073/​pnas.​0910962106.PubMedCentralPubMed
85.
Zurück zum Zitat Deu, E., Verdoes, M., & Bogyo, M. (2012). New approaches for dissecting protease functions to improve probe development and drug discovery. Nature Structural & Molecular Biology, 19(1), 9–16. doi:10.1038/nsmb.2203. Deu, E., Verdoes, M., & Bogyo, M. (2012). New approaches for dissecting protease functions to improve probe development and drug discovery. Nature Structural & Molecular Biology, 19(1), 9–16. doi:10.​1038/​nsmb.​2203.
86.
Zurück zum Zitat Olson, E. S., Jiang, T., Aguilera, T. A., Nguyen, Q. T., Ellies, L. G., Scadeng, M., et al. (2010). Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proceedings of the National Academy of Sciences of the United States of America, 107(9), 4311–6. doi:10.1073/pnas.0910283107.PubMedCentralPubMed Olson, E. S., Jiang, T., Aguilera, T. A., Nguyen, Q. T., Ellies, L. G., Scadeng, M., et al. (2010). Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proceedings of the National Academy of Sciences of the United States of America, 107(9), 4311–6. doi:10.​1073/​pnas.​0910283107.PubMedCentralPubMed
87.
Zurück zum Zitat Akers, W. J., Xu, B., Lee, H., Sudlow, G. P., Fields, G. B., Achilefu, S., et al. (2012). Detection of MMP-2 and MMP-9 activity in vivo with a triple-helical peptide optical probe. Bioconjugate Chemistry, 23(3), 656–63. doi:10.1021/bc300027y.PubMedCentralPubMed Akers, W. J., Xu, B., Lee, H., Sudlow, G. P., Fields, G. B., Achilefu, S., et al. (2012). Detection of MMP-2 and MMP-9 activity in vivo with a triple-helical peptide optical probe. Bioconjugate Chemistry, 23(3), 656–63. doi:10.​1021/​bc300027y.PubMedCentralPubMed
88.
Zurück zum Zitat Turk, B. E., Huang, L. L., Piro, E. T., & Cantley, L. C. (2001). Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nature Biotechnology, 19(7), 661–7. doi:10.1038/90273.PubMed Turk, B. E., Huang, L. L., Piro, E. T., & Cantley, L. C. (2001). Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nature Biotechnology, 19(7), 661–7. doi:10.​1038/​90273.PubMed
89.
Zurück zum Zitat Scherer, R. L., VanSaun, M. N., McIntyre, J. O., & Matrisian, L. M. (2008). Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon. Molecular Imaging, 7(3), 118–31.PubMedCentralPubMed Scherer, R. L., VanSaun, M. N., McIntyre, J. O., & Matrisian, L. M. (2008). Optical imaging of matrix metalloproteinase-7 activity in vivo using a proteolytic nanobeacon. Molecular Imaging, 7(3), 118–31.PubMedCentralPubMed
90.
Zurück zum Zitat Zhang, H. (2004). Pyro-Gly-Pro-Leu-Gly-Leu-Ala-Arg-Lys (BHQ3). Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD). Zhang, H. (2004). Pyro-Gly-Pro-Leu-Gly-Leu-Ala-Arg-Lys (BHQ3). Molecular Imaging and Contrast Agent Database (MICAD). Bethesda (MD).
91.
Zurück zum Zitat Fudala R, Rich R, Mukerjee A, Ranjan AP, Vishwanatha JK, Kurdowska AK, et al. (2012). Fluorescence detection of MMP-9.II. Ratiometric FRET-based sensing with dually labeled specific peptide. Current Pharmaceutical Biotechnology. Fudala R, Rich R, Mukerjee A, Ranjan AP, Vishwanatha JK, Kurdowska AK, et al. (2012). Fluorescence detection of MMP-9.II. Ratiometric FRET-based sensing with dually labeled specific peptide. Current Pharmaceutical Biotechnology.
94.
Zurück zum Zitat Jabaiah, A., & Daugherty, P. S. (2011). Directed evolution of protease beacons that enable sensitive detection of endogenous MT1-MMP activity in tumor cell lines. Chemistry & Biology, 18(3), 392–401. doi:10.1016/j.chembiol.2010.12.017. Jabaiah, A., & Daugherty, P. S. (2011). Directed evolution of protease beacons that enable sensitive detection of endogenous MT1-MMP activity in tumor cell lines. Chemistry & Biology, 18(3), 392–401. doi:10.​1016/​j.​chembiol.​2010.​12.​017.
95.
Zurück zum Zitat Zhu, L., Ma, Y., Kiesewetter, D. O., Wang, Y., Lang, L., Lee, S., et al. (2013). Rational design of matrix metalloproteinase-13 activatable probes for enhanced specificity. ACS Chemical Biology. doi:10.1021/cb400698s.PubMedCentral Zhu, L., Ma, Y., Kiesewetter, D. O., Wang, Y., Lang, L., Lee, S., et al. (2013). Rational design of matrix metalloproteinase-13 activatable probes for enhanced specificity. ACS Chemical Biology. doi:10.​1021/​cb400698s.PubMedCentral
96.
Zurück zum Zitat Chien, M. P., Carlini, A. S., Hu, D., Barback, C. V., Rush, A. M., Hall, D. J., et al. (2013). Enzyme-directed assembly of nanoparticles in tumors monitored by in vivo whole animal imaging and ex vivo super-resolution fluorescence imaging. Journal of the American Chemical Society. doi:10.1021/ja408182p.PubMed Chien, M. P., Carlini, A. S., Hu, D., Barback, C. V., Rush, A. M., Hall, D. J., et al. (2013). Enzyme-directed assembly of nanoparticles in tumors monitored by in vivo whole animal imaging and ex vivo super-resolution fluorescence imaging. Journal of the American Chemical Society. doi:10.​1021/​ja408182p.PubMed
97.
Zurück zum Zitat Remacle, A. G., Shiryaev, S. A., Golubkov, V. S., Freskos, J. N., Brown, M. A., Karwa, A. S., et al. (2013). Non-destructive and selective imaging of the functionally active, pro-invasive membrane type-1 matrix metalloproteinase (MT1-MMP) enzyme in cancer cells. Journal of Biological Chemistry, 288(28), 20568–80. doi:10.1074/jbc.M113.471508.PubMedCentralPubMed Remacle, A. G., Shiryaev, S. A., Golubkov, V. S., Freskos, J. N., Brown, M. A., Karwa, A. S., et al. (2013). Non-destructive and selective imaging of the functionally active, pro-invasive membrane type-1 matrix metalloproteinase (MT1-MMP) enzyme in cancer cells. Journal of Biological Chemistry, 288(28), 20568–80. doi:10.​1074/​jbc.​M113.​471508.PubMedCentralPubMed
98.
Zurück zum Zitat Yu, S. S., Lau, C. M., Thomas, S. N., Jerome, W. G., Maron, D. J., Dickerson, J. H., et al. (2012). Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. International Journal of Nanomedicine, 7, 799–813. doi:10.2147/IJN.S28531.PubMedCentralPubMed Yu, S. S., Lau, C. M., Thomas, S. N., Jerome, W. G., Maron, D. J., Dickerson, J. H., et al. (2012). Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. International Journal of Nanomedicine, 7, 799–813. doi:10.​2147/​IJN.​S28531.PubMedCentralPubMed
99.
Zurück zum Zitat Thorek, D. L., Ogirala, A., Beattie, B. J., & Grimm, J. (2013). Quantitative imaging of disease signatures through radioactive decay signal conversion. Nature Medicine, 19(10), 1345–50. doi:10.1038/nm.3323.PubMedCentralPubMed Thorek, D. L., Ogirala, A., Beattie, B. J., & Grimm, J. (2013). Quantitative imaging of disease signatures through radioactive decay signal conversion. Nature Medicine, 19(10), 1345–50. doi:10.​1038/​nm.​3323.PubMedCentralPubMed
100.
Zurück zum Zitat Kim, Y. P., Daniel, W. L., Xia, Z., Xie, H., Mirkin, C. A., & Rao, J. (2010). Bioluminescent nanosensors for protease detection based upon gold nanoparticle-luciferase conjugates. Chemical communications (Cambridge), 46(1), 76–8. doi:10.1039/b915612g. Kim, Y. P., Daniel, W. L., Xia, Z., Xie, H., Mirkin, C. A., & Rao, J. (2010). Bioluminescent nanosensors for protease detection based upon gold nanoparticle-luciferase conjugates. Chemical communications (Cambridge), 46(1), 76–8. doi:10.​1039/​b915612g.
101.
Zurück zum Zitat Samuelson, L. E., Scherer, R. L., Matrisian, L. M., McIntyre, J. O., & Bornhop, D. J. (2013). Synthesis and in vitro efficacy of MMP9-activated NanoDendrons. Molecular Pharmaceutics, 10(8), 3164–74. doi:10.1021/mp4002206.PubMed Samuelson, L. E., Scherer, R. L., Matrisian, L. M., McIntyre, J. O., & Bornhop, D. J. (2013). Synthesis and in vitro efficacy of MMP9-activated NanoDendrons. Molecular Pharmaceutics, 10(8), 3164–74. doi:10.​1021/​mp4002206.PubMed
102.
Zurück zum Zitat Shi, N. Q., Gao, W., Xiang, B., & Qi, X. R. (2012). Enhancing cellular uptake of activable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage. International Journal of Nanomedicine, 7, 1613–21. doi:10.2147/IJN.S30104.PubMedCentralPubMed Shi, N. Q., Gao, W., Xiang, B., & Qi, X. R. (2012). Enhancing cellular uptake of activable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage. International Journal of Nanomedicine, 7, 1613–21. doi:10.​2147/​IJN.​S30104.PubMedCentralPubMed
104.
Zurück zum Zitat Tredan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 99(19), 1441–54. doi:10.1093/jnci/djm135.PubMed Tredan, O., Galmarini, C. M., Patel, K., & Tannock, I. F. (2007). Drug resistance and the solid tumor microenvironment. Journal of the National Cancer Institute, 99(19), 1441–54. doi:10.​1093/​jnci/​djm135.PubMed
105.
Zurück zum Zitat Danhier, F., Feron, O., & Preat, V. (2010). To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society, 148(2), 135–46. doi:10.1016/j.jconrel.2010.08.027. Danhier, F., Feron, O., & Preat, V. (2010). To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release: Official Journal of the Controlled Release Society, 148(2), 135–46. doi:10.​1016/​j.​jconrel.​2010.​08.​027.
106.
Zurück zum Zitat Burris, H. A., 3rd, Tibbitts, J., Holden, S. N., Sliwkowski, M. X., & Lewis Phillips, G. D. (2011). Trastuzumab emtansine (T-DM1): a novel agent for targeting HER2+ breast cancer. Clinical Breast Cancer, 11(5), 275–82. doi:10.1016/j.clbc.2011.03.018.PubMed Burris, H. A., 3rd, Tibbitts, J., Holden, S. N., Sliwkowski, M. X., & Lewis Phillips, G. D. (2011). Trastuzumab emtansine (T-DM1): a novel agent for targeting HER2+ breast cancer. Clinical Breast Cancer, 11(5), 275–82. doi:10.​1016/​j.​clbc.​2011.​03.​018.PubMed
107.
Zurück zum Zitat Gu, G., Xia, H., Hu, Q., Liu, Z., Jiang, M., Kang, T., et al. (2013). PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials, 34(1), 196–208. doi:10.1016/j.biomaterials.2012.09.044.PubMed Gu, G., Xia, H., Hu, Q., Liu, Z., Jiang, M., Kang, T., et al. (2013). PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials, 34(1), 196–208. doi:10.​1016/​j.​biomaterials.​2012.​09.​044.PubMed
108.
Zurück zum Zitat Kondo, M., Asai, T., Katanasaka, Y., Sadzuka, Y., Tsukada, H., Ogino, K., et al. (2004). Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. International Journal of Cancer, 108(2), 301–6. doi:10.1002/ijc.11526. Kondo, M., Asai, T., Katanasaka, Y., Sadzuka, Y., Tsukada, H., Ogino, K., et al. (2004). Anti-neovascular therapy by liposomal drug targeted to membrane type-1 matrix metalloproteinase. International Journal of Cancer, 108(2), 301–6. doi:10.​1002/​ijc.​11526.
109.
Zurück zum Zitat Van Valckenborgh, E., Mincher, D., Di Salvo, A., Van Riet, I., Young, L., Van Camp, B., et al. (2005). Targeting an MMP-9-activated prodrug to multiple myeloma-diseased bone marrow: a proof of principle in the 5T33MM mouse model. Leukemia, 19(9), 1628–33. doi:10.1038/sj.leu.2403866.PubMed Van Valckenborgh, E., Mincher, D., Di Salvo, A., Van Riet, I., Young, L., Van Camp, B., et al. (2005). Targeting an MMP-9-activated prodrug to multiple myeloma-diseased bone marrow: a proof of principle in the 5T33MM mouse model. Leukemia, 19(9), 1628–33. doi:10.​1038/​sj.​leu.​2403866.PubMed
110.
Zurück zum Zitat Ansari, C., Tikhomirov, G. A., Hong, S. H., Falconer, R. A., Loadman, P. M., Gill, J. H., et al. (2014). Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small, 10(3), 566–75. doi:10.1002/smll.201301456.PubMed Ansari, C., Tikhomirov, G. A., Hong, S. H., Falconer, R. A., Loadman, P. M., Gill, J. H., et al. (2014). Development of novel tumor-targeted theranostic nanoparticles activated by membrane-type matrix metalloproteinases for combined cancer magnetic resonance imaging and therapy. Small, 10(3), 566–75. doi:10.​1002/​smll.​201301456.PubMed
111.
Zurück zum Zitat Morell, M., Nguyen Duc, T., Willis, A. L., Syed, S., Lee, J., Deu, E., et al. (2013). Coupling protein engineering with probe design to inhibit and image matrix metalloproteinases with controlled specificity. Journal of the American Chemical Society, 135(24), 9139–48. doi:10.1021/ja403523p.PubMedCentralPubMed Morell, M., Nguyen Duc, T., Willis, A. L., Syed, S., Lee, J., Deu, E., et al. (2013). Coupling protein engineering with probe design to inhibit and image matrix metalloproteinases with controlled specificity. Journal of the American Chemical Society, 135(24), 9139–48. doi:10.​1021/​ja403523p.PubMedCentralPubMed
Metadaten
Titel
New approaches to selectively target cancer-associated matrix metalloproteinase activity
verfasst von
Marilena Tauro
Jeremy McGuire
Conor C. Lynch
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2014
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9530-4

Weitere Artikel der Ausgabe 4/2014

Cancer and Metastasis Reviews 4/2014 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.