Skip to main content
Erschienen in: Cardiovascular Drugs and Therapy 5/2014

01.10.2014 | ORIGINAL ARTICLE

DPP-4 Inhibitors Repress NLRP3 Inflammasome and Interleukin-1beta via GLP-1 Receptor in Macrophages Through Protein Kinase C Pathway

verfasst von: Yao Dai, Dongsheng Dai, Xianwei Wang, Zufeng Ding, Jawahar L. Mehta

Erschienen in: Cardiovascular Drugs and Therapy | Ausgabe 5/2014

Einloggen, um Zugang zu erhalten

Abstract

Background

Anti-atherosclerotic effects of dipeptidyl peptidase-4 (DPP-4) inhibitors have been shown in many studies. Since inflammation and immune response play a key role in atherogenesis, we examined the effect of DPP-4 inhibitors on the expression of nod-like receptor family, pyrin domain containing 3 (NLRP3) Inflammasome and Interleukin-1beta (IL-1β) in human macrophages.

Methods and Results

THP-1 macrophages were incubated with oxidized low density lipoprotein (ox-LDL) with or without DPP-4 inhibitors (sitagliptin and NVPDPP728). The effects of DPP-4 inhibitors on the expression of NLRP3, toll-like receptor 4 (TLR4) and pro-inflammatory cytokine IL-1β were studied. Both DPP-4 inhibitors induced a significant reduction in NLRP3, TLR4 and IL-1β expression; concurrently, there was an increase in glucagon like peptide 1 receptor (GLP-1R) expression. Simultaneously, DPP-4 inhibitors reduced phosphorylated-PKC, but not PKA, levels. To determine the role of PKC activation in the effects of DPP-4 inhibitors, cells were treated with PMA- which blocked the effect of DPP-4 inhibitors on NLRP3 and IL-1β as well as TLR4 and GLP-1R. Over-expression of GLP-1R in macrophages with its agonist liraglutide also blocked the effects of PMA.

Conclusion

DPP-4 inhibitors suppress NLRP3, TLR4 and IL-1β in human macrophages through inhibition of PKC activity. This study provides novel insights into the mechanism of inhibition of inflammatory state and immune response in atherosclerosis by DPP-4 inhibitors.
Literatur
1.
Zurück zum Zitat Ross R, Agius L. The process of atherogenesis–cellular and molecular interaction: from experimental animal models to humans. Diabetologia. 1992;35:S34–40.PubMedCrossRef Ross R, Agius L. The process of atherogenesis–cellular and molecular interaction: from experimental animal models to humans. Diabetologia. 1992;35:S34–40.PubMedCrossRef
2.
Zurück zum Zitat Ishigaki Y, Katagiri H, Gao J, et al. Impact of plasma oxidized low-density lipoprotein removal on atherosclerosis. Circulation. 2008;118:75–83.PubMedCrossRef Ishigaki Y, Katagiri H, Gao J, et al. Impact of plasma oxidized low-density lipoprotein removal on atherosclerosis. Circulation. 2008;118:75–83.PubMedCrossRef
3.
Zurück zum Zitat Masters SL, Dunne A, Subramanian SL, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol. 2010;11:897–904.PubMedCrossRefPubMedCentral Masters SL, Dunne A, Subramanian SL, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol. 2010;11:897–904.PubMedCrossRefPubMedCentral
4.
Zurück zum Zitat Pant S, Deshmukh A, Mehta JL. Inflammation and atherosclerosis—revisited. J Cardiovasc Pharmacol Ther. 2014;19:168–76.CrossRef Pant S, Deshmukh A, Mehta JL. Inflammation and atherosclerosis—revisited. J Cardiovasc Pharmacol Ther. 2014;19:168–76.CrossRef
5.
Zurück zum Zitat Satoh T, Kambe N, Matsue H. NLRP3 activation induces ASC-dependent programmed necrotic cell death, which leads to neutrophilic inflammation. Cell Death Dis. 2013;4:e644.PubMedCrossRefPubMedCentral Satoh T, Kambe N, Matsue H. NLRP3 activation induces ASC-dependent programmed necrotic cell death, which leads to neutrophilic inflammation. Cell Death Dis. 2013;4:e644.PubMedCrossRefPubMedCentral
6.
Zurück zum Zitat Jiang Y, Wang M, Huang K, et al. Oxidized low-density lipoprotein induces secretion of interleukin-1β by macrophages via reactive oxygen species-dependent NLRP3 inflammasome activation. Biochem Biophys Res Commun. 2012;425:121–6.PubMedCrossRef Jiang Y, Wang M, Huang K, et al. Oxidized low-density lipoprotein induces secretion of interleukin-1β by macrophages via reactive oxygen species-dependent NLRP3 inflammasome activation. Biochem Biophys Res Commun. 2012;425:121–6.PubMedCrossRef
7.
Zurück zum Zitat Liu W, Yin Y, Zhou Z, He M, Dai Y. OxLDL-induced IL-1beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm Res. 2014;63:33–43.PubMedCrossRef Liu W, Yin Y, Zhou Z, He M, Dai Y. OxLDL-induced IL-1beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm Res. 2014;63:33–43.PubMedCrossRef
8.
Zurück zum Zitat Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14:197–210.CrossRef Shiloh Y, Ziv Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol. 2013;14:197–210.CrossRef
9.
Zurück zum Zitat Ma L, Dong F, Denis M, et al. Ht31, a protein kinase a anchoring inhibitor, induces robust cholesterol efflux and reverses macrophage foam cell formation through ATP-binding cassette transporter A1. J Biol Chem. 2011;286:3370–8.PubMedCrossRefPubMedCentral Ma L, Dong F, Denis M, et al. Ht31, a protein kinase a anchoring inhibitor, induces robust cholesterol efflux and reverses macrophage foam cell formation through ATP-binding cassette transporter A1. J Biol Chem. 2011;286:3370–8.PubMedCrossRefPubMedCentral
10.
Zurück zum Zitat Kong L, Shen X, Lin L, et al. PKCβ promotes vascular inflammation and acceleration of atherosclerosis in diabetic ApoE Null Mice. Arterioscler Thromb Vasc Biol. 2013;33:1779–87.PubMedCrossRef Kong L, Shen X, Lin L, et al. PKCβ promotes vascular inflammation and acceleration of atherosclerosis in diabetic ApoE Null Mice. Arterioscler Thromb Vasc Biol. 2013;33:1779–87.PubMedCrossRef
11.
Zurück zum Zitat Ma L, Dong F, Zaid M, Kumar A, Zha X. ABCA1 protein enhances toll-like receptor 4 (TLR4)-stimulated interleukin-10 (IL-10) secretion through protein kinase a (PKA) activation. J Biol Chem. 2012;287:40502–12.PubMedCrossRefPubMedCentral Ma L, Dong F, Zaid M, Kumar A, Zha X. ABCA1 protein enhances toll-like receptor 4 (TLR4)-stimulated interleukin-10 (IL-10) secretion through protein kinase a (PKA) activation. J Biol Chem. 2012;287:40502–12.PubMedCrossRefPubMedCentral
12.
Zurück zum Zitat Namba M, Katsuno T, Kusunoki Y, et al. New strategy for the treatment of type 2 diabetes mellitus with incretin-based therapy. Clin Exp Nephrol. 2013;17:10–5.PubMedCrossRef Namba M, Katsuno T, Kusunoki Y, et al. New strategy for the treatment of type 2 diabetes mellitus with incretin-based therapy. Clin Exp Nephrol. 2013;17:10–5.PubMedCrossRef
13.
Zurück zum Zitat Ervinna N, Mita T, Yasunari E, et al. Anagliptin, a DPP-4 inhibitor, suppresses proliferation of vascular smooth muscles and monocyte inflammatory reaction and attenuates atherosclerosis in male apo E-deficient mice. Endocrinology. 2013;154:1260–70.PubMedCrossRef Ervinna N, Mita T, Yasunari E, et al. Anagliptin, a DPP-4 inhibitor, suppresses proliferation of vascular smooth muscles and monocyte inflammatory reaction and attenuates atherosclerosis in male apo E-deficient mice. Endocrinology. 2013;154:1260–70.PubMedCrossRef
14.
Zurück zum Zitat Shah Z, Kampfrath T, Deiuliis JA, et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation. 2011;124:2338–49.PubMedCrossRef Shah Z, Kampfrath T, Deiuliis JA, et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation. 2011;124:2338–49.PubMedCrossRef
15.
Zurück zum Zitat Matsubara J, Sugiyama S, Akiyama E, et al. Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes. Circ J. 2013;77:1337–44.PubMedCrossRef Matsubara J, Sugiyama S, Akiyama E, et al. Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes. Circ J. 2013;77:1337–44.PubMedCrossRef
16.
Zurück zum Zitat Krijnen PA, Hahn NE, Kholová I, et al. Loss of DPP4 activity is related to a prothrombogenic status of endothelial cells: implications for the coronary microvasculature of myocardial infarction patients. Basic Res Cardiol. 2012;107:233.PubMedCrossRef Krijnen PA, Hahn NE, Kholová I, et al. Loss of DPP4 activity is related to a prothrombogenic status of endothelial cells: implications for the coronary microvasculature of myocardial infarction patients. Basic Res Cardiol. 2012;107:233.PubMedCrossRef
17.
Zurück zum Zitat Park EK, Jung HS, Yang HI, et al. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res. 2007;56:45–50.PubMedCrossRef Park EK, Jung HS, Yang HI, et al. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res. 2007;56:45–50.PubMedCrossRef
18.
Zurück zum Zitat Voloshyna I, Modayil S, Littlefield MJ, et al. Plasma from rheumatoid arthritis patients promotes pro-atherogenic cholesterol transport gene expression in THP-1 human macrophages. Exp Biol Med (Maywood). 2013;238:1192–7.CrossRef Voloshyna I, Modayil S, Littlefield MJ, et al. Plasma from rheumatoid arthritis patients promotes pro-atherogenic cholesterol transport gene expression in THP-1 human macrophages. Exp Biol Med (Maywood). 2013;238:1192–7.CrossRef
19.
Zurück zum Zitat Chua S, Sheu JJ, Chen YL, et al. Sitagliptin therapy enhances the number of circulating angiogenic cells and angiogenesis-evaluations in vitro and in the rat critical limb ischemia model. Cytotherapy. 2013;15:1148–63.PubMedCrossRef Chua S, Sheu JJ, Chen YL, et al. Sitagliptin therapy enhances the number of circulating angiogenic cells and angiogenesis-evaluations in vitro and in the rat critical limb ischemia model. Cytotherapy. 2013;15:1148–63.PubMedCrossRef
20.
Zurück zum Zitat Dai Y, Mercanti F, Dai D, et al. LOX-1, a bridge between GLP-1R and mitochondrial ROS generation in human vascular smooth muscle cells. Biochem Biophys Res Commun. 2013;437:62–6.PubMedCrossRef Dai Y, Mercanti F, Dai D, et al. LOX-1, a bridge between GLP-1R and mitochondrial ROS generation in human vascular smooth muscle cells. Biochem Biophys Res Commun. 2013;437:62–6.PubMedCrossRef
21.
Zurück zum Zitat Huang W, Ishii I, Zhang WY, Sonobe M, Kruth HS. PMA activation of macrophages alters macrophage metabolism of aggregated LDL. J Lipid Res. 2002;43:1275–82.PubMed Huang W, Ishii I, Zhang WY, Sonobe M, Kruth HS. PMA activation of macrophages alters macrophage metabolism of aggregated LDL. J Lipid Res. 2002;43:1275–82.PubMed
22.
Zurück zum Zitat Dai Y, Su W, Ding Z, et al. Regulation of MSR-1 and CD36 in macrophages by LOX-1 mediated through PPAR-γ. Biochem Biophys Res Commun. 2013;431:496–500.PubMedCrossRef Dai Y, Su W, Ding Z, et al. Regulation of MSR-1 and CD36 in macrophages by LOX-1 mediated through PPAR-γ. Biochem Biophys Res Commun. 2013;431:496–500.PubMedCrossRef
23.
Zurück zum Zitat Dai Y, Mehta JL, Chen M. Glucagon-like peptide-1 receptor agonist liraglutide inhibits endothelin-1 in endothelial cell by repressing nuclear factor-kappa B activation. Cardiovasc Drugs Ther. 2013;27:371–80.PubMedCrossRef Dai Y, Mehta JL, Chen M. Glucagon-like peptide-1 receptor agonist liraglutide inhibits endothelin-1 in endothelial cell by repressing nuclear factor-kappa B activation. Cardiovasc Drugs Ther. 2013;27:371–80.PubMedCrossRef
24.
25.
Zurück zum Zitat Terasaki M, Nagashima M, Nohtomi K, et al. Preventive effect of dipeptidyl peptidase-4 inhibitor on atherosclerosis is mainly attributable to Incretin’s actions in nondiabetic and diabetic apolipoprotein E-null mice. PLoS One. 2013;8:e70933.PubMedCrossRefPubMedCentral Terasaki M, Nagashima M, Nohtomi K, et al. Preventive effect of dipeptidyl peptidase-4 inhibitor on atherosclerosis is mainly attributable to Incretin’s actions in nondiabetic and diabetic apolipoprotein E-null mice. PLoS One. 2013;8:e70933.PubMedCrossRefPubMedCentral
26.
Zurück zum Zitat Jose T, Inzucchi SE. Cardiovascular effects of the DPP-4 inhibitors. Diab Vasc Dis. 2012;9:109–16.CrossRef Jose T, Inzucchi SE. Cardiovascular effects of the DPP-4 inhibitors. Diab Vasc Dis. 2012;9:109–16.CrossRef
27.
Zurück zum Zitat Hayden JM, Reaven PD. Cardiovascular disease in diabetes mellitus type 2: a potential role for novel cardiovascular risk factors. Curr Opin Lipidol. 2000;11:519–28.PubMedCrossRef Hayden JM, Reaven PD. Cardiovascular disease in diabetes mellitus type 2: a potential role for novel cardiovascular risk factors. Curr Opin Lipidol. 2000;11:519–28.PubMedCrossRef
28.
Zurück zum Zitat Ding Z, Liu S, Wang X, Khaidakov M, Dai Y, Mehta JL. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Sci Rep. 2013;3:1077.PubMedPubMedCentral Ding Z, Liu S, Wang X, Khaidakov M, Dai Y, Mehta JL. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Sci Rep. 2013;3:1077.PubMedPubMedCentral
29.
Zurück zum Zitat Lu X, Kakkar V. Inflammasome and atherogenesis. Curr Pharm Des. 2013 [Epub ahead of print] Lu X, Kakkar V. Inflammasome and atherogenesis. Curr Pharm Des. 2013 [Epub ahead of print]
30.
Zurück zum Zitat Manica-Cattani MF, Duarte MM, Ribeiro EE, de Oliveira R. Mânica da Cruz IB. Effect of the interleukin-1B gene on serum oxidized low-density lipoprotein levels. Clin Biochem. 2012;45:641–5.PubMedCrossRef Manica-Cattani MF, Duarte MM, Ribeiro EE, de Oliveira R. Mânica da Cruz IB. Effect of the interleukin-1B gene on serum oxidized low-density lipoprotein levels. Clin Biochem. 2012;45:641–5.PubMedCrossRef
31.
Zurück zum Zitat Lundberg AM, Ketelhuth DF, Johansson ME, et al. Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. Cardiovasc Res. 2013;99:364–73.PubMedCrossRef Lundberg AM, Ketelhuth DF, Johansson ME, et al. Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. Cardiovasc Res. 2013;99:364–73.PubMedCrossRef
32.
Zurück zum Zitat Blich M, Golan A, Arvatz G, et al. Macrophage activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arterioscler Thromb Vasc Biol. 2013;33:e56–65.PubMedCrossRefPubMedCentral Blich M, Golan A, Arvatz G, et al. Macrophage activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arterioscler Thromb Vasc Biol. 2013;33:e56–65.PubMedCrossRefPubMedCentral
33.
Zurück zum Zitat Liu R, He Y, Li B, et al. Tenascin-C produced by oxidized LDL-stimulated macrophages increases foam cell formation through Toll-like receptor-4. Mol Cells. 2012;34:35–41.PubMedCrossRefPubMedCentral Liu R, He Y, Li B, et al. Tenascin-C produced by oxidized LDL-stimulated macrophages increases foam cell formation through Toll-like receptor-4. Mol Cells. 2012;34:35–41.PubMedCrossRefPubMedCentral
34.
Zurück zum Zitat Xu XH, Shah PK, Faure E, et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation. 2001;104:3103–8.PubMedCrossRef Xu XH, Shah PK, Faure E, et al. Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation. 2001;104:3103–8.PubMedCrossRef
35.
Zurück zum Zitat Kaur H, Chien A, Jialal I. Hyperglycemia induces toll like receptor 4 expression and activity in mouse mesangial cells: relevance to diabetic nephropathy. Am J Physiol Renal Physiol. 2012;303:F1145–50.PubMedCrossRefPubMedCentral Kaur H, Chien A, Jialal I. Hyperglycemia induces toll like receptor 4 expression and activity in mouse mesangial cells: relevance to diabetic nephropathy. Am J Physiol Renal Physiol. 2012;303:F1145–50.PubMedCrossRefPubMedCentral
36.
Zurück zum Zitat Wardill HR, Gibson RJ, Logan RM, Bowen JM. TLR4/PKC-mediated tight junction modulation: a clinical marker of chemotherapy-induced gut toxicity? Int J Cancer. 2013 Dec 6. doi: 10.1002/ijc.28656. [Epub ahead of print] Wardill HR, Gibson RJ, Logan RM, Bowen JM. TLR4/PKC-mediated tight junction modulation: a clinical marker of chemotherapy-induced gut toxicity? Int J Cancer. 2013 Dec 6. doi: 10.​1002/​ijc.​28656. [Epub ahead of print]
37.
Zurück zum Zitat Qu Y, Misaghi S, Izrael-Tomasevic A, et al. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature. 2012;490:539–42.PubMedCrossRef Qu Y, Misaghi S, Izrael-Tomasevic A, et al. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature. 2012;490:539–42.PubMedCrossRef
Metadaten
Titel
DPP-4 Inhibitors Repress NLRP3 Inflammasome and Interleukin-1beta via GLP-1 Receptor in Macrophages Through Protein Kinase C Pathway
verfasst von
Yao Dai
Dongsheng Dai
Xianwei Wang
Zufeng Ding
Jawahar L. Mehta
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Cardiovascular Drugs and Therapy / Ausgabe 5/2014
Print ISSN: 0920-3206
Elektronische ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-014-6539-4

Weitere Artikel der Ausgabe 5/2014

Cardiovascular Drugs and Therapy 5/2014 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.