Skip to main content
Erschienen in: Clinical & Experimental Metastasis 4/2013

01.04.2013 | Research Paper

Combined effect of dehydroxymethylepoxyquinomicin and gemcitabine in a mouse model of liver metastasis of pancreatic cancer

verfasst von: Keiichi Suzuki, Koichi Aiura, Sachiko Matsuda, Osamu Itano, Osamu Takeuchi, Kazuo Umezawa, Yuko Kitagawa

Erschienen in: Clinical & Experimental Metastasis | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

Activation of nuclear factor-κB (NF-κB) has been implicated in metastasis of pancreatic cancer. We investigated the effects of the novel NF-κB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) on the inhibition of liver metastasis of pancreatic cancer in a mouse model of clinical liver metastasis. Nude mice were xenografted by intra-portal-vein injection with the human pancreatic adenocarcinomas cell line AsPC-1 via small laparotomy. Mice were treated with DHMEQ and gemcitabine (GEM), alone or in combination. The combination of GEM + DHMEQ showed a stronger antitumor effect than either monotherapy. Apoptosis induction in the metastatic foci was greatest in the DHMEQ + GEM group. Significant reductions in the numbers of neovessels were also seen in the DHMEQ and/or GEM groups. Cell growth inhibition assays revealed no synergistic effect of combination therapy, although each monotherapy had an individual cytotoxic effect. Combination therapy produced the greatest inhibition of tumor cell invasiveness in chemoinvasion assay. In addition, combination therapy significantly down-regulated the expression level of matrix metalloproteinase (MMP)-9 mRNA in AsPC-1 cells. DHMEQ also markedly down-regulated interleukin-8 and MMP-9, while GEM caused moderate down-regulation of vascular endothelial growth factor in metastatic foci, demonstrated by quantitative reverse transcription-polymerase chain reaction. These results demonstrate that DHMEQ can exert anti-tumor effects by inhibiting angiogenesis and tumor cell invasion, and by inducing apoptosis. Combination therapy with DHMEQ and GEM also showed potential efficacy. DHMEQ is a promising drug for the treatment of advanced pancreatic cancer.
Literatur
1.
Zurück zum Zitat Heinemann V (2002) Present and future treatment of pancreatic cancer. Semin Oncol 29(3 Suppl 9):23–31PubMedCrossRef Heinemann V (2002) Present and future treatment of pancreatic cancer. Semin Oncol 29(3 Suppl 9):23–31PubMedCrossRef
2.
Zurück zum Zitat Haller DG (2002) Future directions in the treatment of pancreatic cancer. Semin Oncol 29(6 Suppl 20):31–39PubMed Haller DG (2002) Future directions in the treatment of pancreatic cancer. Semin Oncol 29(6 Suppl 20):31–39PubMed
4.
Zurück zum Zitat Cullinan SA et al (1985) A comparison of three chemotherapeutic regimens in the treatment of advanced pancreatic and gastric carcinoma. Fluorouracil vs fluorouracil and doxorubicin vs fluorouracil, doxorubicin, and mitomycin. JAMA 253(14):2061–2067PubMedCrossRef Cullinan SA et al (1985) A comparison of three chemotherapeutic regimens in the treatment of advanced pancreatic and gastric carcinoma. Fluorouracil vs fluorouracil and doxorubicin vs fluorouracil, doxorubicin, and mitomycin. JAMA 253(14):2061–2067PubMedCrossRef
5.
Zurück zum Zitat DeCaprio JA et al (1991) Fluorouracil and high-dose leucovorin in previously untreated patients with advanced adenocarcinoma of the pancreas: results of a phase II trial. J Clin Oncol 9(12):2128–2133PubMed DeCaprio JA et al (1991) Fluorouracil and high-dose leucovorin in previously untreated patients with advanced adenocarcinoma of the pancreas: results of a phase II trial. J Clin Oncol 9(12):2128–2133PubMed
6.
Zurück zum Zitat Lionetto R et al (1995) No standard treatment is available for advanced pancreatic cancer. Eur J Cancer 31A(6):882–887PubMedCrossRef Lionetto R et al (1995) No standard treatment is available for advanced pancreatic cancer. Eur J Cancer 31A(6):882–887PubMedCrossRef
7.
Zurück zum Zitat Burris HA 3rd et al (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15(6):2403–2413PubMed Burris HA 3rd et al (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15(6):2403–2413PubMed
8.
Zurück zum Zitat Oettle H et al (2007) Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 297(3):267–277PubMedCrossRef Oettle H et al (2007) Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 297(3):267–277PubMedCrossRef
9.
Zurück zum Zitat Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46(5):705–716PubMedCrossRef Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46(5):705–716PubMedCrossRef
10.
Zurück zum Zitat Cogswell PC, Scheinman RI, Baldwin AS Jr (1993) Promoter of the human NF-kappa B p50/p105 gene. Regulation by NF-kappa B subunits and by c-REL. J Immunol 150(7):2794–2804PubMed Cogswell PC, Scheinman RI, Baldwin AS Jr (1993) Promoter of the human NF-kappa B p50/p105 gene. Regulation by NF-kappa B subunits and by c-REL. J Immunol 150(7):2794–2804PubMed
11.
Zurück zum Zitat Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683PubMedCrossRef Baldwin AS Jr (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14:649–683PubMedCrossRef
12.
Zurück zum Zitat Wang CY, Mayo MW, Baldwin AS Jr (1996) TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274(5288):784–787PubMedCrossRef Wang CY, Mayo MW, Baldwin AS Jr (1996) TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274(5288):784–787PubMedCrossRef
13.
Zurück zum Zitat Pikarsky E et al (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431(7007):461–466PubMedCrossRef Pikarsky E et al (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431(7007):461–466PubMedCrossRef
14.
Zurück zum Zitat Redell MS, Tweardy DJ (2005) Targeting transcription factors for cancer therapy. Curr Pharm Des 11(22):2873–2887PubMedCrossRef Redell MS, Tweardy DJ (2005) Targeting transcription factors for cancer therapy. Curr Pharm Des 11(22):2873–2887PubMedCrossRef
15.
Zurück zum Zitat Dolcet X et al (2005) NF-kB in development and progression of human cancer. Virchows Arch 446(5):475–482PubMedCrossRef Dolcet X et al (2005) NF-kB in development and progression of human cancer. Virchows Arch 446(5):475–482PubMedCrossRef
16.
Zurück zum Zitat Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759PubMedCrossRef Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759PubMedCrossRef
17.
Zurück zum Zitat Ariga A et al (2002) Inhibition of tumor necrosis factor-alpha-induced nuclear translocation and activation of NF-kappa B by dehydroxymethylepoxyquinomicin. J Biol Chem 277(27):24625–24630PubMedCrossRef Ariga A et al (2002) Inhibition of tumor necrosis factor-alpha-induced nuclear translocation and activation of NF-kappa B by dehydroxymethylepoxyquinomicin. J Biol Chem 277(27):24625–24630PubMedCrossRef
18.
Zurück zum Zitat Watanabe M et al (2005) A novel NF-kappaB inhibitor DHMEQ selectively targets constitutive NF-kappaB activity and induces apoptosis of multiple myeloma cells in vitro and in vivo. Int J Cancer 114(1):32–38PubMedCrossRef Watanabe M et al (2005) A novel NF-kappaB inhibitor DHMEQ selectively targets constitutive NF-kappaB activity and induces apoptosis of multiple myeloma cells in vitro and in vivo. Int J Cancer 114(1):32–38PubMedCrossRef
19.
Zurück zum Zitat Poma P et al (2006) Antitumor effects of the novel NF-kappaB inhibitor dehydroxymethyl-epoxyquinomicin on human hepatic cancer cells: analysis of synergy with cisplatin and of possible correlation with inhibition of pro-survival genes and IL-6 production. Int J Oncol 28(4):923–930PubMed Poma P et al (2006) Antitumor effects of the novel NF-kappaB inhibitor dehydroxymethyl-epoxyquinomicin on human hepatic cancer cells: analysis of synergy with cisplatin and of possible correlation with inhibition of pro-survival genes and IL-6 production. Int J Oncol 28(4):923–930PubMed
20.
Zurück zum Zitat Ohsugi T et al (2006) In vitro and in vivo antitumor activity of the NF-kappaB inhibitor DHMEQ in the human T-cell leukemia virus type I-infected cell line, HUT-102. Leuk Res 30(1):90–97PubMedCrossRef Ohsugi T et al (2006) In vitro and in vivo antitumor activity of the NF-kappaB inhibitor DHMEQ in the human T-cell leukemia virus type I-infected cell line, HUT-102. Leuk Res 30(1):90–97PubMedCrossRef
21.
Zurück zum Zitat Matsumoto N et al (2000) Synthesis of NF-kappaB activation inhibitors derived from epoxyquinomicin C. Bioorg Med Chem Lett 10(9):865–869PubMedCrossRef Matsumoto N et al (2000) Synthesis of NF-kappaB activation inhibitors derived from epoxyquinomicin C. Bioorg Med Chem Lett 10(9):865–869PubMedCrossRef
22.
Zurück zum Zitat Wang W et al (1999) The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 5(1):119–127PubMed Wang W et al (1999) The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 5(1):119–127PubMed
23.
Zurück zum Zitat Sclabas GM et al (2003) Restoring apoptosis in pancreatic cancer cells by targeting the nuclear factor-kappaB signaling pathway with the anti-epidermal growth factor antibody IMC-C225. J Gastrointest Surg 7(1): 37–43; discussion Sclabas GM et al (2003) Restoring apoptosis in pancreatic cancer cells by targeting the nuclear factor-kappaB signaling pathway with the anti-epidermal growth factor antibody IMC-C225. J Gastrointest Surg 7(1): 37–43; discussion
24.
Zurück zum Zitat Liptay S et al (2003) Mitogenic and antiapoptotic role of constitutive NF-kappaB/Rel activity in pancreatic cancer. Int J Cancer 105(6):735–746PubMedCrossRef Liptay S et al (2003) Mitogenic and antiapoptotic role of constitutive NF-kappaB/Rel activity in pancreatic cancer. Int J Cancer 105(6):735–746PubMedCrossRef
25.
Zurück zum Zitat Liu LP et al (2010) The role of NF-kappaB in Hepatitis b virus X protein-mediated upregulation of VEGF and MMPs. Cancer Invest 28(5):443–451PubMedCrossRef Liu LP et al (2010) The role of NF-kappaB in Hepatitis b virus X protein-mediated upregulation of VEGF and MMPs. Cancer Invest 28(5):443–451PubMedCrossRef
26.
Zurück zum Zitat Lauricella-Lefebvre MA et al (1993) Stimulation of the 92-kD type IV collagenase promoter and enzyme expression in human melanoma cells. Invasion Metastasis 13(6):289–300PubMed Lauricella-Lefebvre MA et al (1993) Stimulation of the 92-kD type IV collagenase promoter and enzyme expression in human melanoma cells. Invasion Metastasis 13(6):289–300PubMed
27.
Zurück zum Zitat Griffin JF et al (1990) Patterns of failure after curative resection of pancreatic carcinoma. Cancer 66(1):56–61PubMedCrossRef Griffin JF et al (1990) Patterns of failure after curative resection of pancreatic carcinoma. Cancer 66(1):56–61PubMedCrossRef
28.
Zurück zum Zitat Weidner N (1995) Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 36(2):169–180PubMedCrossRef Weidner N (1995) Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 36(2):169–180PubMedCrossRef
29.
Zurück zum Zitat Chen WH et al (1982) Human pancreatic adenocarcinoma: in vitro and in vivo morphology of a new tumor line established from ascites. In Vitro 18(1):24–34PubMedCrossRef Chen WH et al (1982) Human pancreatic adenocarcinoma: in vitro and in vivo morphology of a new tumor line established from ascites. In Vitro 18(1):24–34PubMedCrossRef
30.
Zurück zum Zitat Fujioka S et al (2003) Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res 9(1):346–354PubMed Fujioka S et al (2003) Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res 9(1):346–354PubMed
31.
Zurück zum Zitat Loukopoulos P et al (2004) Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas 29(3):193–203PubMedCrossRef Loukopoulos P et al (2004) Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas 29(3):193–203PubMedCrossRef
32.
Zurück zum Zitat Tan MH, Chu TM (1985) Characterization of the tumorigenic and metastatic properties of a human pancreatic tumor cell line (AsPC-1) implanted orthotopically into nude mice. Tumour Biol 6(1):89–98PubMed Tan MH, Chu TM (1985) Characterization of the tumorigenic and metastatic properties of a human pancreatic tumor cell line (AsPC-1) implanted orthotopically into nude mice. Tumour Biol 6(1):89–98PubMed
33.
Zurück zum Zitat Watanabe M et al (2005) Dual targeting of transformed and untransformed HTLV-1-infected T cells by DHMEQ, a potent and selective inhibitor of NF-kappaB, as a strategy for chemoprevention and therapy of adult T-cell leukemia. Blood 106(7):2462–2471PubMedCrossRef Watanabe M et al (2005) Dual targeting of transformed and untransformed HTLV-1-infected T cells by DHMEQ, a potent and selective inhibitor of NF-kappaB, as a strategy for chemoprevention and therapy of adult T-cell leukemia. Blood 106(7):2462–2471PubMedCrossRef
34.
Zurück zum Zitat Yamamoto M et al (2008) Inactivation of NF-kappaB components by covalent binding of (−)-dehydroxymethylepoxyquinomicin to specific cysteine residues. J Med Chem 51(18):5780–5788PubMedCrossRef Yamamoto M et al (2008) Inactivation of NF-kappaB components by covalent binding of (−)-dehydroxymethylepoxyquinomicin to specific cysteine residues. J Med Chem 51(18):5780–5788PubMedCrossRef
35.
Zurück zum Zitat Shimada C et al (2010) Efficient cellular uptake of the novel NF-kappaB inhibitor (−)-DHMEQ and irreversible inhibition of NF-kappaB in neoplastic cells. Oncol Res 18(11–12):529–535PubMedCrossRef Shimada C et al (2010) Efficient cellular uptake of the novel NF-kappaB inhibitor (−)-DHMEQ and irreversible inhibition of NF-kappaB in neoplastic cells. Oncol Res 18(11–12):529–535PubMedCrossRef
36.
Zurück zum Zitat Gilmore TD (1999) The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene 18(49):6842–6844PubMedCrossRef Gilmore TD (1999) The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene 18(49):6842–6844PubMedCrossRef
37.
Zurück zum Zitat Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49):6853–6866PubMedCrossRef Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49):6853–6866PubMedCrossRef
38.
Zurück zum Zitat Karin M (1999) The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J Biol Chem 274(39):27339–27342PubMedCrossRef Karin M (1999) The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J Biol Chem 274(39):27339–27342PubMedCrossRef
39.
Zurück zum Zitat Gilroy DW et al (2004) Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov 3(5):401–416PubMedCrossRef Gilroy DW et al (2004) Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov 3(5):401–416PubMedCrossRef
40.
Zurück zum Zitat Maeda S et al (2005) Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 307(5710):734–738PubMedCrossRef Maeda S et al (2005) Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 307(5710):734–738PubMedCrossRef
41.
Zurück zum Zitat Arkan MC et al (2005) IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11(2):191–198PubMedCrossRef Arkan MC et al (2005) IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11(2):191–198PubMedCrossRef
42.
Zurück zum Zitat Chandler NM, Canete JJ, Callery MP (2004) Increased expression of NF-kappa B subunits in human pancreatic cancer cells. J Surg Res 118(1):9–14PubMedCrossRef Chandler NM, Canete JJ, Callery MP (2004) Increased expression of NF-kappa B subunits in human pancreatic cancer cells. J Surg Res 118(1):9–14PubMedCrossRef
43.
Zurück zum Zitat Sclabas GM et al (2005) Nuclear factor kappa B activation is a potential target for preventing pancreatic carcinoma by aspirin. Cancer 103(12):2485–2490PubMedCrossRef Sclabas GM et al (2005) Nuclear factor kappa B activation is a potential target for preventing pancreatic carcinoma by aspirin. Cancer 103(12):2485–2490PubMedCrossRef
44.
Zurück zum Zitat Matsumoto N et al (1997) Epoxyquinomicins A, B, C and D, new antibiotics from Amycolatopsis. II. Effect on type II collagen-induced arthritis in mice. J Antibiot (Tokyo) 50(11):906–911CrossRef Matsumoto N et al (1997) Epoxyquinomicins A, B, C and D, new antibiotics from Amycolatopsis. II. Effect on type II collagen-induced arthritis in mice. J Antibiot (Tokyo) 50(11):906–911CrossRef
45.
Zurück zum Zitat Ohsugi T et al (2005) In vivo antitumor activity of the NF-kappaB inhibitor dehydroxymethylepoxyquinomicin in a mouse model of adult T-cell leukemia. Carcinogenesis 26(8):1382–1388PubMedCrossRef Ohsugi T et al (2005) In vivo antitumor activity of the NF-kappaB inhibitor dehydroxymethylepoxyquinomicin in a mouse model of adult T-cell leukemia. Carcinogenesis 26(8):1382–1388PubMedCrossRef
46.
Zurück zum Zitat Ohsugi T et al (2007) Dehydroxymethylepoxyquinomicin (DHMEQ) therapy reduces tumor formation in mice inoculated with tax-deficient adult T-cell leukemia-derived cell lines. Cancer Lett 257(2):206–215PubMedCrossRef Ohsugi T et al (2007) Dehydroxymethylepoxyquinomicin (DHMEQ) therapy reduces tumor formation in mice inoculated with tax-deficient adult T-cell leukemia-derived cell lines. Cancer Lett 257(2):206–215PubMedCrossRef
47.
Zurück zum Zitat Watanabe M et al (2007) IkappaBalpha independent induction of NF-kappaB and its inhibition by DHMEQ in Hodgkin/Reed-Sternberg cells. Lab Invest 87(4):372–382PubMed Watanabe M et al (2007) IkappaBalpha independent induction of NF-kappaB and its inhibition by DHMEQ in Hodgkin/Reed-Sternberg cells. Lab Invest 87(4):372–382PubMed
48.
Zurück zum Zitat Starenki DV et al (2004) Induction of thyroid cancer cell apoptosis by a novel nuclear factor kappaB inhibitor, dehydroxymethylepoxyquinomicin. Clin Cancer Res 10(20):6821–6829PubMedCrossRef Starenki DV et al (2004) Induction of thyroid cancer cell apoptosis by a novel nuclear factor kappaB inhibitor, dehydroxymethylepoxyquinomicin. Clin Cancer Res 10(20):6821–6829PubMedCrossRef
49.
Zurück zum Zitat Matsumoto G et al (2005) Targeting of nuclear factor kappaB pathways by dehydroxymethylepoxyquinomicin, a novel inhibitor of breast carcinomas: antitumor and antiangiogenic potential in vivo. Clin Cancer Res 11(3):1287–1293PubMed Matsumoto G et al (2005) Targeting of nuclear factor kappaB pathways by dehydroxymethylepoxyquinomicin, a novel inhibitor of breast carcinomas: antitumor and antiangiogenic potential in vivo. Clin Cancer Res 11(3):1287–1293PubMed
50.
Zurück zum Zitat Tatetsu H et al (2005) Dehydroxymethylepoxyquinomicin, a novel nuclear factor-kappaB inhibitor, induces apoptosis in multiple myeloma cells in an IkappaBalpha-independent manner. Mol Cancer Ther 4(7):1114–1120PubMedCrossRef Tatetsu H et al (2005) Dehydroxymethylepoxyquinomicin, a novel nuclear factor-kappaB inhibitor, induces apoptosis in multiple myeloma cells in an IkappaBalpha-independent manner. Mol Cancer Ther 4(7):1114–1120PubMedCrossRef
51.
Zurück zum Zitat Umezawa K (2006) Inhibition of tumor growth by NF-kappaB inhibitors. Cancer Sci 97(10):990–995PubMedCrossRef Umezawa K (2006) Inhibition of tumor growth by NF-kappaB inhibitors. Cancer Sci 97(10):990–995PubMedCrossRef
52.
Zurück zum Zitat Matsumoto G et al (2005) Enhancement of the caspase-independent apoptotic sensitivity of pancreatic cancer cells by DHMEQ, an NF-kappaB inhibitor. Int J Oncol 27(5):1247–1255PubMed Matsumoto G et al (2005) Enhancement of the caspase-independent apoptotic sensitivity of pancreatic cancer cells by DHMEQ, an NF-kappaB inhibitor. Int J Oncol 27(5):1247–1255PubMed
53.
Zurück zum Zitat Hu DE, Hori Y, Fan TP (1993) Interleukin-8 stimulates angiogenesis in rats. Inflammation 17(2):135–143PubMedCrossRef Hu DE, Hori Y, Fan TP (1993) Interleukin-8 stimulates angiogenesis in rats. Inflammation 17(2):135–143PubMedCrossRef
54.
Zurück zum Zitat Strieter RM et al (1992) Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol 141(6):1279–1284PubMed Strieter RM et al (1992) Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol 141(6):1279–1284PubMed
55.
Zurück zum Zitat Olive KP et al (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461PubMedCrossRef Olive KP et al (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324(5933):1457–1461PubMedCrossRef
56.
Zurück zum Zitat Bruns CJ et al (2002) Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice. Int J Cancer 102(2):101–108PubMedCrossRef Bruns CJ et al (2002) Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice. Int J Cancer 102(2):101–108PubMedCrossRef
57.
Zurück zum Zitat Jia L et al (2005) Antiangiogenic therapy for human pancreatic carcinoma xenografts in nude mice. World J Gastroenterol 11(3):447–450PubMed Jia L et al (2005) Antiangiogenic therapy for human pancreatic carcinoma xenografts in nude mice. World J Gastroenterol 11(3):447–450PubMed
58.
Zurück zum Zitat Szlosarek PW, Balkwill FR (2003) Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol 4(9):565–573PubMedCrossRef Szlosarek PW, Balkwill FR (2003) Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol 4(9):565–573PubMedCrossRef
59.
Zurück zum Zitat Kaltschmidt B et al (2002) Cyclooxygenase-2 is a neuronal target gene of NF-kappaB. BMC Mol Biol 3:16PubMedCrossRef Kaltschmidt B et al (2002) Cyclooxygenase-2 is a neuronal target gene of NF-kappaB. BMC Mol Biol 3:16PubMedCrossRef
60.
Zurück zum Zitat Nakanishi C, Toi M (2005) Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5(4):297–309PubMedCrossRef Nakanishi C, Toi M (2005) Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5(4):297–309PubMedCrossRef
61.
Zurück zum Zitat Jazirehi AR et al (2005) Rituximab (chimeric anti-CD20 monoclonal antibody) inhibits the constitutive nuclear factor-{kappa}B signaling pathway in non-Hodgkin’s lymphoma B-cell lines: role in sensitization to chemotherapeutic drug-induced apoptosis. Cancer Res 65(1):264–276PubMed Jazirehi AR et al (2005) Rituximab (chimeric anti-CD20 monoclonal antibody) inhibits the constitutive nuclear factor-{kappa}B signaling pathway in non-Hodgkin’s lymphoma B-cell lines: role in sensitization to chemotherapeutic drug-induced apoptosis. Cancer Res 65(1):264–276PubMed
Metadaten
Titel
Combined effect of dehydroxymethylepoxyquinomicin and gemcitabine in a mouse model of liver metastasis of pancreatic cancer
verfasst von
Keiichi Suzuki
Koichi Aiura
Sachiko Matsuda
Osamu Itano
Osamu Takeuchi
Kazuo Umezawa
Yuko Kitagawa
Publikationsdatum
01.04.2013
Verlag
Springer Netherlands
Erschienen in
Clinical & Experimental Metastasis / Ausgabe 4/2013
Print ISSN: 0262-0898
Elektronische ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-012-9544-7

Weitere Artikel der Ausgabe 4/2013

Clinical & Experimental Metastasis 4/2013 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.