Skip to main content
Erschienen in: Heart Failure Reviews 5/2013

01.09.2013

Cardiac metabolism in hypertrophy and heart failure: implications for therapy

verfasst von: N. Siddiqi, S. Singh, R. Beadle, D. Dawson, M. Frenneaux

Erschienen in: Heart Failure Reviews | Ausgabe 5/2013

Einloggen, um Zugang zu erhalten

Abstract

The heart consumes huge amounts of energy to fulfil its function as a relentless pump. A highly sophisticated system of energy generation based on flexibility of substrate use and efficient energy production, effective energy sensing and energy transfer ensures function of the healthy heart across a range of physiological situations. In left ventricular hypertrophy and heart failure, these processes become disturbed, leading as will be discussed to impaired cardiac energetic status and to further impairment of cardiac function. These metabolic disturbances form a potential target for therapy.
Literatur
1.
Zurück zum Zitat Haldeman GA, Croft JB, Giles WH, Rashidee A (1999) Hospitalization of patients with heart failure: National hospital discharge survey 1985–1995. Am Heart J 137(2):352–360PubMedCrossRef Haldeman GA, Croft JB, Giles WH, Rashidee A (1999) Hospitalization of patients with heart failure: National hospital discharge survey 1985–1995. Am Heart J 137(2):352–360PubMedCrossRef
2.
Zurück zum Zitat McMurray JJ, Stewart S (2000) Epidemiology, aetiology, and prognosis of heart failure. Heart 83(5):596–602PubMedCrossRef McMurray JJ, Stewart S (2000) Epidemiology, aetiology, and prognosis of heart failure. Heart 83(5):596–602PubMedCrossRef
3.
Zurück zum Zitat Bui AL, Horwich TB, Fonarow GC (2011) Epidemiology and risk profile of heart failure. Nat Rev Cardiol 8(1):30–41PubMedCrossRef Bui AL, Horwich TB, Fonarow GC (2011) Epidemiology and risk profile of heart failure. Nat Rev Cardiol 8(1):30–41PubMedCrossRef
4.
Zurück zum Zitat Shen W, Asai K, Uechi M, Mathier MA, Shannon RP, Vatner SF et al (1999) Progressive loss of myocardial ATP due to a loss of total purines during the development of heart failure in dogs: a compensatory role for the parallel loss of creatine. Circulation 100(20):2113–2118PubMedCrossRef Shen W, Asai K, Uechi M, Mathier MA, Shannon RP, Vatner SF et al (1999) Progressive loss of myocardial ATP due to a loss of total purines during the development of heart failure in dogs: a compensatory role for the parallel loss of creatine. Circulation 100(20):2113–2118PubMedCrossRef
5.
Zurück zum Zitat Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W et al (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96(7):2190–2196PubMedCrossRef Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W et al (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96(7):2190–2196PubMedCrossRef
6.
Zurück zum Zitat Weiss RG, Gerstenblith G, Bottomley PA (2005) ATP flux through creatine kinase in the normal, stressed, and failing human heart. P Natl Acad Sci USA 102(3):808–813CrossRef Weiss RG, Gerstenblith G, Bottomley PA (2005) ATP flux through creatine kinase in the normal, stressed, and failing human heart. P Natl Acad Sci USA 102(3):808–813CrossRef
7.
Zurück zum Zitat Smith CS, Bottomley PA, Schulman SP, Gerstenblith G, Weiss RG (2006) Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium. Circulation 114(11):1151–1158PubMedCrossRef Smith CS, Bottomley PA, Schulman SP, Gerstenblith G, Weiss RG (2006) Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium. Circulation 114(11):1151–1158PubMedCrossRef
8.
Zurück zum Zitat Phan TT, Abozguia K, Nallur Shivu G, Mahadevan G, Ahmed I, Williams L et al (2009) Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J Am Coll Cardiol 54(5):402–409PubMedCrossRef Phan TT, Abozguia K, Nallur Shivu G, Mahadevan G, Ahmed I, Williams L et al (2009) Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J Am Coll Cardiol 54(5):402–409PubMedCrossRef
9.
Zurück zum Zitat Beyerbacht HP, Lamb HJ, van Der Laarse A, Vliegen HW, Leujes F, Hazekamp MG et al (2001) Aortic valve replacement in patients with aortic valve stenosis improves myocardial metabolism and diastolic function. Radiology 219(3):637–643PubMed Beyerbacht HP, Lamb HJ, van Der Laarse A, Vliegen HW, Leujes F, Hazekamp MG et al (2001) Aortic valve replacement in patients with aortic valve stenosis improves myocardial metabolism and diastolic function. Radiology 219(3):637–643PubMed
10.
Zurück zum Zitat Machann W, Breunig F, Weidemann F, Sandstede J, Hahn D, Kostler H et al (2011) Cardiac energy metabolism is disturbed in Fabry disease and improves with enzyme replacement therapy using recombinant human galactosidase A. Eur J Heart Fail 13(3):278–283PubMedCrossRef Machann W, Breunig F, Weidemann F, Sandstede J, Hahn D, Kostler H et al (2011) Cardiac energy metabolism is disturbed in Fabry disease and improves with enzyme replacement therapy using recombinant human galactosidase A. Eur J Heart Fail 13(3):278–283PubMedCrossRef
11.
Zurück zum Zitat Bunse M, Bit-Avragim N, Riefflin A, Perrot A, Schmidt O, Kreuz FR et al (2003) Cardiac energetics correlates to myocardial hypertrophy in Friedreich’s ataxia. Ann Neurol 53(1):121–123PubMedCrossRef Bunse M, Bit-Avragim N, Riefflin A, Perrot A, Schmidt O, Kreuz FR et al (2003) Cardiac energetics correlates to myocardial hypertrophy in Friedreich’s ataxia. Ann Neurol 53(1):121–123PubMedCrossRef
12.
Zurück zum Zitat Ashrafian H, Redwood C, Blair E, Watkins H (2003) Hypertrophic cardiomyopathy:a paradigm for myocardial energy depletion. Trends Genet 19(5):263–268PubMedCrossRef Ashrafian H, Redwood C, Blair E, Watkins H (2003) Hypertrophic cardiomyopathy:a paradigm for myocardial energy depletion. Trends Genet 19(5):263–268PubMedCrossRef
13.
Zurück zum Zitat Hajri T, Ibrahimi A, Coburn CT, Knapp FF Jr, Kurtz T, Pravenec M et al (2001) Defective fatty acid uptake in the spontaneously hypertensive rat is a primary determinant of altered glucose metabolism, hyperinsulinemia, and myocardial hypertrophy. J Biol Chem 276(26):23661–23666PubMedCrossRef Hajri T, Ibrahimi A, Coburn CT, Knapp FF Jr, Kurtz T, Pravenec M et al (2001) Defective fatty acid uptake in the spontaneously hypertensive rat is a primary determinant of altered glucose metabolism, hyperinsulinemia, and myocardial hypertrophy. J Biol Chem 276(26):23661–23666PubMedCrossRef
14.
Zurück zum Zitat Labarthe F, Khairallah M, Bouchard B, Stanley WC, Des Rosiers C (2005) Fatty acid oxidation and its impact on response of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of a medium-chain fatty acid. Am J Physiol Heart Circ Physiol 288(3):H1425–H1436PubMedCrossRef Labarthe F, Khairallah M, Bouchard B, Stanley WC, Des Rosiers C (2005) Fatty acid oxidation and its impact on response of spontaneously hypertensive rat hearts to an adrenergic stress: benefits of a medium-chain fatty acid. Am J Physiol Heart Circ Physiol 288(3):H1425–H1436PubMedCrossRef
15.
Zurück zum Zitat Houben AJ, Beljaars JH, Hofstra L, Kroon AA, De Leeuw PW (2003) Microvascular abnormalities in chronic heart failure: a cross-sectional analysis. Microcirculation 10(6):471–478PubMed Houben AJ, Beljaars JH, Hofstra L, Kroon AA, De Leeuw PW (2003) Microvascular abnormalities in chronic heart failure: a cross-sectional analysis. Microcirculation 10(6):471–478PubMed
16.
Zurück zum Zitat Goodwin GW, Taylor CS, Taegtmeyer H (1998) Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem 273(45):29530–29539PubMedCrossRef Goodwin GW, Taylor CS, Taegtmeyer H (1998) Regulation of energy metabolism of the heart during acute increase in heart work. J Biol Chem 273(45):29530–29539PubMedCrossRef
17.
Zurück zum Zitat Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M (2004) Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci 1015:202–213PubMedCrossRef Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M (2004) Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci 1015:202–213PubMedCrossRef
18.
Zurück zum Zitat Camici P, Ferrannini E, Opie LH (1989) Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 32(3):217–238PubMedCrossRef Camici P, Ferrannini E, Opie LH (1989) Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 32(3):217–238PubMedCrossRef
19.
Zurück zum Zitat Korvald C, Elvenes OP, Myrmel T (2000) Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 278(4):H1345–H1351PubMed Korvald C, Elvenes OP, Myrmel T (2000) Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 278(4):H1345–H1351PubMed
20.
Zurück zum Zitat Schrauwen P, Hesselink MKC (2004) The role of uncoupling protein 3 in fatty acid metabolism: protection against lipotoxicity? P Nutr Soc 63(2):287–292CrossRef Schrauwen P, Hesselink MKC (2004) The role of uncoupling protein 3 in fatty acid metabolism: protection against lipotoxicity? P Nutr Soc 63(2):287–292CrossRef
21.
Zurück zum Zitat Murray AJ, Anderson RE, Watson GC, Radda GK, Clarke K (2004) Uncoupling proteins in human heart. Lancet 364(9447):1786–1788PubMedCrossRef Murray AJ, Anderson RE, Watson GC, Radda GK, Clarke K (2004) Uncoupling proteins in human heart. Lancet 364(9447):1786–1788PubMedCrossRef
22.
Zurück zum Zitat Murphy MP, Echtay KS, Blaikie FH, Asin-Cayuela J, Cocheme HM, Green K et al (2003) Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. J Biol Chem 278(49):48534–48545PubMedCrossRef Murphy MP, Echtay KS, Blaikie FH, Asin-Cayuela J, Cocheme HM, Green K et al (2003) Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone. J Biol Chem 278(49):48534–48545PubMedCrossRef
23.
Zurück zum Zitat Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116(4):434–448PubMedCrossRef Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116(4):434–448PubMedCrossRef
24.
Zurück zum Zitat Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98(5):596–605PubMedCrossRef Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98(5):596–605PubMedCrossRef
25.
Zurück zum Zitat Abel ED, Kaulbach HC, Tian R, Hopkins JC, Duffy J, Doetschman T et al (1999) Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest 104(12):1703–1714PubMedCrossRef Abel ED, Kaulbach HC, Tian R, Hopkins JC, Duffy J, Doetschman T et al (1999) Cardiac hypertrophy with preserved contractile function after selective deletion of GLUT4 from the heart. J Clin Invest 104(12):1703–1714PubMedCrossRef
26.
Zurück zum Zitat Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP (1996) Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94(11):2837–2842PubMedCrossRef Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP (1996) Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 94(11):2837–2842PubMedCrossRef
27.
Zurück zum Zitat Osorio JC, Stanley WC, Linke A, Castellari M, Diep QN, Panchal AR et al (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106(5):606–612PubMedCrossRef Osorio JC, Stanley WC, Linke A, Castellari M, Diep QN, Panchal AR et al (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106(5):606–612PubMedCrossRef
28.
Zurück zum Zitat Brigadeau F, Gele P, Wibaux M, Marquie C, Martin-Nizard F, Torpier G et al (2007) The PPARalpha activator fenofibrate slows down the progression of the left ventricular dysfunction in porcine tachycardia-induced cardiomyopathy. J Cardiovasc Pharmacol 49(6):408–415PubMedCrossRef Brigadeau F, Gele P, Wibaux M, Marquie C, Martin-Nizard F, Torpier G et al (2007) The PPARalpha activator fenofibrate slows down the progression of the left ventricular dysfunction in porcine tachycardia-induced cardiomyopathy. J Cardiovasc Pharmacol 49(6):408–415PubMedCrossRef
29.
Zurück zum Zitat Finck BN (2007) The PPAR regulatory system in cardiac physiology and disease. Cardiovasc Res 73(2):269–277PubMedCrossRef Finck BN (2007) The PPAR regulatory system in cardiac physiology and disease. Cardiovasc Res 73(2):269–277PubMedCrossRef
30.
Zurück zum Zitat Liao R, Jain M, Cui L, D’Agostino J, Aiello F, Luptak I et al (2002) Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 106(16):2125–2131PubMedCrossRef Liao R, Jain M, Cui L, D’Agostino J, Aiello F, Luptak I et al (2002) Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 106(16):2125–2131PubMedCrossRef
31.
Zurück zum Zitat Sorokina N, O’Donnell JM, McKinney RD, Pound KM, Woldegiorgis G, LaNoue KF et al (2007) Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation 115(15):2033–2041PubMedCrossRef Sorokina N, O’Donnell JM, McKinney RD, Pound KM, Woldegiorgis G, LaNoue KF et al (2007) Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation 115(15):2033–2041PubMedCrossRef
32.
Zurück zum Zitat Recchia FA, McConnell PI, Bernstein RD, Vogel TR, Xu X, Hintze TH (1998) Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ Res 83(10):969–979PubMedCrossRef Recchia FA, McConnell PI, Bernstein RD, Vogel TR, Xu X, Hintze TH (1998) Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ Res 83(10):969–979PubMedCrossRef
33.
Zurück zum Zitat Funada J, Betts TR, Hodson L, Humphreys SM, Timperley J, Frayn KN et al (2009) Substrate utilization by the failing human heart by direct quantification using arterio-venous blood sampling. PLoS ONE 4(10):e7533PubMedCrossRef Funada J, Betts TR, Hodson L, Humphreys SM, Timperley J, Frayn KN et al (2009) Substrate utilization by the failing human heart by direct quantification using arterio-venous blood sampling. PLoS ONE 4(10):e7533PubMedCrossRef
34.
Zurück zum Zitat Paolisso G, Gambardella A, Galzerano D, D’Amore A, Rubino P, Verza M et al (1994) Total-body and myocardial substrate oxidation in congestive heart failure. Metabolism 43(2):174–179PubMedCrossRef Paolisso G, Gambardella A, Galzerano D, D’Amore A, Rubino P, Verza M et al (1994) Total-body and myocardial substrate oxidation in congestive heart failure. Metabolism 43(2):174–179PubMedCrossRef
35.
Zurück zum Zitat Taylor M, Wallhaus TR, Degrado TR, Russell DC, Stanko P, Nickles RJ et al (2001) An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in Patients with Congestive Heart Failure. J Nucl Med 42(1):55–62PubMed Taylor M, Wallhaus TR, Degrado TR, Russell DC, Stanko P, Nickles RJ et al (2001) An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in Patients with Congestive Heart Failure. J Nucl Med 42(1):55–62PubMed
36.
Zurück zum Zitat Davila-Roman VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP et al (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40(2):271–277PubMedCrossRef Davila-Roman VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP et al (2002) Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 40(2):271–277PubMedCrossRef
37.
Zurück zum Zitat Bersin RM, Wolfe C, Kwasman M, Lau D, Klinski C, Tanaka K et al (1994) Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J Am Coll Cardiol 23(7):1617–1624PubMedCrossRef Bersin RM, Wolfe C, Kwasman M, Lau D, Klinski C, Tanaka K et al (1994) Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J Am Coll Cardiol 23(7):1617–1624PubMedCrossRef
38.
Zurück zum Zitat Taegtmeyer H (1983) On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load. Basic Res Cardiol 78(4):435–450PubMedCrossRef Taegtmeyer H (1983) On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load. Basic Res Cardiol 78(4):435–450PubMedCrossRef
39.
Zurück zum Zitat Tardif A, Julien N, Pelletier A, Thibault G, Srivastava AK, Chiasson JL et al (2001) Chronic exposure to beta-hydroxybutyrate impairs insulin action in primary cultures of adult cardiomyocytes. Am J Physiol Endocrinol Metab 281(6):E1205–E1212PubMed Tardif A, Julien N, Pelletier A, Thibault G, Srivastava AK, Chiasson JL et al (2001) Chronic exposure to beta-hydroxybutyrate impairs insulin action in primary cultures of adult cardiomyocytes. Am J Physiol Endocrinol Metab 281(6):E1205–E1212PubMed
40.
Zurück zum Zitat Faerber G, Barreto-Perreia F, Schoepe M, Gilsbach R, Schrepper A, Schwarzer M et al. (2011) Induction of heart failure by minimally invasive aortic constriction in mice: reduced peroxisome proliferator-activated receptor gamma coactivator levels and mitochondrial dysfunction. J Thorac Cardiovasc Surg 141(2):492–500, 500.e1 Faerber G, Barreto-Perreia F, Schoepe M, Gilsbach R, Schrepper A, Schwarzer M et al. (2011) Induction of heart failure by minimally invasive aortic constriction in mice: reduced peroxisome proliferator-activated receptor gamma coactivator levels and mitochondrial dysfunction. J Thorac Cardiovasc Surg 141(2):492–500, 500.e1
41.
Zurück zum Zitat Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1(6):361–370PubMedCrossRef Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1(6):361–370PubMedCrossRef
42.
Zurück zum Zitat Sihag S, Cresci S, Li AY, Sucharov CC, Lehman JJ (2009) PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol 46(2):201–212PubMedCrossRef Sihag S, Cresci S, Li AY, Sucharov CC, Lehman JJ (2009) PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol 46(2):201–212PubMedCrossRef
43.
Zurück zum Zitat Maack C, Bohm M (2011) Targeting mitochondrial oxidative stress in heart failure throttling the afterburner. J Am Coll Cardiol 58(1):83–86PubMedCrossRef Maack C, Bohm M (2011) Targeting mitochondrial oxidative stress in heart failure throttling the afterburner. J Am Coll Cardiol 58(1):83–86PubMedCrossRef
44.
Zurück zum Zitat Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N et al (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85(4):357–363PubMedCrossRef Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N et al (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85(4):357–363PubMedCrossRef
45.
Zurück zum Zitat Liu T, O’Rourke B (2008) Enhancing mitochondrial Ca2 + uptake in myocytes from failing hearts restores energy supply and demand matching. Circ Res 103(3):279–288PubMedCrossRef Liu T, O’Rourke B (2008) Enhancing mitochondrial Ca2 + uptake in myocytes from failing hearts restores energy supply and demand matching. Circ Res 103(3):279–288PubMedCrossRef
46.
Zurück zum Zitat Marcil M, Ascah A, Matas J, Belanger S, Deschepper CF, Burelle Y (2006) Compensated volume overload increases the vulnerability of heart mitochondria without affecting their functions in the absence of stress. J Mol Cell Cardiol 41(6):998–1009PubMedCrossRef Marcil M, Ascah A, Matas J, Belanger S, Deschepper CF, Burelle Y (2006) Compensated volume overload increases the vulnerability of heart mitochondria without affecting their functions in the absence of stress. J Mol Cell Cardiol 41(6):998–1009PubMedCrossRef
47.
Zurück zum Zitat Sharov VG, Todor A, Khanal S, Imai M, Sabbah HN (2007) Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure. J Mol Cell Cardiol 42(1):150–158PubMedCrossRef Sharov VG, Todor A, Khanal S, Imai M, Sabbah HN (2007) Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure. J Mol Cell Cardiol 42(1):150–158PubMedCrossRef
48.
Zurück zum Zitat Sharov VG, Todor AV, Imai M, Sabbah HN (2005) Inhibition of mitochondrial permeability transition pores by cyclosporine A improves cytochrome C oxidase function and increases rate of ATP synthesis in failing cardiomyocytes. Heart Fail Rev 10(4):305–310PubMedCrossRef Sharov VG, Todor AV, Imai M, Sabbah HN (2005) Inhibition of mitochondrial permeability transition pores by cyclosporine A improves cytochrome C oxidase function and increases rate of ATP synthesis in failing cardiomyocytes. Heart Fail Rev 10(4):305–310PubMedCrossRef
49.
Zurück zum Zitat Zhang GX, Kimura S, Nishiyama A, Shokoji T, Rahman M, Yao L et al (2005) Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc Res 65(1):230–238PubMedCrossRef Zhang GX, Kimura S, Nishiyama A, Shokoji T, Rahman M, Yao L et al (2005) Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc Res 65(1):230–238PubMedCrossRef
50.
Zurück zum Zitat Tsutsui H, Ide T, Kinugawa S (2006) Mitochondrial oxidative stress, DNA damage, and heart failure. Antioxid Redox Signal 8(9–10):1737–1744PubMedCrossRef Tsutsui H, Ide T, Kinugawa S (2006) Mitochondrial oxidative stress, DNA damage, and heart failure. Antioxid Redox Signal 8(9–10):1737–1744PubMedCrossRef
51.
Zurück zum Zitat Dai DF, Chen T, Szeto H, Nieves-Cintron M, Kutyavin V, Santana LF et al (2011) Mitochondrial targeted antioxidant Peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol 58(1):73–82PubMedCrossRef Dai DF, Chen T, Szeto H, Nieves-Cintron M, Kutyavin V, Santana LF et al (2011) Mitochondrial targeted antioxidant Peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol 58(1):73–82PubMedCrossRef
52.
Zurück zum Zitat Ingwall JS, Atkinson DE, Clarke K, Fetters JK (1990) Energetic correlates of cardiac failure: changes in the creatine kinase system in the failing myocardium. Eur Heart J 11 Suppl B: 108–115 Ingwall JS, Atkinson DE, Clarke K, Fetters JK (1990) Energetic correlates of cardiac failure: changes in the creatine kinase system in the failing myocardium. Eur Heart J 11 Suppl B: 108–115
53.
Zurück zum Zitat Lygate CA, Fischer A, Sebag-Montefiore L, Wallis J, ten Hove M, Neubauer S (2007) The creatine kinase energy transport system in the failing mouse heart. J Mol Cell Cardiol 42(6):1129–1136PubMedCrossRef Lygate CA, Fischer A, Sebag-Montefiore L, Wallis J, ten Hove M, Neubauer S (2007) The creatine kinase energy transport system in the failing mouse heart. J Mol Cell Cardiol 42(6):1129–1136PubMedCrossRef
54.
Zurück zum Zitat Ingwall JS (2009) Energy metabolism in heart failure and remodelling. Cardiovasc Res 81(3):412–419PubMedCrossRef Ingwall JS (2009) Energy metabolism in heart failure and remodelling. Cardiovasc Res 81(3):412–419PubMedCrossRef
55.
Zurück zum Zitat Mekhfi H, Veksler V, Mateo P, Maupoil V, Rochette L, Ventura-Clapier R (1996) Creatine kinase is the main target of reactive oxygen species in cardiac myofibrils. Circ Res 78(6):1016–1027PubMedCrossRef Mekhfi H, Veksler V, Mateo P, Maupoil V, Rochette L, Ventura-Clapier R (1996) Creatine kinase is the main target of reactive oxygen species in cardiac myofibrils. Circ Res 78(6):1016–1027PubMedCrossRef
56.
Zurück zum Zitat Park SJ, Zhang J, Ye Y, Ormaza S, Liang P, Bank AJ et al (2002) Myocardial creatine kinase expression after left ventricular assist device support. J Am Coll Cardiol 39(11):1773–1779PubMedCrossRef Park SJ, Zhang J, Ye Y, Ormaza S, Liang P, Bank AJ et al (2002) Myocardial creatine kinase expression after left ventricular assist device support. J Am Coll Cardiol 39(11):1773–1779PubMedCrossRef
57.
Zurück zum Zitat Hirsch GA, Bottomley PA, Gerstenblith G, Weiss RG (2012) Allopurinol acutely increases adenosine triphospate energy delivery in failing human hearts. J Am Coll Cardiol 59(9):802–808PubMedCrossRef Hirsch GA, Bottomley PA, Gerstenblith G, Weiss RG (2012) Allopurinol acutely increases adenosine triphospate energy delivery in failing human hearts. J Am Coll Cardiol 59(9):802–808PubMedCrossRef
58.
Zurück zum Zitat Neubauer S, Remkes H, Spindler M, Horn M, Wiesmann F, Prestle J et al (1999) Downregulation of the Na(+)-creatine cotransporter in failing human myocardium and in experimental heart failure. Circulation 100(18):1847–1850PubMedCrossRef Neubauer S, Remkes H, Spindler M, Horn M, Wiesmann F, Prestle J et al (1999) Downregulation of the Na(+)-creatine cotransporter in failing human myocardium and in experimental heart failure. Circulation 100(18):1847–1850PubMedCrossRef
59.
Zurück zum Zitat Wallis J, Lygate CA, Fischer A, ten Hove M, Schneider JE, Sebag-Montefiore L et al (2005) Supranormal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure: insights from creatine transporter-overexpressing transgenic mice. Circulation 112(20):3131–3139PubMedCrossRef Wallis J, Lygate CA, Fischer A, ten Hove M, Schneider JE, Sebag-Montefiore L et al (2005) Supranormal myocardial creatine and phosphocreatine concentrations lead to cardiac hypertrophy and heart failure: insights from creatine transporter-overexpressing transgenic mice. Circulation 112(20):3131–3139PubMedCrossRef
60.
Zurück zum Zitat Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, Ventura-Clapier R (2001) Energetic crosstalk between organelles: architectural integration of energy production and utilization. Circ Res 89(2):153–159PubMedCrossRef Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, Ventura-Clapier R (2001) Energetic crosstalk between organelles: architectural integration of energy production and utilization. Circ Res 89(2):153–159PubMedCrossRef
61.
Zurück zum Zitat Aksentijevic D, Lygate CA, Makinen K, Zervou S, Sebag-Montefiore L, Medway D et al (2010) High-energy phosphotransfer in the failing mouse heart: role of adenylate kinase and glycolytic enzymes. Eur J Heart Fail 12(12):1282–1289PubMedCrossRef Aksentijevic D, Lygate CA, Makinen K, Zervou S, Sebag-Montefiore L, Medway D et al (2010) High-energy phosphotransfer in the failing mouse heart: role of adenylate kinase and glycolytic enzymes. Eur J Heart Fail 12(12):1282–1289PubMedCrossRef
62.
Zurück zum Zitat Gupta A, Akki A, Wang Y, Leppo MK, Chacko VP, Foster DB et al (2012) Creatine kinase-mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. J Clin Invest 122(1):291–302PubMedCrossRef Gupta A, Akki A, Wang Y, Leppo MK, Chacko VP, Foster DB et al (2012) Creatine kinase-mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved. J Clin Invest 122(1):291–302PubMedCrossRef
63.
Zurück zum Zitat Dzeja PP, Redfield MM, Burnett JC, Terzic A (2000) Failing energetics in failing hearts. Curr Cardiol Rep 2(3):212–217PubMedCrossRef Dzeja PP, Redfield MM, Burnett JC, Terzic A (2000) Failing energetics in failing hearts. Curr Cardiol Rep 2(3):212–217PubMedCrossRef
64.
Zurück zum Zitat Gt Cooper (2006) Cytoskeletal networks and the regulation of cardiac contractility: microtubules, hypertrophy, and cardiac dysfunction. Am J Physiol Heart Circ Physiol 291(3):H1003–H1014CrossRef Gt Cooper (2006) Cytoskeletal networks and the regulation of cardiac contractility: microtubules, hypertrophy, and cardiac dysfunction. Am J Physiol Heart Circ Physiol 291(3):H1003–H1014CrossRef
65.
Zurück zum Zitat Ventura-Clapier R, Garnier A, Veksler V (2004) Energy metabolism in heart failure. J Physiol 555(Pt 1):1–13PubMedCrossRef Ventura-Clapier R, Garnier A, Veksler V (2004) Energy metabolism in heart failure. J Physiol 555(Pt 1):1–13PubMedCrossRef
66.
Zurück zum Zitat Nelson GS, Berger RD, Fetics BJ, Talbot M, Spinelli JC, Hare JM et al (2000) Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle-branch block. Circulation 102(25):3053–3059PubMedCrossRef Nelson GS, Berger RD, Fetics BJ, Talbot M, Spinelli JC, Hare JM et al (2000) Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle-branch block. Circulation 102(25):3053–3059PubMedCrossRef
67.
Zurück zum Zitat Tuunanen H, Engblom E, Naum A, Nagren K, Hesse B, Airaksinen KE et al (2006) Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 114(20):2130–2137PubMedCrossRef Tuunanen H, Engblom E, Naum A, Nagren K, Hesse B, Airaksinen KE et al (2006) Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation 114(20):2130–2137PubMedCrossRef
68.
Zurück zum Zitat Halbirk M, Norrelund H, Moller N, Schmitz O, Gotzsche L, Nielsen R et al (2010) Suppression of circulating free fatty acids with acipimox in chronic heart failure patients changes whole body metabolism but does not affect cardiac function. Am J Physiol Heart Circ Physiol 299(4):H1220–H1225PubMedCrossRef Halbirk M, Norrelund H, Moller N, Schmitz O, Gotzsche L, Nielsen R et al (2010) Suppression of circulating free fatty acids with acipimox in chronic heart failure patients changes whole body metabolism but does not affect cardiac function. Am J Physiol Heart Circ Physiol 299(4):H1220–H1225PubMedCrossRef
69.
Zurück zum Zitat Stanley WC, Morgan EE, Huang H, McElfresh TA, Sterk JP, Okere IC et al (2005) Malonyl-CoA decarboxylase inhibition suppresses fatty acid oxidation and reduces lactate production during demand-induced ischemia. Am J Physiol Heart Circ Physiol 289(6):H2304–H2309PubMedCrossRef Stanley WC, Morgan EE, Huang H, McElfresh TA, Sterk JP, Okere IC et al (2005) Malonyl-CoA decarboxylase inhibition suppresses fatty acid oxidation and reduces lactate production during demand-induced ischemia. Am J Physiol Heart Circ Physiol 289(6):H2304–H2309PubMedCrossRef
70.
Zurück zum Zitat Lionetti V, Linke A, Chandler MP, Young ME, Penn MS, Gupte S et al (2005) Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res 66(3):454–461PubMedCrossRef Lionetti V, Linke A, Chandler MP, Young ME, Penn MS, Gupte S et al (2005) Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res 66(3):454–461PubMedCrossRef
71.
Zurück zum Zitat Turcani M, Rupp H (1997) Etomoxir improves left ventricular performance of pressure-overloaded rat heart. Circulation 96(10):3681–3686PubMedCrossRef Turcani M, Rupp H (1997) Etomoxir improves left ventricular performance of pressure-overloaded rat heart. Circulation 96(10):3681–3686PubMedCrossRef
72.
Zurück zum Zitat Schwarzer M, Faerber G, Rueckauer T, Blum D, Pytel G, Mohr FW et al (2009) The metabolic modulators, Etomoxir and NVP-LAB121, fail to reverse pressure overload induced heart failure in vivo. Basic Res Cardiol 104(5):547–557PubMedCrossRef Schwarzer M, Faerber G, Rueckauer T, Blum D, Pytel G, Mohr FW et al (2009) The metabolic modulators, Etomoxir and NVP-LAB121, fail to reverse pressure overload induced heart failure in vivo. Basic Res Cardiol 104(5):547–557PubMedCrossRef
73.
Zurück zum Zitat Schmidt-Schweda S, Holubarsch C (2000) First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci (Lond) 99(1):27–35CrossRef Schmidt-Schweda S, Holubarsch C (2000) First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci (Lond) 99(1):27–35CrossRef
74.
Zurück zum Zitat Holubarsch CJ, Rohrbach M, Karrasch M, Boehm E, Polonski L, Ponikowski P et al (2007) A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin Sci (Lond) 113(4):205–212CrossRef Holubarsch CJ, Rohrbach M, Karrasch M, Boehm E, Polonski L, Ponikowski P et al (2007) A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) study. Clin Sci (Lond) 113(4):205–212CrossRef
75.
Zurück zum Zitat Kennedy JA, Unger SA, Horowitz JD (1996) Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone. Biochem Pharmacol 52(2):273–280PubMedCrossRef Kennedy JA, Unger SA, Horowitz JD (1996) Inhibition of carnitine palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone. Biochem Pharmacol 52(2):273–280PubMedCrossRef
76.
Zurück zum Zitat Horowitz JD, Sia ST, Macdonald PS, Goble AJ, Louis WJ (1986) Perhexiline maleate treatment for severe angina pectoris–correlations with pharmacokinetics. Int J Cardiol 13(2):219–229PubMedCrossRef Horowitz JD, Sia ST, Macdonald PS, Goble AJ, Louis WJ (1986) Perhexiline maleate treatment for severe angina pectoris–correlations with pharmacokinetics. Int J Cardiol 13(2):219–229PubMedCrossRef
77.
Zurück zum Zitat Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L et al (2005) Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 112(21):3280–3288PubMedCrossRef Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L et al (2005) Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 112(21):3280–3288PubMedCrossRef
78.
Zurück zum Zitat Crilley JG, Boehm EA, Blair E, Rajagopalan B, Blamire AM, Styles P et al (2003) Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol 41(10):1776–1782PubMedCrossRef Crilley JG, Boehm EA, Blair E, Rajagopalan B, Blamire AM, Styles P et al (2003) Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol 41(10):1776–1782PubMedCrossRef
79.
Zurück zum Zitat Abozguia K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I et al (2010) Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122(16):1562–1569PubMedCrossRef Abozguia K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I et al (2010) Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122(16):1562–1569PubMedCrossRef
80.
Zurück zum Zitat Kennedy JA, Beck-Oldach K, McFadden-Lewis K, Murphy GA, Wong YW, Zhang Y et al (2006) Effect of the anti-anginal agent, perhexiline, on neutrophil, valvular and vascular superoxide formation. Eur J Pharmacol 531(1–3):13–19PubMedCrossRef Kennedy JA, Beck-Oldach K, McFadden-Lewis K, Murphy GA, Wong YW, Zhang Y et al (2006) Effect of the anti-anginal agent, perhexiline, on neutrophil, valvular and vascular superoxide formation. Eur J Pharmacol 531(1–3):13–19PubMedCrossRef
81.
Zurück zum Zitat Ngo D DN, Pagano D, Frenneaux M, Horowitz J (2011) How does perhexiline modulate myocardial energetics and ameliorate redox stress? Circulation 124: A14461 Ngo D DN, Pagano D, Frenneaux M, Horowitz J (2011) How does perhexiline modulate myocardial energetics and ameliorate redox stress? Circulation 124: A14461
82.
Zurück zum Zitat Balgi AD, Fonseca BD, Donohue E, Tsang TC, Lajoie P, Proud CG et al (2009) Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS ONE 4(9):e7124PubMedCrossRef Balgi AD, Fonseca BD, Donohue E, Tsang TC, Lajoie P, Proud CG et al (2009) Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS ONE 4(9):e7124PubMedCrossRef
83.
Zurück zum Zitat Panchal AR, Stanley WC, Kerner J, Sabbah HN (1998) Beta-receptor blockade decreases carnitine palmitoyl transferase I activity in dogs with heart failure. J Card Fail 4(2):121–126PubMedCrossRef Panchal AR, Stanley WC, Kerner J, Sabbah HN (1998) Beta-receptor blockade decreases carnitine palmitoyl transferase I activity in dogs with heart failure. J Card Fail 4(2):121–126PubMedCrossRef
84.
Zurück zum Zitat Wallhaus TR, Taylor M, DeGrado TR, Russell DC, Stanko P, Nickles RJ et al (2001) Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 103(20):2441–2446PubMedCrossRef Wallhaus TR, Taylor M, DeGrado TR, Russell DC, Stanko P, Nickles RJ et al (2001) Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 103(20):2441–2446PubMedCrossRef
85.
Zurück zum Zitat Fantini E, Demaison L, Sentex E, Grynberg A, Athias P (1994) Some biochemical aspects of the protective effect of trimetazidine on rat cardiomyocytes during hypoxia and reoxygenation. J Mol Cell Cardiol 26(8):949–958PubMedCrossRef Fantini E, Demaison L, Sentex E, Grynberg A, Athias P (1994) Some biochemical aspects of the protective effect of trimetazidine on rat cardiomyocytes during hypoxia and reoxygenation. J Mol Cell Cardiol 26(8):949–958PubMedCrossRef
86.
Zurück zum Zitat Kantor PF, Lucien A, Kozak R, Lopaschuk GD (2000) The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 86(5):580–588PubMedCrossRef Kantor PF, Lucien A, Kozak R, Lopaschuk GD (2000) The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 86(5):580–588PubMedCrossRef
87.
Zurück zum Zitat Gao D, Ning N, Niu X, Hao G, Meng Z (2011) Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart 97(4):278–286PubMedCrossRef Gao D, Ning N, Niu X, Hao G, Meng Z (2011) Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart 97(4):278–286PubMedCrossRef
88.
Zurück zum Zitat Zhang L, Lu Y, Jiang H, Sun A, Zou Y, Ge J (2012) Additional use of trimetazidine in patients with chronic heart failure: a meta-analysis. J Am Coll Cardiol 59(10):913–922PubMedCrossRef Zhang L, Lu Y, Jiang H, Sun A, Zou Y, Ge J (2012) Additional use of trimetazidine in patients with chronic heart failure: a meta-analysis. J Am Coll Cardiol 59(10):913–922PubMedCrossRef
89.
Zurück zum Zitat Fragasso G, Perseghin G, De Cobelli F, Esposito A, Palloshi A, Lattuada G et al (2006) Effects of metabolic modulation by trimetazidine on left ventricular function and phosphocreatine/adenosine triphosphate ratio in patients with heart failure. Eur Heart J 27(8):942–948PubMedCrossRef Fragasso G, Perseghin G, De Cobelli F, Esposito A, Palloshi A, Lattuada G et al (2006) Effects of metabolic modulation by trimetazidine on left ventricular function and phosphocreatine/adenosine triphosphate ratio in patients with heart failure. Eur Heart J 27(8):942–948PubMedCrossRef
90.
Zurück zum Zitat Tuunanen H, Engblom E, Naum A, Nagren K, Scheinin M, Hesse B et al (2008) Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation 118(12):1250–1258PubMedCrossRef Tuunanen H, Engblom E, Naum A, Nagren K, Scheinin M, Hesse B et al (2008) Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation 118(12):1250–1258PubMedCrossRef
91.
Zurück zum Zitat Di Napoli P, Taccardi AA, Barsotti A (2005) Long term cardioprotective action of trimetazidine and potential effect on the inflammatory process in patients with ischaemic dilated cardiomyopathy. Heart 91(2):161–165PubMedCrossRef Di Napoli P, Taccardi AA, Barsotti A (2005) Long term cardioprotective action of trimetazidine and potential effect on the inflammatory process in patients with ischaemic dilated cardiomyopathy. Heart 91(2):161–165PubMedCrossRef
92.
Zurück zum Zitat Clarke B, Wyatt KM, McCormack JG (1996) Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism. J Mol Cell Cardiol 28(2):341–350PubMedCrossRef Clarke B, Wyatt KM, McCormack JG (1996) Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism. J Mol Cell Cardiol 28(2):341–350PubMedCrossRef
93.
Zurück zum Zitat Maier LWR, Edelmann F, Layug B, Karwatowska-Prokopczuk E, Belardinelli L, Hasenfuss G, Jacobshagen C (2008) Ranolazine for the ttreatment of diastolic heart failure in patients with preserved ejection fraction: results from the Rali-Heart study. J Am Coll Cardiol 59(13):E865CrossRef Maier LWR, Edelmann F, Layug B, Karwatowska-Prokopczuk E, Belardinelli L, Hasenfuss G, Jacobshagen C (2008) Ranolazine for the ttreatment of diastolic heart failure in patients with preserved ejection fraction: results from the Rali-Heart study. J Am Coll Cardiol 59(13):E865CrossRef
94.
Zurück zum Zitat Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB et al (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358(24):2545–2559PubMedCrossRef Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB et al (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358(24):2545–2559PubMedCrossRef
95.
Zurück zum Zitat Lago RM, Singh PP, Nesto RW (2007) Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet 370(9593):1129–1136PubMedCrossRef Lago RM, Singh PP, Nesto RW (2007) Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet 370(9593):1129–1136PubMedCrossRef
96.
Zurück zum Zitat Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O et al (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51(7):2074–2081PubMedCrossRef Musi N, Hirshman MF, Nygren J, Svanfeldt M, Bavenholm P, Rooyackers O et al (2002) Metformin increases AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 51(7):2074–2081PubMedCrossRef
97.
Zurück zum Zitat Evans JM, Doney AS, AlZadjali MA, Ogston SA, Petrie JR, Morris AD et al (2010) Effect of Metformin on mortality in patients with heart failure and type 2 diabetes mellitus. Am J Cardiol 106(7):1006–1010PubMedCrossRef Evans JM, Doney AS, AlZadjali MA, Ogston SA, Petrie JR, Morris AD et al (2010) Effect of Metformin on mortality in patients with heart failure and type 2 diabetes mellitus. Am J Cardiol 106(7):1006–1010PubMedCrossRef
98.
Zurück zum Zitat Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP (2006) Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 12(9):694–699PubMedCrossRef Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP (2006) Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 12(9):694–699PubMedCrossRef
99.
Zurück zum Zitat Halbirk M, Norrelund H, Moller N, Holst JJ, Schmitz O, Nielsen R et al (2010) Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure. Am J Physiol Heart Circ Physiol 298(3):H1096–H1102PubMedCrossRef Halbirk M, Norrelund H, Moller N, Holst JJ, Schmitz O, Nielsen R et al (2010) Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure. Am J Physiol Heart Circ Physiol 298(3):H1096–H1102PubMedCrossRef
100.
Zurück zum Zitat Nathanson D, Ullman B, Lofstrom U, Hedman A, Frick M, Sjoholm A et al (2012) Effects of intravenous exenatide in type 2 diabetic patients with congestive heart failure: a double-blind, randomised controlled clinical trial of efficacy and safety. Diabetologia 55(4):926–935PubMedCrossRef Nathanson D, Ullman B, Lofstrom U, Hedman A, Frick M, Sjoholm A et al (2012) Effects of intravenous exenatide in type 2 diabetic patients with congestive heart failure: a double-blind, randomised controlled clinical trial of efficacy and safety. Diabetologia 55(4):926–935PubMedCrossRef
Metadaten
Titel
Cardiac metabolism in hypertrophy and heart failure: implications for therapy
verfasst von
N. Siddiqi
S. Singh
R. Beadle
D. Dawson
M. Frenneaux
Publikationsdatum
01.09.2013
Verlag
Springer US
Erschienen in
Heart Failure Reviews / Ausgabe 5/2013
Print ISSN: 1382-4147
Elektronische ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-012-9359-2

Weitere Artikel der Ausgabe 5/2013

Heart Failure Reviews 5/2013 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.