Skip to main content
Erschienen in: Inflammation 1/2019

12.10.2018 | ORIGINAL ARTICLE

IRF-1 Intervention in the Classical ROS-Dependent Release of NETs during LPS-Induced Acute Lung Injury in Mice

verfasst von: Shuai Liu, Yinyan Yue, Pinhua Pan, Lemeng Zhang, Xiaoli Su, Haitao Li, Haosi Li, Yi Li, Minhui Dai, Qian Li, Zhi Mao

Erschienen in: Inflammation | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Previously, we demonstrated that neutrophil extracellular traps (NETs) play an essential role in lipopolysaccharide (LPS)-induced acute lung injury. However, the underlying mechanism is unclear. In this study, we showed that knockout of interferon regulatory factor 1 (IRF-1) in mice strongly attenuated the generation of NETs and reactive oxygen species (ROS) production in neutrophils from bronchoalveolar lavage fluid and alleviated LPS-induced lung injury and systemic inflammation. Our in vitro experiments demonstrated that LPS-stimulated platelets induce NET release through two distinct processes: an ROS-independent early/rapid NETosis and a later ROS-dependent classical NETosis. Notably, the classical ROS-dependent pathway plays a dominant role in the generation of NETs. Furthermore, we showed that IRF-1 knockout does not affect the formation of NETs in early/rapid NETosis, but significantly attenuates ROS production and the generation of NETs in classical NETosis, which determines the total levels of NETs released by LPS-stimulated platelets. In conclusion, IRF-1 deficiency plays a key role in moderating the excessive NETs formed via ROS in the classical pathway and retaining the protective role of the low-NET levels generated in early/rapid NETosis, which may serve as a novel target in acute lung injury/acute respiratory distress syndrome.
Literatur
1.
Zurück zum Zitat Matthay, M.A., L.B. Ware, and G.A. Zimmerman. 2012. The acute respiratory distress syndrome. The Journal of Clinical Investigation 122 (8): 2731–2740.CrossRefPubMedPubMedCentral Matthay, M.A., L.B. Ware, and G.A. Zimmerman. 2012. The acute respiratory distress syndrome. The Journal of Clinical Investigation 122 (8): 2731–2740.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Modrykamien, A.M., and P. Gupta. 2015. The acute respiratory distress syndrome. Proceedings (Baylor University Medical Center) 28 (2): 163–171.CrossRef Modrykamien, A.M., and P. Gupta. 2015. The acute respiratory distress syndrome. Proceedings (Baylor University Medical Center) 28 (2): 163–171.CrossRef
3.
Zurück zum Zitat Bellani, G., J.G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, L. Gattinoni, F. Van Haren, A. Larsson, and D.F. Mcauley. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315 (8): 788–800.CrossRefPubMed Bellani, G., J.G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, L. Gattinoni, F. Van Haren, A. Larsson, and D.F. Mcauley. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315 (8): 788–800.CrossRefPubMed
4.
Zurück zum Zitat Matute-Bello, G., C.W. Frevert, and T.R. Martin. 2008. Animal models of acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 295 (3): L379–L399.CrossRefPubMedPubMedCentral Matute-Bello, G., C.W. Frevert, and T.R. Martin. 2008. Animal models of acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 295 (3): L379–L399.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Chen, H., C. Bai, and X. Wang. 2010. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Review of Respiratory Medicine 4 (6): 773–783.CrossRefPubMed Chen, H., C. Bai, and X. Wang. 2010. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Review of Respiratory Medicine 4 (6): 773–783.CrossRefPubMed
6.
Zurück zum Zitat Perl, M., J. Lomas-Neira, F. Venet, C.S. Chung, and A. Ayala. 2011. Pathogenesis of indirect (secondary) acute lung injury. Expert Review of Respiratory Medicine 5 (1): 115–126.CrossRefPubMedPubMedCentral Perl, M., J. Lomas-Neira, F. Venet, C.S. Chung, and A. Ayala. 2011. Pathogenesis of indirect (secondary) acute lung injury. Expert Review of Respiratory Medicine 5 (1): 115–126.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Welbourn, C.R., and Y. Young. 1992. Endotoxin, septic shock and acute lung injury: Neutrophils, macrophages and inflammatory mediators. The British Journal of Surgery 79 (10): 998–1003.CrossRefPubMed Welbourn, C.R., and Y. Young. 1992. Endotoxin, septic shock and acute lung injury: Neutrophils, macrophages and inflammatory mediators. The British Journal of Surgery 79 (10): 998–1003.CrossRefPubMed
8.
Zurück zum Zitat Brinkmann, V., U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D.S. Weiss, Y. Weinrauch, and A. Zychlinsky. 2004. Neutrophil extracellular traps kill bacteria. Science 303 (5663): 1532–1535.CrossRefPubMed Brinkmann, V., U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann, D.S. Weiss, Y. Weinrauch, and A. Zychlinsky. 2004. Neutrophil extracellular traps kill bacteria. Science 303 (5663): 1532–1535.CrossRefPubMed
9.
Zurück zum Zitat Liu, S., X. Su, P. Pan, L. Zhang, Y. Hu, H. Tan, D. Wu, et al. 2016. Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Scientific Reports 6: 37252.CrossRefPubMedPubMedCentral Liu, S., X. Su, P. Pan, L. Zhang, Y. Hu, H. Tan, D. Wu, et al. 2016. Neutrophil extracellular traps are indirectly triggered by lipopolysaccharide and contribute to acute lung injury. Scientific Reports 6: 37252.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Fuchs, T.A., U. Abed, C. Goosmann, R. Hurwitz, I. Schulze, V. Wahn, Y. Weinrauch, V. Brinkmann, and A. Zychlinsky. 2007. Novel cell death program leads to neutrophil extracellular traps. The Journal of Cell Biology 176 (2): 231–241.CrossRefPubMedPubMedCentral Fuchs, T.A., U. Abed, C. Goosmann, R. Hurwitz, I. Schulze, V. Wahn, Y. Weinrauch, V. Brinkmann, and A. Zychlinsky. 2007. Novel cell death program leads to neutrophil extracellular traps. The Journal of Cell Biology 176 (2): 231–241.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Pilsczek, F.H., D. Salina, K.K. Poon, C. Fahey, B.G. Yipp, C.D. Sibley, S.M. Robbins, et al. 2010. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. Journal of Immunology 185 (12): 7413–7425.CrossRef Pilsczek, F.H., D. Salina, K.K. Poon, C. Fahey, B.G. Yipp, C.D. Sibley, S.M. Robbins, et al. 2010. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. Journal of Immunology 185 (12): 7413–7425.CrossRef
12.
Zurück zum Zitat Zhang, L., J.S. Cardinal, P. Pan, B.R. Rosborough, Y. Chang, W. Yan, H. Huang, T.R. Billiar, M.R. Rosengart, and A. Tsung. 2012. Splenocyte apoptosis and autophagy is mediated by interferon regulatory factor 1 during murine endotoxemia. Shock 37 (5): 511–517.CrossRefPubMed Zhang, L., J.S. Cardinal, P. Pan, B.R. Rosborough, Y. Chang, W. Yan, H. Huang, T.R. Billiar, M.R. Rosengart, and A. Tsung. 2012. Splenocyte apoptosis and autophagy is mediated by interferon regulatory factor 1 during murine endotoxemia. Shock 37 (5): 511–517.CrossRefPubMed
13.
Zurück zum Zitat Zhang, L., J.S. Cardinal, R. Bahar, J. Evankovich, H. Huang, G. Nace, T.R. Billiar, M.R. Rosengart, P. Pan, and A. Tsung. 2012. Interferon regulatory factor-1 regulates the autophagic response in LPS-stimulated macrophages through nitric oxide. Molecular Medicine 18: 201–208.CrossRefPubMed Zhang, L., J.S. Cardinal, R. Bahar, J. Evankovich, H. Huang, G. Nace, T.R. Billiar, M.R. Rosengart, P. Pan, and A. Tsung. 2012. Interferon regulatory factor-1 regulates the autophagic response in LPS-stimulated macrophages through nitric oxide. Molecular Medicine 18: 201–208.CrossRefPubMed
14.
Zurück zum Zitat Pan, P.H., J. Cardinal, M.L. Li, C.P. Hu, and A. Tsung. 2013. Interferon regulatory factor-1 mediates the release of high mobility group box-1 in endotoxemia in mice. Chinese Medical Journal 126 (5): 918–924.PubMed Pan, P.H., J. Cardinal, M.L. Li, C.P. Hu, and A. Tsung. 2013. Interferon regulatory factor-1 mediates the release of high mobility group box-1 in endotoxemia in mice. Chinese Medical Journal 126 (5): 918–924.PubMed
15.
Zurück zum Zitat Huang, H., S. Tohme, A.B. Al-Khafaji, S. Tai, P. Loughran, L. Chen, S. Wang, et al. 2015. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 62 (2): 600–614.CrossRefPubMed Huang, H., S. Tohme, A.B. Al-Khafaji, S. Tai, P. Loughran, L. Chen, S. Wang, et al. 2015. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology 62 (2): 600–614.CrossRefPubMed
16.
Zurück zum Zitat Lee, H.J., Y.K. Oh, M. Rhee, J.Y. Lim, J.Y. Hwang, Y.S. Park, Y. Kwon, K.H. Choi, I. Jo, S.I. Park, B. Gao, and W.H. Kim. 2007. The role of STAT1/IRF-1 on synergistic ROS production and loss of mitochondrial transmembrane potential during hepatic cell death induced by LPS/d-GalN. Journal of Molecular Biology 369 (4): 967–984.CrossRefPubMed Lee, H.J., Y.K. Oh, M. Rhee, J.Y. Lim, J.Y. Hwang, Y.S. Park, Y. Kwon, K.H. Choi, I. Jo, S.I. Park, B. Gao, and W.H. Kim. 2007. The role of STAT1/IRF-1 on synergistic ROS production and loss of mitochondrial transmembrane potential during hepatic cell death induced by LPS/d-GalN. Journal of Molecular Biology 369 (4): 967–984.CrossRefPubMed
17.
Zurück zum Zitat Remijsen, Q., Berghe T. Vanden, E. Wirawan, B. Asselbergh, E. Parthoens, R. De Rycke, S. Noppen, M. Delforge, J. Willems, and P. Vandenabeele. 2011. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Research 21 (2): 290–304.CrossRefPubMed Remijsen, Q., Berghe T. Vanden, E. Wirawan, B. Asselbergh, E. Parthoens, R. De Rycke, S. Noppen, M. Delforge, J. Willems, and P. Vandenabeele. 2011. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Research 21 (2): 290–304.CrossRefPubMed
18.
Zurück zum Zitat Wu, D., P. Pan, X. Su, L. Zhang, Q. Qin, H. Tan, L. Huang, and Y. Li. 2016. Interferon regulatory Factor-1 mediates alveolar macrophage pyroptosis during LPS-induced acute lung injury in mice. Shock 46 (3): 329–338.CrossRefPubMedPubMedCentral Wu, D., P. Pan, X. Su, L. Zhang, Q. Qin, H. Tan, L. Huang, and Y. Li. 2016. Interferon regulatory Factor-1 mediates alveolar macrophage pyroptosis during LPS-induced acute lung injury in mice. Shock 46 (3): 329–338.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Liu, D.D., S.J. Kao, and H.I. Chen. 2008. N-acetylcysteine attenuates acute lung injury induced by fat embolism. Critical Care Medicine 36 (2): 565–571.CrossRefPubMed Liu, D.D., S.J. Kao, and H.I. Chen. 2008. N-acetylcysteine attenuates acute lung injury induced by fat embolism. Critical Care Medicine 36 (2): 565–571.CrossRefPubMed
20.
Zurück zum Zitat Barth, C.R., G.A. Funchal, C. Luft, J.R. de Oliveira, B.N. Porto, and M.V. Donadio. 2016. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. European Journal of Immunology 46 (4): 964–970.CrossRefPubMed Barth, C.R., G.A. Funchal, C. Luft, J.R. de Oliveira, B.N. Porto, and M.V. Donadio. 2016. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. European Journal of Immunology 46 (4): 964–970.CrossRefPubMed
21.
Zurück zum Zitat McGuigan, R.M., P. Mullenix, L.L. Norlund, D. Ward, M. Walts, and K. Azarow. 2003. Acute lung injury using oleic acid in the laboratory rat: Establishment of a working model and evidence against free radicals in the acute phase. Current Surgery 60 (4): 412–417.CrossRefPubMed McGuigan, R.M., P. Mullenix, L.L. Norlund, D. Ward, M. Walts, and K. Azarow. 2003. Acute lung injury using oleic acid in the laboratory rat: Establishment of a working model and evidence against free radicals in the acute phase. Current Surgery 60 (4): 412–417.CrossRefPubMed
22.
Zurück zum Zitat Caudrillier, A., K. Kessenbrock, B.M. Gilliss, J.X. Nguyen, M.B. Marques, M. Monestier, P. Toy, Z. Werb, and M.R. Looney. 2012. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. The Journal of Clinical Investigation 122 (7): 2661–2671.CrossRefPubMedPubMedCentral Caudrillier, A., K. Kessenbrock, B.M. Gilliss, J.X. Nguyen, M.B. Marques, M. Monestier, P. Toy, Z. Werb, and M.R. Looney. 2012. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. The Journal of Clinical Investigation 122 (7): 2661–2671.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Parker, H., M. Dragunow, M.B. Hampton, A.J. Kettle, and C.C. Winterbourn. 2012. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. Journal of Leukocyte Biology 92 (4): 841–849.CrossRefPubMed Parker, H., M. Dragunow, M.B. Hampton, A.J. Kettle, and C.C. Winterbourn. 2012. Requirements for NADPH oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. Journal of Leukocyte Biology 92 (4): 841–849.CrossRefPubMed
24.
Zurück zum Zitat Pieterse, E., N. Rother, C. Yanginlar, L.B. Hilbrands, and J. van der Vlag. 2016. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps. Frontiers in Immunology 7: 484.CrossRefPubMedPubMedCentral Pieterse, E., N. Rother, C. Yanginlar, L.B. Hilbrands, and J. van der Vlag. 2016. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps. Frontiers in Immunology 7: 484.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Clark, S.R., A.C. Ma, S.A. Tavener, B. McDonald, Z. Goodarzi, M.M. Kelly, K.D. Patel, S. Chakrabarti, E. McAvoy, G.D. Sinclair, E.M. Keys, E. Allen-Vercoe, R. DeVinney, C.J. Doig, F.H.Y. Green, and P. Kubes. 2007. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine 13 (4): 463–469.CrossRefPubMed Clark, S.R., A.C. Ma, S.A. Tavener, B. McDonald, Z. Goodarzi, M.M. Kelly, K.D. Patel, S. Chakrabarti, E. McAvoy, G.D. Sinclair, E.M. Keys, E. Allen-Vercoe, R. DeVinney, C.J. Doig, F.H.Y. Green, and P. Kubes. 2007. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine 13 (4): 463–469.CrossRefPubMed
26.
Zurück zum Zitat McDonald, B., R. Urrutia, B.G. Yipp, C.N. Jenne, and P. Kubes. 2012. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host & Microbe 12 (3): 324–333.CrossRef McDonald, B., R. Urrutia, B.G. Yipp, C.N. Jenne, and P. Kubes. 2012. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host & Microbe 12 (3): 324–333.CrossRef
27.
Zurück zum Zitat Fan, J., Y. Li, R.M. Levy, J.J. Fan, D.J. Hackam, Y. Vodovotz, H. Yang, K.J. Tracey, T.R. Billiar, and M.A. Wilson. 2007. Hemorrhagic shock induces NAD (P) H oxidase activation in neutrophils: Role of HMGB1-TLR4 signaling. Journal of Immunology 178 (10): 6573–6580.CrossRef Fan, J., Y. Li, R.M. Levy, J.J. Fan, D.J. Hackam, Y. Vodovotz, H. Yang, K.J. Tracey, T.R. Billiar, and M.A. Wilson. 2007. Hemorrhagic shock induces NAD (P) H oxidase activation in neutrophils: Role of HMGB1-TLR4 signaling. Journal of Immunology 178 (10): 6573–6580.CrossRef
28.
Zurück zum Zitat Maugeri, N., L. Campana, M. Gavina, C. Covino, M. De Metrio, C. Panciroli, L. Maiuri, et al. 2014. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. Journal of Thrombosis and Haemostasis 12 (12): 2074–2088.CrossRefPubMed Maugeri, N., L. Campana, M. Gavina, C. Covino, M. De Metrio, C. Panciroli, L. Maiuri, et al. 2014. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. Journal of Thrombosis and Haemostasis 12 (12): 2074–2088.CrossRefPubMed
29.
Zurück zum Zitat Merza, M., H. Hartman, M. Rahman, R. Hwaiz, E. Zhang, E. Renstrom, L. Luo, M. Morgelin, S. Regner, and H. Thorlacius. 2015. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology 149 (7): 1920–1931.e1928.CrossRefPubMed Merza, M., H. Hartman, M. Rahman, R. Hwaiz, E. Zhang, E. Renstrom, L. Luo, M. Morgelin, S. Regner, and H. Thorlacius. 2015. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology 149 (7): 1920–1931.e1928.CrossRefPubMed
30.
Zurück zum Zitat Rochael, N.C., A.B. Guimaraes-Costa, M.T. Nascimento, T.S. DeSouza-Vieira, M.P. Oliveira, E. Souza LF Garcia, M.F. Oliveira, and E.M. Saraiva. 2015. Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites. Scientific Reports 5: 18302.CrossRefPubMedPubMedCentral Rochael, N.C., A.B. Guimaraes-Costa, M.T. Nascimento, T.S. DeSouza-Vieira, M.P. Oliveira, E. Souza LF Garcia, M.F. Oliveira, and E.M. Saraiva. 2015. Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites. Scientific Reports 5: 18302.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Saffarzadeh, M., C. Juenemann, M.A. Queisser, G. Lochnit, G. Barreto, S.P. Galuska, J. Lohmeyer, and K.T. Preissner. 2012. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones. PLoS One 7 (2): e32366.CrossRefPubMedPubMedCentral Saffarzadeh, M., C. Juenemann, M.A. Queisser, G. Lochnit, G. Barreto, S.P. Galuska, J. Lohmeyer, and K.T. Preissner. 2012. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: A predominant role of histones. PLoS One 7 (2): e32366.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Carestia, A., T. Kaufman, L. Rivadeneyra, V.I. Landoni, R.G. Pozner, S. Negrotto, L.P. D'Atri, R.M. Gomez, and M. Schattner. 2016. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. Journal of Leukocyte Biology 99 (1): 153–162.CrossRefPubMed Carestia, A., T. Kaufman, L. Rivadeneyra, V.I. Landoni, R.G. Pozner, S. Negrotto, L.P. D'Atri, R.M. Gomez, and M. Schattner. 2016. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. Journal of Leukocyte Biology 99 (1): 153–162.CrossRefPubMed
33.
Zurück zum Zitat Tadie, J.M., H.B. Bae, S. Jiang, D.W. Park, C.P. Bell, H. Yang, J.F. Pittet, K. Tracey, V.J. Thannickal, and E. Abraham. 2013. HMGB1 promotes neutrophil extracellular trap formation through interactions with toll-like receptor 4. American Journal of Physiology Lung Cellular and Molecular Physiology 304 (5): L342–L349.CrossRefPubMedPubMedCentral Tadie, J.M., H.B. Bae, S. Jiang, D.W. Park, C.P. Bell, H. Yang, J.F. Pittet, K. Tracey, V.J. Thannickal, and E. Abraham. 2013. HMGB1 promotes neutrophil extracellular trap formation through interactions with toll-like receptor 4. American Journal of Physiology Lung Cellular and Molecular Physiology 304 (5): L342–L349.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Rossaint, J., J.M. Herter, H. Van Aken, M. Napirei, Y. Doring, C. Weber, O. Soehnlein, and A. Zarbock. 2014. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood 123 (16): 2573–2584.CrossRefPubMed Rossaint, J., J.M. Herter, H. Van Aken, M. Napirei, Y. Doring, C. Weber, O. Soehnlein, and A. Zarbock. 2014. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood 123 (16): 2573–2584.CrossRefPubMed
35.
Zurück zum Zitat Etulain, J., K. Martinod, S.L. Wong, S.M. Cifuni, M. Schattner, and D.D. Wagner. 2015. P-selectin promotes neutrophil extracellular trap formation in mice. Blood 126 (2): 242–246.CrossRefPubMedPubMedCentral Etulain, J., K. Martinod, S.L. Wong, S.M. Cifuni, M. Schattner, and D.D. Wagner. 2015. P-selectin promotes neutrophil extracellular trap formation in mice. Blood 126 (2): 242–246.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Sreeramkumar, Vinatha, José M. Adrover, Ivan Ballesteros, Maria Isabel Cuartero, Jan Rossaint, Izaskun Bilbao, Maria Nácher, Christophe Pitaval, Irena Radovanovic, and Yoshinori Fukui. 2014. Neutrophils scan for activated platelets to initiate inflammation. Science 346 (6214): 1234–1238.CrossRefPubMedPubMedCentral Sreeramkumar, Vinatha, José M. Adrover, Ivan Ballesteros, Maria Isabel Cuartero, Jan Rossaint, Izaskun Bilbao, Maria Nácher, Christophe Pitaval, Irena Radovanovic, and Yoshinori Fukui. 2014. Neutrophils scan for activated platelets to initiate inflammation. Science 346 (6214): 1234–1238.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Carestia, A., T. Kaufman, and M. Schattner. 2016. Platelets: New bricks in the building of neutrophil extracellular traps. Frontiers in Immunology 7: 271.CrossRefPubMedPubMedCentral Carestia, A., T. Kaufman, and M. Schattner. 2016. Platelets: New bricks in the building of neutrophil extracellular traps. Frontiers in Immunology 7: 271.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Kroger, A., M. Koster, K. Schroeder, H. Hauser, and P.P. Mueller. 2002. Activities of IRF-1. Journal of Interferon & Cytokine Research 22 (1): 5–14.CrossRef Kroger, A., M. Koster, K. Schroeder, H. Hauser, and P.P. Mueller. 2002. Activities of IRF-1. Journal of Interferon & Cytokine Research 22 (1): 5–14.CrossRef
39.
Zurück zum Zitat Fujita, T., J. Sakakibara, Y. Sudo, M. Miyamoto, Y. Kimura, and T. Taniguchi. 1988. Evidence for a nuclear factor(s), IRF-1, mediating induction and silencing properties to human IFN-beta gene regulatory elements. The EMBO Journal 7 (11): 3397–3405.CrossRefPubMedPubMedCentral Fujita, T., J. Sakakibara, Y. Sudo, M. Miyamoto, Y. Kimura, and T. Taniguchi. 1988. Evidence for a nuclear factor(s), IRF-1, mediating induction and silencing properties to human IFN-beta gene regulatory elements. The EMBO Journal 7 (11): 3397–3405.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Baas, T., J.K. Taubenberger, P.Y. Chong, P. Chui, and M.G. Katze. 2006. SARS-CoV virus-host interactions and comparative etiologies of acute respiratory distress syndrome as determined by transcriptional and cytokine profiling of formalin-fixed paraffin-embedded tissues. Journal of Interferon & Cytokine Research 26 (5): 309–317.CrossRef Baas, T., J.K. Taubenberger, P.Y. Chong, P. Chui, and M.G. Katze. 2006. SARS-CoV virus-host interactions and comparative etiologies of acute respiratory distress syndrome as determined by transcriptional and cytokine profiling of formalin-fixed paraffin-embedded tissues. Journal of Interferon & Cytokine Research 26 (5): 309–317.CrossRef
41.
Zurück zum Zitat Gao, J., M. Senthil, B. Ren, J. Yan, Q. Xing, J. Yu, L. Zhang, and J.H. Yim. 2010. IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apoptotic pathway in IRF-1-induced apoptosis in cancer cells. Cell Death and Differentiation 17 (4): 699–709.CrossRefPubMed Gao, J., M. Senthil, B. Ren, J. Yan, Q. Xing, J. Yu, L. Zhang, and J.H. Yim. 2010. IRF-1 transcriptionally upregulates PUMA, which mediates the mitochondrial apoptotic pathway in IRF-1-induced apoptosis in cancer cells. Cell Death and Differentiation 17 (4): 699–709.CrossRefPubMed
42.
Zurück zum Zitat Lood, C., L.P. Blanco, M.M. Purmalek, C. Carmona-Rivera, S.S. De Ravin, C.K. Smith, H.L. Malech, J.A. Ledbetter, K.B. Elkon, and M.J. Kaplan. 2016. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nature Medicine 22 (2): 146–153.CrossRefPubMedPubMedCentral Lood, C., L.P. Blanco, M.M. Purmalek, C. Carmona-Rivera, S.S. De Ravin, C.K. Smith, H.L. Malech, J.A. Ledbetter, K.B. Elkon, and M.J. Kaplan. 2016. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nature Medicine 22 (2): 146–153.CrossRefPubMedPubMedCentral
Metadaten
Titel
IRF-1 Intervention in the Classical ROS-Dependent Release of NETs during LPS-Induced Acute Lung Injury in Mice
verfasst von
Shuai Liu
Yinyan Yue
Pinhua Pan
Lemeng Zhang
Xiaoli Su
Haitao Li
Haosi Li
Yi Li
Minhui Dai
Qian Li
Zhi Mao
Publikationsdatum
12.10.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0903-7

Weitere Artikel der Ausgabe 1/2019

Inflammation 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.