Skip to main content
Erschienen in: Journal of Mammary Gland Biology and Neoplasia 4/2007

01.12.2007

Molecular Determinants of Milk Lipid Secretion

verfasst von: James L. McManaman, Tanya D. Russell, Jerome Schaack, David J. Orlicky, Horst Robenek

Erschienen in: Journal of Mammary Gland Biology and Neoplasia | Ausgabe 4/2007

Einloggen, um Zugang zu erhalten

Abstract

Mammary epithelial cells secrete lipids by an envelopment process that produces lipid droplets coated by membranes derived from the plasma membrane and possibly secretory vesicles. This secretion process, which resembles viral budding, is hypothesized to be mediated by specific interactions between molecules on the surface of intracellular lipids and membrane elements of the cell. Multiple lines of evidence indicate that milk lipid secretion occurs through a tripartite complex between the integral transmembrane protein, butyrophilin (BTN); the soluble metabolic enzyme, xanthine oxidoreductase (XOR); and the lipid droplet surface protein, adipophilin (ADPH). However, topological evidence from freeze-fracture replica immunolabelling (FRIL) challenge this model and suggests that milk lipid secretion is mediated by butyrophilin alone. Advances in our understanding of the molecular, structural, and functional properties of these proteins now make it possible to understand the physiological functions of each of these molecules in detail and to identify the specific molecular determinants that mediate milk lipid secretion.
Literatur
1.
Zurück zum Zitat Robenek H, Hofnagel O, Buers I, Lorkowski S, Schnoor M, Robenek MJ, Heid H, Troyer D, Severs NJ. Butyrophilin controls milk fat globule secretion. Proc Natl Acad Sci USA 2006;103:10385–10390.PubMedCrossRef Robenek H, Hofnagel O, Buers I, Lorkowski S, Schnoor M, Robenek MJ, Heid H, Troyer D, Severs NJ. Butyrophilin controls milk fat globule secretion. Proc Natl Acad Sci USA 2006;103:10385–10390.PubMedCrossRef
2.
Zurück zum Zitat McManaman JL, Reyland ME, Thrower EC. Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J Mammary Gland Biol Neoplasia 2006;11:249–268.PubMedCrossRef McManaman JL, Reyland ME, Thrower EC. Secretion and fluid transport mechanisms in the mammary gland: comparisons with the exocrine pancreas and the salivary gland. J Mammary Gland Biol Neoplasia 2006;11:249–268.PubMedCrossRef
3.
Zurück zum Zitat Bargmann W, Knoop A. Morphology of lactation; light & electro-microscopic studies on the mammary glands of rats. Z Zellforsch Mikrosk Anat 1959;49:344–388.PubMedCrossRef Bargmann W, Knoop A. Morphology of lactation; light & electro-microscopic studies on the mammary glands of rats. Z Zellforsch Mikrosk Anat 1959;49:344–388.PubMedCrossRef
4.
Zurück zum Zitat Wooding FB. Formation of the milk fat globule membrane without participation of the plasmalemma. J Cell Sci 1973;13:221–235.PubMed Wooding FB. Formation of the milk fat globule membrane without participation of the plasmalemma. J Cell Sci 1973;13:221–235.PubMed
5.
Zurück zum Zitat Wooding FBP. Comparative mammary fine structure. In: Peaker M, editor. Comparative Aspects of Lactation. London: Academic; 1977. p. 1–41. Wooding FBP. Comparative mammary fine structure. In: Peaker M, editor. Comparative Aspects of Lactation. London: Academic; 1977. p. 1–41.
6.
Zurück zum Zitat Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 2001;40:325–438.PubMedCrossRef Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 2001;40:325–438.PubMedCrossRef
7.
Zurück zum Zitat Brasaemle DL. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 2007. Brasaemle DL. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 2007.
8.
Zurück zum Zitat Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J Biol Chem 2002;277:44507–44512.PubMedCrossRef Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition. J Biol Chem 2002;277:44507–44512.PubMedCrossRef
9.
Zurück zum Zitat Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol 1999;10:51–58.PubMedCrossRef Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR. Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol 1999;10:51–58.PubMedCrossRef
10.
Zurück zum Zitat Wu CC, Howell KE, Neville MC, Yates JR 3rd, McManaman JL. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 2000;21:3470–3482.PubMedCrossRef Wu CC, Howell KE, Neville MC, Yates JR 3rd, McManaman JL. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis 2000;21:3470–3482.PubMedCrossRef
11.
Zurück zum Zitat Stein O, Stein Y. Lipid synthesis, intracellular transport, storage, and secretion. I. Electron microscopic radioautographic study of liver after injection of tritiated palmitate or glycerol in fasted and ethanol-treated rats. J Cell Biol 1967;33:319–339.PubMedCrossRef Stein O, Stein Y. Lipid synthesis, intracellular transport, storage, and secretion. I. Electron microscopic radioautographic study of liver after injection of tritiated palmitate or glycerol in fasted and ethanol-treated rats. J Cell Biol 1967;33:319–339.PubMedCrossRef
12.
Zurück zum Zitat Novikoff AB, Novikoff PM, Rosen OM, Rubin CS. Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol 1980;87:180–196.PubMedCrossRef Novikoff AB, Novikoff PM, Rosen OM, Rubin CS. Organelle relationships in cultured 3T3-L1 preadipocytes. J Cell Biol 1980;87:180–196.PubMedCrossRef
13.
Zurück zum Zitat Blanchette-Mackie EJ, Dwyer NK, Barber T, Coxey RA, Takeda T, Rondinone CM, Theodorakis JL, Greenberg AS, Londos C. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J Lipid Res 1995;36:1211–1226.PubMed Blanchette-Mackie EJ, Dwyer NK, Barber T, Coxey RA, Takeda T, Rondinone CM, Theodorakis JL, Greenberg AS, Londos C. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J Lipid Res 1995;36:1211–1226.PubMed
14.
Zurück zum Zitat Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D, Severs NJ. Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 2006;119:4215–4224.PubMedCrossRef Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D, Severs NJ. Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 2006;119:4215–4224.PubMedCrossRef
15.
Zurück zum Zitat Pol A, Luetterforst R, Lindsay M, Heino S, Ikonen E, Parton RG. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 2001;152:1057–1070.PubMedCrossRef Pol A, Luetterforst R, Lindsay M, Heino S, Ikonen E, Parton RG. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J Cell Biol 2001;152:1057–1070.PubMedCrossRef
16.
Zurück zum Zitat Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G. Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 1999;181:6441–6448.PubMed Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein SD, Daum G. Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol 1999;181:6441–6448.PubMed
17.
Zurück zum Zitat Brasaemle DL, Dolios G, Shapiro L, Wang R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 2004;279:46835–46842.PubMedCrossRef Brasaemle DL, Dolios G, Shapiro L, Wang R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 2004;279:46835–46842.PubMedCrossRef
18.
Zurück zum Zitat Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RG. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 2004;279:3787–3792.PubMedCrossRef Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RG. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 2004;279:3787–3792.PubMedCrossRef
19.
Zurück zum Zitat Hollmann KH. Cytology and fine structure of the mammary gland. In: Larson BL, Smith VR, editors. Lactation. New York: Academic; 1974. p. 3–95. Hollmann KH. Cytology and fine structure of the mammary gland. In: Larson BL, Smith VR, editors. Lactation. New York: Academic; 1974. p. 3–95.
20.
Zurück zum Zitat Wooding FB. The mechanism of secretion of the milk fat globule. J Cell Sci 1971;9:805–821.PubMed Wooding FB. The mechanism of secretion of the milk fat globule. J Cell Sci 1971;9:805–821.PubMed
21.
Zurück zum Zitat Jarasch ED, Bruder G, Keenan TW, Franke WW. Redox constituents in milk fat globule membranes and rough endoplasmic reticulum from lactating mammary gland. J Cell Biol 1977;73:223–241.PubMedCrossRef Jarasch ED, Bruder G, Keenan TW, Franke WW. Redox constituents in milk fat globule membranes and rough endoplasmic reticulum from lactating mammary gland. J Cell Biol 1977;73:223–241.PubMedCrossRef
22.
Zurück zum Zitat Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 1999;144:1135–1149.PubMedCrossRef Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 1999;144:1135–1149.PubMedCrossRef
23.
Zurück zum Zitat Mather IH, Jack LJ, Madara PJ, Johnson VG. The distribution of MUC1, an apical membrane glycoprotein, in mammary epithelial cells at the resolution of the electron microscope: implications for the mechanism of milk secretion. Cell Tissue Res 2001;304:91–101.PubMedCrossRef Mather IH, Jack LJ, Madara PJ, Johnson VG. The distribution of MUC1, an apical membrane glycoprotein, in mammary epithelial cells at the resolution of the electron microscope: implications for the mechanism of milk secretion. Cell Tissue Res 2001;304:91–101.PubMedCrossRef
24.
Zurück zum Zitat Mather IH, Keenan TW. Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia 1998;3:259–273.PubMedCrossRef Mather IH, Keenan TW. Origin and secretion of milk lipids. J Mammary Gland Biol Neoplasia 1998;3:259–273.PubMedCrossRef
25.
Zurück zum Zitat Lu X, Gruia-Gray J, Copeland NG, Gilbert DJ, Jenkins NA, Londos C, Kimmel AR. The murine perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mamm Genome 2001;12:741–749.PubMedCrossRef Lu X, Gruia-Gray J, Copeland NG, Gilbert DJ, Jenkins NA, Londos C, Kimmel AR. The murine perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin. Mamm Genome 2001;12:741–749.PubMedCrossRef
26.
Zurück zum Zitat Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C. Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 1997;38:2249–2263.PubMed Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C. Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 1997;38:2249–2263.PubMed
27.
Zurück zum Zitat Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW. Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res 1998;294:309–321.PubMedCrossRef Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW. Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res 1998;294:309–321.PubMedCrossRef
28.
Zurück zum Zitat Russell TD, Palmer CA, Orlicky DJ, Fischer A, Rudolph MC, Neville MC, McManaman JL. Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin and lipid metabolism. J Lipid Res 2007;48:1463–1475.PubMedCrossRef Russell TD, Palmer CA, Orlicky DJ, Fischer A, Rudolph MC, Neville MC, McManaman JL. Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin and lipid metabolism. J Lipid Res 2007;48:1463–1475.PubMedCrossRef
29.
Zurück zum Zitat Gao J, Serrero G. Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J Biol Chem 1999;274:16825–16830.PubMedCrossRef Gao J, Serrero G. Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J Biol Chem 1999;274:16825–16830.PubMedCrossRef
30.
Zurück zum Zitat Imamura M, Inoguchi T, Ikuyama S, Taniguchi S, Kobayashi K, Nakashima N, Nawata H. ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am J Physiol Endocrinol Metab 2002;283:E775–783.PubMed Imamura M, Inoguchi T, Ikuyama S, Taniguchi S, Kobayashi K, Nakashima N, Nawata H. ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am J Physiol Endocrinol Metab 2002;283:E775–783.PubMed
31.
Zurück zum Zitat McManaman JL, Zabaronick W, Schaack J, Orlicky DJ. Lipid droplet targeting domains of adipophilin. J Lipid Res 2003;44:668–673.PubMedCrossRef McManaman JL, Zabaronick W, Schaack J, Orlicky DJ. Lipid droplet targeting domains of adipophilin. J Lipid Res 2003;44:668–673.PubMedCrossRef
32.
Zurück zum Zitat Targett-Adams P, Chambers D, Gledhill S, Hope RG, Coy JF, Girod A, McLauchlan J. Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein. J Biol Chem 2003;278:15998–16007.PubMedCrossRef Targett-Adams P, Chambers D, Gledhill S, Hope RG, Coy JF, Girod A, McLauchlan J. Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein. J Biol Chem 2003;278:15998–16007.PubMedCrossRef
33.
Zurück zum Zitat Listenberger LL, Ostermeyer-Fay AG, Goldberg EB, Brown WJ, Brown DA. Adipocyte differentiation-related protein reduces lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J Lipid Res 2007 (In Press). Listenberger LL, Ostermeyer-Fay AG, Goldberg EB, Brown WJ, Brown DA. Adipocyte differentiation-related protein reduces lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J Lipid Res 2007 (In Press).
34.
Zurück zum Zitat Banghart LR, Chamberlain CW, Velarde J, Korobko IV, Ogg SL, Jack LJ, Vakharia VN, Mather IH. Butyrophilin is expressed in mammary epithelial cells from a single-sized messenger RNA as a type I membrane glycoprotein. J Biol Chem 1998;273:4171–4179.PubMedCrossRef Banghart LR, Chamberlain CW, Velarde J, Korobko IV, Ogg SL, Jack LJ, Vakharia VN, Mather IH. Butyrophilin is expressed in mammary epithelial cells from a single-sized messenger RNA as a type I membrane glycoprotein. J Biol Chem 1998;273:4171–4179.PubMedCrossRef
35.
Zurück zum Zitat McManaman JL, Palmer CA, Wright RM, Neville MC. Functional regulation of xanthine oxidoreductase expression and localization in the mouse mammary gland: evidence of a role in lipid secretion. J Physiol 2002;545:567–579.PubMedCrossRef McManaman JL, Palmer CA, Wright RM, Neville MC. Functional regulation of xanthine oxidoreductase expression and localization in the mouse mammary gland: evidence of a role in lipid secretion. J Physiol 2002;545:567–579.PubMedCrossRef
36.
Zurück zum Zitat Franke WW, Heid HW, Grund C, Winter S, Freudenstein C, Schmid E, Jarasch ED, Keenan TW. Antibodies to the major insoluble milk fat globule membrane-associated protein: specific location in apical regions of lactating epithelial cells. J Cell Biol 1981;89:485–494.PubMedCrossRef Franke WW, Heid HW, Grund C, Winter S, Freudenstein C, Schmid E, Jarasch ED, Keenan TW. Antibodies to the major insoluble milk fat globule membrane-associated protein: specific location in apical regions of lactating epithelial cells. J Cell Biol 1981;89:485–494.PubMedCrossRef
37.
Zurück zum Zitat Stryer L. Biochemistry, 3rd ed. New York: W.H. Freeman; 1988. Stryer L. Biochemistry, 3rd ed. New York: W.H. Freeman; 1988.
38.
Zurück zum Zitat Bray RC. Molybdenum iron-sulfur flavin hydroxylases and related enzymes. In: Boyer PD, editor. The Enzymes. New York: Academic; 1975. p. 299–419. Bray RC. Molybdenum iron-sulfur flavin hydroxylases and related enzymes. In: Boyer PD, editor. The Enzymes. New York: Academic; 1975. p. 299–419.
39.
Zurück zum Zitat McManaman JL, Neville MC, Wright RM. Mouse mammary gland xanthine oxidoreductase: purification, characterization, and regulation. Arch Biochem Biophys 1999;371:308–316.PubMedCrossRef McManaman JL, Neville MC, Wright RM. Mouse mammary gland xanthine oxidoreductase: purification, characterization, and regulation. Arch Biochem Biophys 1999;371:308–316.PubMedCrossRef
40.
Zurück zum Zitat Kurosaki M, Zanotta S, Calzi ML, Garattini E, Terao M. Expression of xanthine oxidoreductase in mouse mammary epithelium during pregnancy and lactation: Regulation of gene expression by glucocorticoids and prolactin. Biochem J 1996;319:801–810.PubMed Kurosaki M, Zanotta S, Calzi ML, Garattini E, Terao M. Expression of xanthine oxidoreductase in mouse mammary epithelium during pregnancy and lactation: Regulation of gene expression by glucocorticoids and prolactin. Biochem J 1996;319:801–810.PubMed
41.
Zurück zum Zitat Vorbach C, Scriven A, Capecchi MR. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev 2002;16:3223–3235.PubMedCrossRef Vorbach C, Scriven A, Capecchi MR. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev 2002;16:3223–3235.PubMedCrossRef
42.
Zurück zum Zitat Ogg SL, Weldon AK, Dobbie L, Smith AJ, Mather IH. Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proc Natl Acad Sci USA 2004;101:10084–10089.PubMedCrossRef Ogg SL, Weldon AK, Dobbie L, Smith AJ, Mather IH. Expression of butyrophilin (Btn1a1) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets. Proc Natl Acad Sci USA 2004;101:10084–10089.PubMedCrossRef
43.
Zurück zum Zitat McManaman JL, Palmer CA, Anderson S, Schwertfeger K, Neville MC. Regulation of milk lipid formation and secretion in the mouse mammary gland. Adv Exp Med Biol 2004;554:263–279.PubMed McManaman JL, Palmer CA, Anderson S, Schwertfeger K, Neville MC. Regulation of milk lipid formation and secretion in the mouse mammary gland. Adv Exp Med Biol 2004;554:263–279.PubMed
44.
Zurück zum Zitat Russell TD, Palmer CA, Orlicky DJ, Bales ES, Chang BH, Chan L, McManaman JL. Mammary glands of adipophilin-null mice produce an N-terminally truncated form of adipophilin that mediates milk lipid formation and secretion. J Lipid Res 2007;(In Press). Russell TD, Palmer CA, Orlicky DJ, Bales ES, Chang BH, Chan L, McManaman JL. Mammary glands of adipophilin-null mice produce an N-terminally truncated form of adipophilin that mediates milk lipid formation and secretion. J Lipid Res 2007;(In Press).
45.
Zurück zum Zitat Valivullah HM, Keenan TW. Butyrophilin of milk lipid globule membrane contains N-linked carbohydrates and cross-links with xanthine oxidase. Int J Biochem 1989;21:103–107.PubMedCrossRef Valivullah HM, Keenan TW. Butyrophilin of milk lipid globule membrane contains N-linked carbohydrates and cross-links with xanthine oxidase. Int J Biochem 1989;21:103–107.PubMedCrossRef
46.
Zurück zum Zitat Mondy BL, Keenan TW. Butyrophilin and xanthine oxidase occur in constant molar proportions in milk lipid globule membrane but vary in amount with breed and stage of lactation. Protooplasma 1993;177:32–36.CrossRef Mondy BL, Keenan TW. Butyrophilin and xanthine oxidase occur in constant molar proportions in milk lipid globule membrane but vary in amount with breed and stage of lactation. Protooplasma 1993;177:32–36.CrossRef
47.
Zurück zum Zitat Ishii T, Aoki N, Noda A, Adachi T, Nakamura R, Matsuda T. Carboxy-terminal cytoplasmic domain of mouse butyrophilin specifically associates with a 150-kDa protein of mammary epithelial cells and milk fat globule membrane. Biochim Biophys Acta 1995;1245:285–292.PubMed Ishii T, Aoki N, Noda A, Adachi T, Nakamura R, Matsuda T. Carboxy-terminal cytoplasmic domain of mouse butyrophilin specifically associates with a 150-kDa protein of mammary epithelial cells and milk fat globule membrane. Biochim Biophys Acta 1995;1245:285–292.PubMed
48.
Zurück zum Zitat Heid HW, Schnolzer M, Keenan TW. Adipocyte differentiation-related protein is secreted into milk as a constituent of milk lipid globule membrane. Biochem J 1996;320(Pt 3):1025–1030.PubMed Heid HW, Schnolzer M, Keenan TW. Adipocyte differentiation-related protein is secreted into milk as a constituent of milk lipid globule membrane. Biochem J 1996;320(Pt 3):1025–1030.PubMed
49.
Zurück zum Zitat Waud WR, Rajagopalan KV. The mechanism of conversion of rat liver xanthine dehydrogenase from an NAD+-dependent form (type D) to an O2-dependent form (type O). Arch Biochem Biophys 1976;172:365–379.PubMedCrossRef Waud WR, Rajagopalan KV. The mechanism of conversion of rat liver xanthine dehydrogenase from an NAD+-dependent form (type D) to an O2-dependent form (type O). Arch Biochem Biophys 1976;172:365–379.PubMedCrossRef
50.
Zurück zum Zitat Massey V, Schopfer LM, Nishino T, Nishino T. Differences in protein structure of xanthine dehydrogenase and xanthine oxidase revealed by reconstitution with flavin active site probes. J Biol Chem 1989;264:10567–10573.PubMed Massey V, Schopfer LM, Nishino T, Nishino T. Differences in protein structure of xanthine dehydrogenase and xanthine oxidase revealed by reconstitution with flavin active site probes. J Biol Chem 1989;264:10567–10573.PubMed
51.
Zurück zum Zitat McManaman JL, Bain DL. Structural and conformational analysis of the oxidase to dehydrogenase conversion of xanthine oxidoreductase. J Biol Chem 2002;277:21261–21268.PubMedCrossRef McManaman JL, Bain DL. Structural and conformational analysis of the oxidase to dehydrogenase conversion of xanthine oxidoreductase. J Biol Chem 2002;277:21261–21268.PubMedCrossRef
52.
Zurück zum Zitat Frederiks WM, Marx F. A histochemical procedure for light microscopic demonstration of xanthine oxidase activity in unfixed cryostat sections using cerium ions and a semipermeable membrane technique. J Histochem Cytochem 1993;41:667–670.PubMed Frederiks WM, Marx F. A histochemical procedure for light microscopic demonstration of xanthine oxidase activity in unfixed cryostat sections using cerium ions and a semipermeable membrane technique. J Histochem Cytochem 1993;41:667–670.PubMed
53.
Zurück zum Zitat Clare DA, Blakistone BA, Swaisgood HE, Horton HR. Sulfhydryl oxidase-catalyzed conversion of xanthine dehydrogenase to xanthine oxidase. Arch Biochem Biophys 1981;211:44–47.PubMedCrossRef Clare DA, Blakistone BA, Swaisgood HE, Horton HR. Sulfhydryl oxidase-catalyzed conversion of xanthine dehydrogenase to xanthine oxidase. Arch Biochem Biophys 1981;211:44–47.PubMedCrossRef
54.
Zurück zum Zitat Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, Oliver B, Kimmel AR. Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 2002;277:32253–32257.PubMedCrossRef Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, Oliver B, Kimmel AR. Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 2002;277:32253–32257.PubMedCrossRef
55.
Zurück zum Zitat Nielsen RL, Andersen MH, Mabhout P, Berglund L, Petersen TE, Rasmussen JT. Isolation of adipophilin and butyrophilin from bovine milk and characterization of a cDNA encoding adipophilin. J Dairy Sci 1999;82:2543–2549.PubMedCrossRef Nielsen RL, Andersen MH, Mabhout P, Berglund L, Petersen TE, Rasmussen JT. Isolation of adipophilin and butyrophilin from bovine milk and characterization of a cDNA encoding adipophilin. J Dairy Sci 1999;82:2543–2549.PubMedCrossRef
56.
Zurück zum Zitat Garcia A, Subramanian V, Sekowski A, Bhattacharyya S, Love MW, Brasaemle DL. The amino and carboxyl termini of perilipin a facilitate the storage of triacylglycerols. J Biol Chem 2004;279:8409–8416.PubMedCrossRef Garcia A, Subramanian V, Sekowski A, Bhattacharyya S, Love MW, Brasaemle DL. The amino and carboxyl termini of perilipin a facilitate the storage of triacylglycerols. J Biol Chem 2004;279:8409–8416.PubMedCrossRef
57.
Zurück zum Zitat Garcia A, Sekowski A, Subramanian V, Brasaemle DL. The central domain is required to target and anchor perilipin A to lipid droplets. J Biol Chem 2003;278:625–635.PubMedCrossRef Garcia A, Sekowski A, Subramanian V, Brasaemle DL. The central domain is required to target and anchor perilipin A to lipid droplets. J Biol Chem 2003;278:625–635.PubMedCrossRef
58.
Zurück zum Zitat Subramanian V, Garcia A, Sekowski A, Brasaemle DL. Hydrophobic sequences target and anchor perilipin A to lipid droplets. J Lipid Res 2004;45:1983–1991.PubMedCrossRef Subramanian V, Garcia A, Sekowski A, Brasaemle DL. Hydrophobic sequences target and anchor perilipin A to lipid droplets. J Lipid Res 2004;45:1983–1991.PubMedCrossRef
59.
Zurück zum Zitat Hickenbottom SJ, Kimmel AR, Londos C, Hurley JH. Structure of a lipid droplet protein; the PAT family member TIP47. Structure 2004;12:1199–1207.PubMedCrossRef Hickenbottom SJ, Kimmel AR, Londos C, Hurley JH. Structure of a lipid droplet protein; the PAT family member TIP47. Structure 2004;12:1199–1207.PubMedCrossRef
60.
Zurück zum Zitat Russell T, Fischer A, Beeman N, Freed E, Neville MC, Schaack J. Transduction of the mouse mammary epithelium with adenoviral vectors in vivo. J Virol 2003;77:5801–5809.PubMedCrossRef Russell T, Fischer A, Beeman N, Freed E, Neville MC, Schaack J. Transduction of the mouse mammary epithelium with adenoviral vectors in vivo. J Virol 2003;77:5801–5809.PubMedCrossRef
61.
Zurück zum Zitat Garoff H, Hewson R, Opstelten DJ. Virus maturation by budding. Microbiol Mol Biol Rev 1998;62:1171–1190.PubMed Garoff H, Hewson R, Opstelten DJ. Virus maturation by budding. Microbiol Mol Biol Rev 1998;62:1171–1190.PubMed
62.
Zurück zum Zitat Hurley JH, Emr SD. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 2006;35:277–298.PubMedCrossRef Hurley JH, Emr SD. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 2006;35:277–298.PubMedCrossRef
63.
64.
Zurück zum Zitat Lopez-Verges S, Camus G, Blot G, Beauvoir R, Benarous R, Berlioz-Torrent C. Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci USA 2006;103:14947–14952.PubMedCrossRef Lopez-Verges S, Camus G, Blot G, Beauvoir R, Benarous R, Berlioz-Torrent C. Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci USA 2006;103:14947–14952.PubMedCrossRef
Metadaten
Titel
Molecular Determinants of Milk Lipid Secretion
verfasst von
James L. McManaman
Tanya D. Russell
Jerome Schaack
David J. Orlicky
Horst Robenek
Publikationsdatum
01.12.2007
Verlag
Springer US
Erschienen in
Journal of Mammary Gland Biology and Neoplasia / Ausgabe 4/2007
Print ISSN: 1083-3021
Elektronische ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-007-9053-5

Weitere Artikel der Ausgabe 4/2007

Journal of Mammary Gland Biology and Neoplasia 4/2007 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.