Skip to main content
Erschienen in: Journal of Mammary Gland Biology and Neoplasia 2/2014

01.07.2014

Breast Cancer Stem Cells and the Immune System: Promotion, Evasion and Therapy

verfasst von: Sarah T. Boyle, Marina Kochetkova

Erschienen in: Journal of Mammary Gland Biology and Neoplasia | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

Cancer stem cells are believed to be a subset of heterogeneous tumour cells responsible for tumour initiation, growth, local invasion, and metastasis. In breast cancer, numerous factors have been implicated in regulation of cancer stem cells, but there is still a paucity of information regarding precise molecular and cellular mechanisms guiding their pathobiology. Components of both the adaptive and the innate immune system have been shown to play a crucial role in supporting breast cancer growth and spread, and recently some immune mediators, both molecules and cells, have been reported to influence breast cancer stem cell biology. This review summarises a small, pioneering body of evidence for the potentially important function of the “immuniche” in maintaining and supporting breast cancer stem cells.
Literatur
1.
Zurück zum Zitat Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–9.PubMedCrossRef Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313–9.PubMedCrossRef
2.
Zurück zum Zitat Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.PubMedCrossRef Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.PubMedCrossRef
3.
Zurück zum Zitat Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28.PubMedCrossRef Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28.PubMedCrossRef
4.
Zurück zum Zitat Malanchi I et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481(7379):85–9.CrossRef Malanchi I et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481(7379):85–9.CrossRef
5.
Zurück zum Zitat Bouras T et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell. 2008;3(4):429–41.PubMedCrossRef Bouras T et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell. 2008;3(4):429–41.PubMedCrossRef
6.
Zurück zum Zitat Liu S et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66(12):6063–71.PubMedCrossRef Liu S et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66(12):6063–71.PubMedCrossRef
7.
Zurück zum Zitat Wang, Y., et al., Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene, 2010. Wang, Y., et al., Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene, 2010.
8.
Zurück zum Zitat van Amerongen R, Bowman AN, Nusse R. Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell. 2012;11(3):387–400.PubMedCrossRef van Amerongen R, Bowman AN, Nusse R. Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell. 2012;11(3):387–400.PubMedCrossRef
9.
Zurück zum Zitat Karamboulas C, Ailles L. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim Biophys Acta. 2013;1830(2):2481–95.PubMedCrossRef Karamboulas C, Ailles L. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim Biophys Acta. 2013;1830(2):2481–95.PubMedCrossRef
10.
Zurück zum Zitat Alison, M.R., S.M. Lim, and L.J. Nicholson, Cancer stem cells: problems for therapy? J Pathol, 2010. Alison, M.R., S.M. Lim, and L.J. Nicholson, Cancer stem cells: problems for therapy? J Pathol, 2010.
12.
Zurück zum Zitat Shackleton M et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.PubMedCrossRef Shackleton M et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.PubMedCrossRef
13.
Zurück zum Zitat Stingl J et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439(7079):993–7.PubMed Stingl J et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439(7079):993–7.PubMed
14.
Zurück zum Zitat Patrawala L et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res. 2005;65(14):6207–19.PubMedCrossRef Patrawala L et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res. 2005;65(14):6207–19.PubMedCrossRef
15.
Zurück zum Zitat Ginestier C et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.PubMedCentralPubMedCrossRef Ginestier C et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.PubMedCentralPubMedCrossRef
16.
17.
Zurück zum Zitat Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRef
18.
Zurück zum Zitat Aspord C et al. Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med. 2007;204(5):1037–47.PubMedCentralPubMedCrossRef Aspord C et al. Breast cancer instructs dendritic cells to prime interleukin 13-secreting CD4+ T cells that facilitate tumor development. J Exp Med. 2007;204(5):1037–47.PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 2007;9(4):212.PubMedCentralPubMedCrossRef DeNardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 2007;9(4):212.PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Olkhanud PB et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res. 2011;71(10):3505–15.PubMedCentralPubMedCrossRef Olkhanud PB et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Res. 2011;71(10):3505–15.PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Liyanage UK et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169(5):2756–61.PubMedCrossRef Liyanage UK et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169(5):2756–61.PubMedCrossRef
22.
Zurück zum Zitat Gobert M et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 2009;69(5):2000–9.PubMedCrossRef Gobert M et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 2009;69(5):2000–9.PubMedCrossRef
25.
Zurück zum Zitat de la Cruz-Merino L et al. New insights into the role of the immune microenvironment in breast carcinoma. Clin Dev Immunol. 2013;2013:785317.PubMedCentralPubMed de la Cruz-Merino L et al. New insights into the role of the immune microenvironment in breast carcinoma. Clin Dev Immunol. 2013;2013:785317.PubMedCentralPubMed
28.
29.
Zurück zum Zitat Zhang Y et al. A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells. Cell Res. 2013;23(3):394–408.PubMedCentralPubMedCrossRef Zhang Y et al. A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells. Cell Res. 2013;23(3):394–408.PubMedCentralPubMedCrossRef
30.
Zurück zum Zitat Cabioglu N et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res. 2005;11(16):5686–93.PubMedCrossRef Cabioglu N et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res. 2005;11(16):5686–93.PubMedCrossRef
31.
Zurück zum Zitat Russo RC et al. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol. 2014;10(5):593–619.PubMedCrossRef Russo RC et al. The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol. 2014;10(5):593–619.PubMedCrossRef
32.
Zurück zum Zitat Charafe-Jauffret E et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69(4):1302–13.PubMedCentralPubMedCrossRef Charafe-Jauffret E et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69(4):1302–13.PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Ginestier C et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest. 2010;120(2):485–97.PubMedCentralPubMedCrossRef Ginestier C et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest. 2010;120(2):485–97.PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Singh S et al. Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clin Cancer Res. 2009;15(7):2380–6.PubMedCrossRef Singh S et al. Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clin Cancer Res. 2009;15(7):2380–6.PubMedCrossRef
36.
Zurück zum Zitat Korkaya H et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell. 2012;47(4):570–84.PubMedCentralPubMedCrossRef Korkaya H et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell. 2012;47(4):570–84.PubMedCentralPubMedCrossRef
37.
Zurück zum Zitat Marotta LL et al. The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(−) stem cell-like breast cancer cells in human tumors. J Clin Invest. 2011;121(7):2723–35.PubMedCentralPubMedCrossRef Marotta LL et al. The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(−) stem cell-like breast cancer cells in human tumors. J Clin Invest. 2011;121(7):2723–35.PubMedCentralPubMedCrossRef
38.
39.
Zurück zum Zitat Chapman RW et al. CXCR2 antagonists for the treatment of pulmonary disease. Pharmacol Ther. 2009;121(1):55–68.PubMedCrossRef Chapman RW et al. CXCR2 antagonists for the treatment of pulmonary disease. Pharmacol Ther. 2009;121(1):55–68.PubMedCrossRef
40.
Zurück zum Zitat Kodama J et al. Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol. 2007;18(1):70–6.PubMedCrossRef Kodama J et al. Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol. 2007;18(1):70–6.PubMedCrossRef
41.
Zurück zum Zitat Kochetkova M, Kumar S, McColl SR. Chemokine receptors CXCR4 and CCR7 promote metastasis by preventing anoikis in cancer cells. Cell Death Differ. 2009;16(5):664–73.PubMedCrossRef Kochetkova M, Kumar S, McColl SR. Chemokine receptors CXCR4 and CCR7 promote metastasis by preventing anoikis in cancer cells. Cell Death Differ. 2009;16(5):664–73.PubMedCrossRef
42.
Zurück zum Zitat Dubrovska A et al. CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. Br J Cancer. 2012;107(1):43–52.PubMedCentralPubMedCrossRef Dubrovska A et al. CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. Br J Cancer. 2012;107(1):43–52.PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Sheridan C et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 2006;8(5):R59.PubMedCentralPubMedCrossRef Sheridan C et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 2006;8(5):R59.PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Huang M et al. Breast cancer stromal fibroblasts promote the generation of CD44 + CD24- cells through SDF-1/CXCR4 interaction. J Exp Clin Cancer Res. 2010;29:80.PubMedCentralPubMedCrossRef Huang M et al. Breast cancer stromal fibroblasts promote the generation of CD44 + CD24- cells through SDF-1/CXCR4 interaction. J Exp Clin Cancer Res. 2010;29:80.PubMedCentralPubMedCrossRef
45.
Zurück zum Zitat Cronin PA, Wang JH, Redmond HP. Hypoxia increases the metastatic ability of breast cancer cells via upregulation of CXCR4. BMC Cancer. 2010;10:225.PubMedCentralPubMedCrossRef Cronin PA, Wang JH, Redmond HP. Hypoxia increases the metastatic ability of breast cancer cells via upregulation of CXCR4. BMC Cancer. 2010;10:225.PubMedCentralPubMedCrossRef
46.
Zurück zum Zitat Smith MC et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004;64(23):8604–12.PubMedCrossRef Smith MC et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004;64(23):8604–12.PubMedCrossRef
47.
Zurück zum Zitat Asiedu MK et al. TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res. 2011;71(13):4707–19.PubMedCentralPubMedCrossRef Asiedu MK et al. TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res. 2011;71(13):4707–19.PubMedCentralPubMedCrossRef
48.
Zurück zum Zitat Luker KE et al. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene. 2012;31(45):4750–8.PubMedCentralPubMedCrossRef Luker KE et al. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene. 2012;31(45):4750–8.PubMedCentralPubMedCrossRef
49.
Zurück zum Zitat Yoshimura T et al. Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4 T1 murine breast cancer cells. PLoS One. 2013;8(3):e58791.PubMedCentralPubMedCrossRef Yoshimura T et al. Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4 T1 murine breast cancer cells. PLoS One. 2013;8(3):e58791.PubMedCentralPubMedCrossRef
50.
Zurück zum Zitat Velasco-Velazquez M et al. CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res. 2012;72(15):3839–50.PubMedCrossRef Velasco-Velazquez M et al. CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res. 2012;72(15):3839–50.PubMedCrossRef
51.
Zurück zum Zitat Tsuyada A et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 2012;72(11):2768–79.PubMedCentralPubMedCrossRef Tsuyada A et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 2012;72(11):2768–79.PubMedCentralPubMedCrossRef
52.
53.
Zurück zum Zitat Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139(4):693–706.PubMedCentralPubMedCrossRef Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139(4):693–706.PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Sansone P et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest. 2007;117(12):3988–4002.PubMedCentralPubMedCrossRef Sansone P et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest. 2007;117(12):3988–4002.PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Iliopoulos D et al. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A. 2011;108(4):1397–402.PubMedCentralPubMedCrossRef Iliopoulos D et al. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A. 2011;108(4):1397–402.PubMedCentralPubMedCrossRef
57.
Zurück zum Zitat Marotta, L.L., et al., The JAK2/STAT3 signaling pathway is required for growth of CD44 + CD24- stem cell-like breast cancer cells in human tumors. J Clin Invest, 2011. 121(7). Marotta, L.L., et al., The JAK2/STAT3 signaling pathway is required for growth of CD44 + CD24- stem cell-like breast cancer cells in human tumors. J Clin Invest, 2011. 121(7).
58.
59.
Zurück zum Zitat Xie G et al. IL-6-induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures. Int J Oncol. 2012;40(4):1171–9.PubMedCentralPubMed Xie G et al. IL-6-induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures. Int J Oncol. 2012;40(4):1171–9.PubMedCentralPubMed
60.
Zurück zum Zitat Sullivan NJ et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28(33):2940–7.PubMedCrossRef Sullivan NJ et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28(33):2940–7.PubMedCrossRef
61.
Zurück zum Zitat Anderson DM et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390(6656):175–9.PubMedCrossRef Anderson DM et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390(6656):175–9.PubMedCrossRef
62.
Zurück zum Zitat Page G, Miossec P. RANK and RANKL expression as markers of dendritic cell-T cell interactions in paired samples of rheumatoid synovium and lymph nodes. Arthritis Rheum. 2005;52(8):2307–12.PubMedCrossRef Page G, Miossec P. RANK and RANKL expression as markers of dendritic cell-T cell interactions in paired samples of rheumatoid synovium and lymph nodes. Arthritis Rheum. 2005;52(8):2307–12.PubMedCrossRef
63.
Zurück zum Zitat Palafox M et al. RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res. 2012;72(11):2879–88.PubMedCrossRef Palafox M et al. RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res. 2012;72(11):2879–88.PubMedCrossRef
64.
Zurück zum Zitat Pellegrini P et al. Constitutive activation of RANK disrupts mammary cell fate leading to tumorigenesis. Stem Cells. 2013;31(9):1954–65.PubMedCrossRef Pellegrini P et al. Constitutive activation of RANK disrupts mammary cell fate leading to tumorigenesis. Stem Cells. 2013;31(9):1954–65.PubMedCrossRef
65.
Zurück zum Zitat Thomas E et al. Receptor activator of NF-kappaB ligand promotes proliferation of a putative mammary stem cell unique to the lactating epithelium. Stem Cells. 2012;30(6):1255–64.PubMedCrossRef Thomas E et al. Receptor activator of NF-kappaB ligand promotes proliferation of a putative mammary stem cell unique to the lactating epithelium. Stem Cells. 2012;30(6):1255–64.PubMedCrossRef
66.
Zurück zum Zitat Schramek D et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468(7320):98–102.PubMedCentralPubMedCrossRef Schramek D et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468(7320):98–102.PubMedCentralPubMedCrossRef
67.
Zurück zum Zitat Arwert EN, Hoste E, Watt FM. Epithelial stem cells, wound healing and cancer. Nat Rev Cancer. 2012;12(3):170–80.PubMedCrossRef Arwert EN, Hoste E, Watt FM. Epithelial stem cells, wound healing and cancer. Nat Rev Cancer. 2012;12(3):170–80.PubMedCrossRef
68.
Zurück zum Zitat Spike BT et al. A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer. Cell Stem Cell. 2012;10(2):183–97.PubMedCentralPubMedCrossRef Spike BT et al. A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer. Cell Stem Cell. 2012;10(2):183–97.PubMedCentralPubMedCrossRef
69.
Zurück zum Zitat Asselin-Labat ML et al. Control of mammary stem cell function by steroid hormone signalling. Nature. 2010;465(7299):798–802.PubMedCrossRef Asselin-Labat ML et al. Control of mammary stem cell function by steroid hormone signalling. Nature. 2010;465(7299):798–802.PubMedCrossRef
70.
Zurück zum Zitat Joshi PA et al. Progesterone induces adult mammary stem cell expansion. Nature. 2010;465(7299):803–7.PubMedCrossRef Joshi PA et al. Progesterone induces adult mammary stem cell expansion. Nature. 2010;465(7299):803–7.PubMedCrossRef
71.
Zurück zum Zitat Chin AR, Wang SE. Cytokines driving breast cancer stemness. Mol Cell Endocrinol. 2014;382(1):598–602.PubMedCrossRef Chin AR, Wang SE. Cytokines driving breast cancer stemness. Mol Cell Endocrinol. 2014;382(1):598–602.PubMedCrossRef
72.
Zurück zum Zitat Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.PubMedCrossRef Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–22.PubMedCrossRef
73.
Zurück zum Zitat Sotiropoulou PA et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24(1):74–85.PubMedCrossRef Sotiropoulou PA et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24(1):74–85.PubMedCrossRef
74.
Zurück zum Zitat Karnoub AE et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63.PubMedCrossRef Karnoub AE et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63.PubMedCrossRef
75.
Zurück zum Zitat Dwyer RM et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res. 2007;13(17):5020–7.PubMedCrossRef Dwyer RM et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res. 2007;13(17):5020–7.PubMedCrossRef
76.
Zurück zum Zitat Migneco G et al. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling. Cell Cycle. 2010;9(12):2412–22.PubMedCrossRef Migneco G et al. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling. Cell Cycle. 2010;9(12):2412–22.PubMedCrossRef
77.
Zurück zum Zitat Liao D et al. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4 T1 murine breast cancer model. PLoS One. 2009;4(11):e7965.PubMedCentralPubMedCrossRef Liao D et al. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4 T1 murine breast cancer model. PLoS One. 2009;4(11):e7965.PubMedCentralPubMedCrossRef
78.
Zurück zum Zitat Orimo A et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.PubMedCrossRef Orimo A et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121(3):335–48.PubMedCrossRef
79.
Zurück zum Zitat Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.PubMedCrossRef Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71–8.PubMedCrossRef
80.
81.
Zurück zum Zitat Okuda H et al. Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer Res. 2012;72(2):537–47.PubMedCentralPubMedCrossRef Okuda H et al. Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer Res. 2012;72(2):537–47.PubMedCentralPubMedCrossRef
82.
Zurück zum Zitat Jinushi M et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci U S A. 2011;108(30):12425–30.PubMedCentralPubMedCrossRef Jinushi M et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci U S A. 2011;108(30):12425–30.PubMedCentralPubMedCrossRef
83.
Zurück zum Zitat Hong CC et al. Pretreatment levels of circulating Th1 and Th2 cytokines, and their ratios, are associated with ER-negative and triple negative breast cancers. Breast Cancer Res Treat. 2013;139(2):477–88.PubMedCentralPubMedCrossRef Hong CC et al. Pretreatment levels of circulating Th1 and Th2 cytokines, and their ratios, are associated with ER-negative and triple negative breast cancers. Breast Cancer Res Treat. 2013;139(2):477–88.PubMedCentralPubMedCrossRef
84.
Zurück zum Zitat Liu F et al. CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat. 2011;130(2):645–55.PubMedCrossRef Liu F et al. CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat. 2011;130(2):645–55.PubMedCrossRef
85.
Zurück zum Zitat Seo AN et al. Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer. 2013;109(10):2705–13.PubMedCrossRef Seo AN et al. Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer. 2013;109(10):2705–13.PubMedCrossRef
86.
Zurück zum Zitat Benevides L et al. Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol. 2013;43(6):1518–28.PubMedCrossRef Benevides L et al. Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol. 2013;43(6):1518–28.PubMedCrossRef
87.
Zurück zum Zitat Santisteban M et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 2009;69(7):2887–95.PubMedCentralPubMedCrossRef Santisteban M et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 2009;69(7):2887–95.PubMedCentralPubMedCrossRef
88.
Zurück zum Zitat Holzel M, Bovier A, Tuting T. Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer. 2013;13(5):365–76.PubMedCrossRef Holzel M, Bovier A, Tuting T. Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer. 2013;13(5):365–76.PubMedCrossRef
89.
Zurück zum Zitat Reim F et al. Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells: selective escape of CD44high/CD24low/HER2low breast cancer stem cells. Cancer Res. 2009;69(20):8058–66.PubMedCrossRef Reim F et al. Immunoselection of breast and ovarian cancer cells with trastuzumab and natural killer cells: selective escape of CD44high/CD24low/HER2low breast cancer stem cells. Cancer Res. 2009;69(20):8058–66.PubMedCrossRef
90.
Zurück zum Zitat Knutson KL et al. Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol. 2006;177(3):1526–33.PubMedCrossRef Knutson KL et al. Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol. 2006;177(3):1526–33.PubMedCrossRef
91.
Zurück zum Zitat Kawasaki BT et al. Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun. 2007;364(4):778–82.PubMedCentralPubMedCrossRef Kawasaki BT et al. Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun. 2007;364(4):778–82.PubMedCentralPubMedCrossRef
92.
93.
Zurück zum Zitat Wang LX, Plautz GE. T cells sensitized with breast tumor progenitor cell vaccine have therapeutic activity against spontaneous HER2/neu tumors. Breast Cancer Res Treat. 2012;134(1):61–70.PubMedCentralPubMedCrossRef Wang LX, Plautz GE. T cells sensitized with breast tumor progenitor cell vaccine have therapeutic activity against spontaneous HER2/neu tumors. Breast Cancer Res Treat. 2012;134(1):61–70.PubMedCentralPubMedCrossRef
94.
Zurück zum Zitat Mine T et al. Breast cancer cells expressing stem cell markers CD44+ CD24 lo are eliminated by Numb-1 peptide-activated T cells. Cancer Immunol Immunother. 2009;58(8):1185–94.PubMedCentralPubMedCrossRef Mine T et al. Breast cancer cells expressing stem cell markers CD44+ CD24 lo are eliminated by Numb-1 peptide-activated T cells. Cancer Immunol Immunother. 2009;58(8):1185–94.PubMedCentralPubMedCrossRef
96.
Zurück zum Zitat Karyampudi, L., et al., Accumulation of Memory Precursor CD8 T Cells in Regressing Tumors Following Combination Therapy with Vaccine and Anti-PD-1 Antibody. Cancer Res, 2014. Karyampudi, L., et al., Accumulation of Memory Precursor CD8 T Cells in Regressing Tumors Following Combination Therapy with Vaccine and Anti-PD-1 Antibody. Cancer Res, 2014.
Metadaten
Titel
Breast Cancer Stem Cells and the Immune System: Promotion, Evasion and Therapy
verfasst von
Sarah T. Boyle
Marina Kochetkova
Publikationsdatum
01.07.2014
Verlag
Springer US
Erschienen in
Journal of Mammary Gland Biology and Neoplasia / Ausgabe 2/2014
Print ISSN: 1083-3021
Elektronische ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-014-9323-y

Weitere Artikel der Ausgabe 2/2014

Journal of Mammary Gland Biology and Neoplasia 2/2014 Zur Ausgabe

Preface

Preface

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.