Skip to main content
Erschienen in: Journal of Mammary Gland Biology and Neoplasia 2/2014

01.07.2014

Cytokine Networks That Mediate Epithelial Cell-Macrophage Crosstalk in the Mammary Gland: Implications for Development and Cancer

verfasst von: Xuan Sun, Wendy V. Ingman

Erschienen in: Journal of Mammary Gland Biology and Neoplasia | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

Dynamic interactions between the hormone responsive mammary gland epithelium and surrounding stromal macrophage populations are critical for normal development and function of the mammary gland. Macrophages are versatile cells capable of diverse roles in mammary gland development and maintenance of homeostasis, and their function is highly dependent on signals within the local cytokine microenvironment. The mammary epithelium secretes a number of cytokines, including colony stimulating factor 1 (CSF1), transforming growth factor beta 1 (TGFB1), and chemokine ligand 2 (CCL2) that affect the abundance, phenotype and function of macrophages. However, aberrations in these interactions have been found to increase the risk of tumour formation, and utilisation of stromal macrophage support by tumours can increase the invasive and metastatic potential of the cancer. Studies utilising genetically modified mouse models have shed light on the significance of epithelial cell-macrophage crosstalk, and the cytokines that mediate this communication, in mammary gland development and tumourigenesis. This article reviews the current status of our understanding of the roles of epithelial cell-derived cytokines in mammary gland development and cancer, with a focus on the crosstalk between epithelial cells and the local macrophage population.
Literatur
1.
Zurück zum Zitat Hovey RC, Trott JF, Vonderhaar BK. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia. 2002;7(1):17–38.PubMedCrossRef Hovey RC, Trott JF, Vonderhaar BK. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia. 2002;7(1):17–38.PubMedCrossRef
2.
Zurück zum Zitat Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol. 2005;6(9):715–25.PubMedCrossRef Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol. 2005;6(9):715–25.PubMedCrossRef
3.
Zurück zum Zitat Fata JE, Chaudhary V, Khokha R. Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17beta-estradiol during the estrous cycle. Biol Reprod. 2001;65(3):680–8.PubMedCrossRef Fata JE, Chaudhary V, Khokha R. Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17beta-estradiol during the estrous cycle. Biol Reprod. 2001;65(3):680–8.PubMedCrossRef
4.
Zurück zum Zitat Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci U S A. 1994;91(20):9312–6.PubMedCentralPubMedCrossRef Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci U S A. 1994;91(20):9312–6.PubMedCentralPubMedCrossRef
5.
Zurück zum Zitat Sun X, Robertson SA, Ingman WV. Regulation of epithelial cell turnover and macrophage phenotype by epithelial cell-derived transforming growth factor beta1 in the mammary gland. Cytokine. 2013;61(2):377–88.PubMedCrossRef Sun X, Robertson SA, Ingman WV. Regulation of epithelial cell turnover and macrophage phenotype by epithelial cell-derived transforming growth factor beta1 in the mammary gland. Cytokine. 2013;61(2):377–88.PubMedCrossRef
6.
Zurück zum Zitat Gouon-Evans V, Lin EY, Pollard JW. Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res. 2002;4(4):155–64.PubMedCentralPubMedCrossRef Gouon-Evans V, Lin EY, Pollard JW. Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res. 2002;4(4):155–64.PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Hodson LJ et al. Macrophage phenotype in the mammary gland fluctuates over the course of the estrous cycle and is regulated by ovarian steroid hormones. Biol Reprod. 2013;89(3):65.PubMedCrossRef Hodson LJ et al. Macrophage phenotype in the mammary gland fluctuates over the course of the estrous cycle and is regulated by ovarian steroid hormones. Biol Reprod. 2013;89(3):65.PubMedCrossRef
9.
Zurück zum Zitat Li MO et al. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146.PubMedCrossRef Li MO et al. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146.PubMedCrossRef
10.
Zurück zum Zitat Tsunawaki S et al. Deactivation of macrophages by transforming growth factor-beta. Nature. 1988;334(6179):260–2.PubMedCrossRef Tsunawaki S et al. Deactivation of macrophages by transforming growth factor-beta. Nature. 1988;334(6179):260–2.PubMedCrossRef
11.
Zurück zum Zitat Nandan D, Reiner NE. TGF-beta attenuates the class II transactivator and reveals an accessory pathway of IFN-gamma action. J Immunol. 1997;158(3):1095–101.PubMed Nandan D, Reiner NE. TGF-beta attenuates the class II transactivator and reveals an accessory pathway of IFN-gamma action. J Immunol. 1997;158(3):1095–101.PubMed
12.
Zurück zum Zitat Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett. 2008;267(2):271–85.PubMedCrossRef Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett. 2008;267(2):271–85.PubMedCrossRef
13.
Zurück zum Zitat Lin EY et al. The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia. 2002;7(2):147–62.PubMedCrossRef Lin EY et al. The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia. 2002;7(2):147–62.PubMedCrossRef
14.
Zurück zum Zitat Mantovani A et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.PubMedCrossRef Mantovani A et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.PubMedCrossRef
16.
Zurück zum Zitat Cook J, Hagemann T. Tumour-associated macrophages and cancer. Curr Opin Pharmacol. 2013;13(4):595–601.PubMedCrossRef Cook J, Hagemann T. Tumour-associated macrophages and cancer. Curr Opin Pharmacol. 2013;13(4):595–601.PubMedCrossRef
17.
Zurück zum Zitat Sica A et al. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42(6):717–27.PubMedCrossRef Sica A et al. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42(6):717–27.PubMedCrossRef
18.
Zurück zum Zitat Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127(11):2269–82.PubMed Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127(11):2269–82.PubMed
19.
Zurück zum Zitat Van Nguyen A, Pollard JW. Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth. Dev Biol. 2002;247(1):11–25.PubMedCrossRef Van Nguyen A, Pollard JW. Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth. Dev Biol. 2002;247(1):11–25.PubMedCrossRef
20.
Zurück zum Zitat Ingman WV et al. Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn. 2006;235(12):3222–9.PubMedCrossRef Ingman WV et al. Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn. 2006;235(12):3222–9.PubMedCrossRef
21.
Zurück zum Zitat Chua CL, H.L., Robertson SA, Ingman WV, Dual roles of macrophages in ovarian cycle-associated development and remodeling of the mammary gland epithelium. Development, 2010. In press. Chua CL, H.L., Robertson SA, Ingman WV, Dual roles of macrophages in ovarian cycle-associated development and remodeling of the mammary gland epithelium. Development, 2010. In press.
22.
Zurück zum Zitat Schwertfeger KL, Rosen JM, Cohen DA. Mammary gland macrophages: pleiotropic functions in mammary development. J Mammary Gland Biol Neoplasia. 2006;11(3–4):229–38.PubMedCrossRef Schwertfeger KL, Rosen JM, Cohen DA. Mammary gland macrophages: pleiotropic functions in mammary development. J Mammary Gland Biol Neoplasia. 2006;11(3–4):229–38.PubMedCrossRef
23.
Zurück zum Zitat Stein WD et al. A serial analysis of gene expression (SAGE) database analysis of chemo sensitivity: comparing solid tumors with cell lines and comparing solid tumors from different tissue origins. Cancer Res. 2004;64(8):2805–16.PubMedCrossRef Stein WD et al. A serial analysis of gene expression (SAGE) database analysis of chemo sensitivity: comparing solid tumors with cell lines and comparing solid tumors from different tissue origins. Cancer Res. 2004;64(8):2805–16.PubMedCrossRef
25.
Zurück zum Zitat O'Brien J et al. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development. 2012;139(2):269–75.PubMedCrossRef O'Brien J et al. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development. 2012;139(2):269–75.PubMedCrossRef
26.
Zurück zum Zitat Lindeman GJ et al. SOCS1 deficiency results in accelerated mammary gland development and rescues lactation in prolactin receptor-deficient mice. Genes Dev. 2001;15(13):1631–6.PubMedCentralPubMedCrossRef Lindeman GJ et al. SOCS1 deficiency results in accelerated mammary gland development and rescues lactation in prolactin receptor-deficient mice. Genes Dev. 2001;15(13):1631–6.PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Motta M, A.P., Baratta M., Leptin and prolactin modulate the expression of SOCS-1 in association with interleukin-6 and tumor necrosis factor-alpha in mammary cells: a role in differentiated secretory epithelium. Regul Pept, 2004. 121(1–3): p. 163–70. Motta M, A.P., Baratta M., Leptin and prolactin modulate the expression of SOCS-1 in association with interleukin-6 and tumor necrosis factor-alpha in mammary cells: a role in differentiated secretory epithelium. Regul Pept, 2004. 121(1–3): p. 163–70.
28.
Zurück zum Zitat Clarkson RW BM, Kritikou EA, Lee JM, Freeman TC, Tiffen PG, Watson CJ. The genes induced by signal transducer and activators of transcription (STAT)3 and STAT5 in mammary epithelial cells define the roles of these STATs in mammary development. Mol Endocrinol. 2006;20(3):675–85.PubMedCrossRef Clarkson RW BM, Kritikou EA, Lee JM, Freeman TC, Tiffen PG, Watson CJ. The genes induced by signal transducer and activators of transcription (STAT)3 and STAT5 in mammary epithelial cells define the roles of these STATs in mammary development. Mol Endocrinol. 2006;20(3):675–85.PubMedCrossRef
29.
30.
Zurück zum Zitat Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64.PubMedCrossRef Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64.PubMedCrossRef
31.
Zurück zum Zitat Hume DA et al. The mononuclear phagocyte system revisited. J Leukoc Biol. 2002;72(4):621–7.PubMed Hume DA et al. The mononuclear phagocyte system revisited. J Leukoc Biol. 2002;72(4):621–7.PubMed
32.
Zurück zum Zitat Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.PubMedCrossRef Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.PubMedCrossRef
33.
Zurück zum Zitat Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.PubMedCrossRef Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.PubMedCrossRef
34.
Zurück zum Zitat Guo X et al. Microenvironmental control of the breast cancer cell cycle. Anat Rec (Hoboken). 2012;295(4):553–62.CrossRef Guo X et al. Microenvironmental control of the breast cancer cell cycle. Anat Rec (Hoboken). 2012;295(4):553–62.CrossRef
35.
Zurück zum Zitat Mahmoud SM et al. Tumour-infiltrating macrophages and clinical outcome in breast cancer. J Clin Pathol. 2012;65(2):159–63.PubMedCrossRef Mahmoud SM et al. Tumour-infiltrating macrophages and clinical outcome in breast cancer. J Clin Pathol. 2012;65(2):159–63.PubMedCrossRef
36.
Zurück zum Zitat Wiktor-Jedrzejczak W et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A. 1990;87(12):4828–32.PubMedCentralPubMedCrossRef Wiktor-Jedrzejczak W et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A. 1990;87(12):4828–32.PubMedCentralPubMedCrossRef
37.
Zurück zum Zitat Hamilton JA. CSF-1 signal transduction. J Leukoc Biol. 1997;62(2):145–55.PubMed Hamilton JA. CSF-1 signal transduction. J Leukoc Biol. 1997;62(2):145–55.PubMed
38.
Zurück zum Zitat Rohrschneider LR et al. Growth and differentiation signals regulated by the M-CSF receptor. Mol Reprod Dev. 1997;46(1):96–103.PubMedCrossRef Rohrschneider LR et al. Growth and differentiation signals regulated by the M-CSF receptor. Mol Reprod Dev. 1997;46(1):96–103.PubMedCrossRef
39.
Zurück zum Zitat Ryan GR et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood. 2001;98(1):74–84.PubMedCrossRef Ryan GR et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1(op)/Csf1(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood. 2001;98(1):74–84.PubMedCrossRef
40.
Zurück zum Zitat Cecchini MG et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development. 1994;120(6):1357–72.PubMed Cecchini MG et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development. 1994;120(6):1357–72.PubMed
41.
Zurück zum Zitat Pollard JW et al. Apparent role of the macrophage growth factor, CSF-1, in placental development. Nature. 1987;330(6147):484–6.PubMedCrossRef Pollard JW et al. Apparent role of the macrophage growth factor, CSF-1, in placental development. Nature. 1987;330(6147):484–6.PubMedCrossRef
42.
Zurück zum Zitat Byrne PV, Guilbert LJ, Stanley ER. Distribution of cells bearing receptors for a colony-stimulating factor (CSF-1) in murine tissues. J Cell Biol. 1981;91(3):848–53.PubMedCrossRef Byrne PV, Guilbert LJ, Stanley ER. Distribution of cells bearing receptors for a colony-stimulating factor (CSF-1) in murine tissues. J Cell Biol. 1981;91(3):848–53.PubMedCrossRef
43.
Zurück zum Zitat Kacinski BM et al. FMS (CSF-1 receptor) and CSF-1 transcripts and protein are expressed by human breast carcinomas in vivo and in vitro. Oncogene. 1991;6(6):941–52.PubMed Kacinski BM et al. FMS (CSF-1 receptor) and CSF-1 transcripts and protein are expressed by human breast carcinomas in vivo and in vitro. Oncogene. 1991;6(6):941–52.PubMed
44.
Zurück zum Zitat Sapi E. The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update. Exp Biol Med (Maywood). 2004;229(1):1–11. Sapi E. The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update. Exp Biol Med (Maywood). 2004;229(1):1–11.
45.
Zurück zum Zitat Sapi E et al. Expression of CSF-I and CSF-I receptor by normal lactating mammary epithelial cells. J Soc Gynecol Investig. 1998;5(2):94–101.PubMedCrossRef Sapi E et al. Expression of CSF-I and CSF-I receptor by normal lactating mammary epithelial cells. J Soc Gynecol Investig. 1998;5(2):94–101.PubMedCrossRef
47.
Zurück zum Zitat Beuvon F et al. CSF-1 (colony stimulating factors 1) and CSF-1 receptor. General review and expression in invasive breast tumors. Bull Cancer. 1993;80(1):29–35.PubMed Beuvon F et al. CSF-1 (colony stimulating factors 1) and CSF-1 receptor. General review and expression in invasive breast tumors. Bull Cancer. 1993;80(1):29–35.PubMed
48.
Zurück zum Zitat Aharinejad S et al. Elevated CSF1 serum concentration predicts poor overall survival in women with early breast cancer. Endocr Relat Cancer. 2013;20(6):777–83.PubMedCrossRef Aharinejad S et al. Elevated CSF1 serum concentration predicts poor overall survival in women with early breast cancer. Endocr Relat Cancer. 2013;20(6):777–83.PubMedCrossRef
49.
Zurück zum Zitat Aharinejad S et al. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res. 2004;64(15):5378–84.PubMedCrossRef Aharinejad S et al. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res. 2004;64(15):5378–84.PubMedCrossRef
50.
Zurück zum Zitat Wyckoff J et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64(19):7022–9.PubMedCrossRef Wyckoff J et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64(19):7022–9.PubMedCrossRef
51.
Zurück zum Zitat Tucker RF et al. Growth inhibitor from BSC-1 cells closely related to platelet type beta transforming growth factor. Science. 1984;226(4675):705–7.PubMedCrossRef Tucker RF et al. Growth inhibitor from BSC-1 cells closely related to platelet type beta transforming growth factor. Science. 1984;226(4675):705–7.PubMedCrossRef
52.
Zurück zum Zitat Lyons RM et al. Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol. 1990;110(4):1361–7.PubMedCrossRef Lyons RM et al. Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J Cell Biol. 1990;110(4):1361–7.PubMedCrossRef
53.
Zurück zum Zitat Ingman WV, Robertson SA. The essential roles of TGFB1 in reproduction. Cytokine Growth Factor Rev. 2009;20(3):233–9.PubMedCrossRef Ingman WV, Robertson SA. The essential roles of TGFB1 in reproduction. Cytokine Growth Factor Rev. 2009;20(3):233–9.PubMedCrossRef
54.
Zurück zum Zitat Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 2006;25(3):435–57.PubMedCrossRef Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 2006;25(3):435–57.PubMedCrossRef
56.
Zurück zum Zitat Brown CB et al. Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Science. 1999;283(5410):2080–2.PubMedCrossRef Brown CB et al. Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Science. 1999;283(5410):2080–2.PubMedCrossRef
57.
Zurück zum Zitat Fleisch MC, Maxwell CA, Barcellos-Hoff MH. The pleiotropic roles of transforming growth factor beta in homeostasis and carcinogenesis of endocrine organs. Endocr Relat Cancer. 2006;13(2):379–400.PubMedCrossRef Fleisch MC, Maxwell CA, Barcellos-Hoff MH. The pleiotropic roles of transforming growth factor beta in homeostasis and carcinogenesis of endocrine organs. Endocr Relat Cancer. 2006;13(2):379–400.PubMedCrossRef
58.
Zurück zum Zitat Chong H et al. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages. J Cell Physiol. 1999;178(3):275–83.PubMedCrossRef Chong H et al. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages. J Cell Physiol. 1999;178(3):275–83.PubMedCrossRef
59.
Zurück zum Zitat Barcellos-Hoff MH. Latency and activation in the control of TGF-beta. J Mammary Gland Biol Neoplasia. 1996;1(4):353–63.CrossRef Barcellos-Hoff MH. Latency and activation in the control of TGF-beta. J Mammary Gland Biol Neoplasia. 1996;1(4):353–63.CrossRef
60.
Zurück zum Zitat Lawrence DA, Pircher R, Jullien P. Conversion of a high molecular weight latent beta-TGF from chicken embryo fibroblasts into a low molecular weight active beta-TGF under acidic conditions. Biochem Biophys Res Commun. 1985;133(3):1026–34.PubMedCrossRef Lawrence DA, Pircher R, Jullien P. Conversion of a high molecular weight latent beta-TGF from chicken embryo fibroblasts into a low molecular weight active beta-TGF under acidic conditions. Biochem Biophys Res Commun. 1985;133(3):1026–34.PubMedCrossRef
61.
Zurück zum Zitat Nunes I et al. Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol. 1997;136(5):1151–63.PubMedCentralPubMedCrossRef Nunes I et al. Latent transforming growth factor-beta binding protein domains involved in activation and transglutaminase-dependent cross-linking of latent transforming growth factor-beta. J Cell Biol. 1997;136(5):1151–63.PubMedCentralPubMedCrossRef
62.
Zurück zum Zitat Ehrhart EJ et al. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation. FASEB J. 1997;11(12):991–1002.PubMed Ehrhart EJ et al. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation. FASEB J. 1997;11(12):991–1002.PubMed
63.
64.
Zurück zum Zitat Wakefield LM et al. Recombinant latent transforming growth factor beta 1 has a longer plasma half-life in rats than active transforming growth factor beta 1, and a different tissue distribution. J Clin Invest. 1990;86(6):1976–84.PubMedCentralPubMedCrossRef Wakefield LM et al. Recombinant latent transforming growth factor beta 1 has a longer plasma half-life in rats than active transforming growth factor beta 1, and a different tissue distribution. J Clin Invest. 1990;86(6):1976–84.PubMedCentralPubMedCrossRef
65.
Zurück zum Zitat Ewan KB et al. Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol. 2002;160(6):2081–93.PubMedCentralPubMedCrossRef Ewan KB et al. Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol. 2002;160(6):2081–93.PubMedCentralPubMedCrossRef
66.
Zurück zum Zitat Robinson SD et al. Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development. 1991;113(3):867–78.PubMed Robinson SD et al. Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development. 1991;113(3):867–78.PubMed
67.
Zurück zum Zitat Pollard JW. Tumour-stromal interactions. Transforming growth factor-beta isoforms and hepatocyte growth factor/scatter factor in mammary gland ductal morphogenesis. Breast Cancer Res. 2001;3(4):230–7.PubMedCentralPubMedCrossRef Pollard JW. Tumour-stromal interactions. Transforming growth factor-beta isoforms and hepatocyte growth factor/scatter factor in mammary gland ductal morphogenesis. Breast Cancer Res. 2001;3(4):230–7.PubMedCentralPubMedCrossRef
68.
Zurück zum Zitat Joseph H et al. Overexpression of a kinase-deficient transforming growth factor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. Mol Biol Cell. 1999;10(4):1221–34.PubMedCentralPubMedCrossRef Joseph H et al. Overexpression of a kinase-deficient transforming growth factor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. Mol Biol Cell. 1999;10(4):1221–34.PubMedCentralPubMedCrossRef
69.
Zurück zum Zitat Daniel CW et al. TGF-beta 1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Dev Biol. 1989;135(1):20–30.PubMedCrossRef Daniel CW et al. TGF-beta 1-induced inhibition of mouse mammary ductal growth: developmental specificity and characterization. Dev Biol. 1989;135(1):20–30.PubMedCrossRef
70.
Zurück zum Zitat Silberstein GB et al. Regulation of mammary morphogenesis: evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-beta 1. Dev Biol. 1992;152(2):354–62.PubMedCrossRef Silberstein GB et al. Regulation of mammary morphogenesis: evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-beta 1. Dev Biol. 1992;152(2):354–62.PubMedCrossRef
71.
Zurück zum Zitat Pierce Jr DF et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev. 1993;7(12):2308–17.PubMedCrossRef Pierce Jr DF et al. Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev. 1993;7(12):2308–17.PubMedCrossRef
72.
Zurück zum Zitat Jhappan C et al. Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 1993;12(5):1835–45.PubMedCentralPubMed Jhappan C et al. Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation. EMBO J. 1993;12(5):1835–45.PubMedCentralPubMed
73.
Zurück zum Zitat Gorska AE et al. Dominant-negative interference of the transforming growth factor beta type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. Cell Growth Differ. 1998;9(3):229–38.PubMed Gorska AE et al. Dominant-negative interference of the transforming growth factor beta type II receptor in mammary gland epithelium results in alveolar hyperplasia and differentiation in virgin mice. Cell Growth Differ. 1998;9(3):229–38.PubMed
74.
Zurück zum Zitat Crowley MR, Bowtell D, Serra R. TGF-beta, c-Cbl, and PDGFR-alpha the in mammary stroma. Dev Biol. 2005;279(1):58–72.PubMedCrossRef Crowley MR, Bowtell D, Serra R. TGF-beta, c-Cbl, and PDGFR-alpha the in mammary stroma. Dev Biol. 2005;279(1):58–72.PubMedCrossRef
75.
Zurück zum Zitat Shull MM et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359(6397):693–9.PubMedCentralPubMedCrossRef Shull MM et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359(6397):693–9.PubMedCentralPubMedCrossRef
76.
Zurück zum Zitat Kulkarni AB et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A. 1993;90(2):770–4.PubMedCentralPubMedCrossRef Kulkarni AB et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A. 1993;90(2):770–4.PubMedCentralPubMedCrossRef
77.
Zurück zum Zitat Diebold RJ et al. Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated. Proc Natl Acad Sci U S A. 1995;92(26):12215–9.PubMedCentralPubMedCrossRef Diebold RJ et al. Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated. Proc Natl Acad Sci U S A. 1995;92(26):12215–9.PubMedCentralPubMedCrossRef
78.
Zurück zum Zitat Ingman WV, Robertson SA. Mammary gland development in transforming growth factor beta1 null mutant mice: systemic and epithelial effects. Biol Reprod. 2008;79(4):711–7.PubMedCrossRef Ingman WV, Robertson SA. Mammary gland development in transforming growth factor beta1 null mutant mice: systemic and epithelial effects. Biol Reprod. 2008;79(4):711–7.PubMedCrossRef
79.
Zurück zum Zitat McGrath LJ et al. Exogenous transforming growth factor beta1 replacement and fertility in male Tgfb1 null mutant mice. Reprod Fertil Dev. 2009;21(4):561–70.PubMedCrossRef McGrath LJ et al. Exogenous transforming growth factor beta1 replacement and fertility in male Tgfb1 null mutant mice. Reprod Fertil Dev. 2009;21(4):561–70.PubMedCrossRef
80.
Zurück zum Zitat Bottalico LA et al. Transforming growth factor-beta 1 inhibits scavenger receptor activity in THP-1 human macrophages. J Biol Chem. 1991;266(34):22866–71.PubMed Bottalico LA et al. Transforming growth factor-beta 1 inhibits scavenger receptor activity in THP-1 human macrophages. J Biol Chem. 1991;266(34):22866–71.PubMed
81.
Zurück zum Zitat Sherry B et al. Induction of the chemokine beta peptides, MIP-1 alpha and MIP-1 beta, by lipopolysaccharide is differentially regulated by immunomodulatory cytokines gamma-IFN, IL-10, IL-4, and TGF-beta. Mol Med. 1998;4(10):648–57.PubMedCentralPubMed Sherry B et al. Induction of the chemokine beta peptides, MIP-1 alpha and MIP-1 beta, by lipopolysaccharide is differentially regulated by immunomodulatory cytokines gamma-IFN, IL-10, IL-4, and TGF-beta. Mol Med. 1998;4(10):648–57.PubMedCentralPubMed
83.
Zurück zum Zitat Cox A et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet. 2007;39(3):352–8.PubMedCrossRef Cox A et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet. 2007;39(3):352–8.PubMedCrossRef
84.
Zurück zum Zitat Krippl P et al. The L10P polymorphism of the transforming growth factor-beta 1 gene is not associated with breast cancer risk. Cancer Lett. 2003;201(2):181–4.PubMedCrossRef Krippl P et al. The L10P polymorphism of the transforming growth factor-beta 1 gene is not associated with breast cancer risk. Cancer Lett. 2003;201(2):181–4.PubMedCrossRef
85.
Zurück zum Zitat Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010;31(6):220–7.PubMedCentralPubMedCrossRef Yang L, Pang Y, Moses HL. TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010;31(6):220–7.PubMedCentralPubMedCrossRef
86.
Zurück zum Zitat Dumont N, Arteaga CL. Transforming growth factor-beta and breast cancer: tumor promoting effects of transforming growth factor-beta. Breast Cancer Res. 2000;2(2):125–32.PubMedCentralPubMedCrossRef Dumont N, Arteaga CL. Transforming growth factor-beta and breast cancer: tumor promoting effects of transforming growth factor-beta. Breast Cancer Res. 2000;2(2):125–32.PubMedCentralPubMedCrossRef
87.
Zurück zum Zitat Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta. 2007;1775(1):21–62.PubMed Pardali K, Moustakas A. Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta. 2007;1775(1):21–62.PubMed
88.
Zurück zum Zitat Moustakas A et al. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett. 2002;82(1–2):85–91.PubMedCrossRef Moustakas A et al. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett. 2002;82(1–2):85–91.PubMedCrossRef
89.
Zurück zum Zitat Pierce Jr DF et al. Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci U S A. 1995;92(10):4254–8.PubMedCentralPubMedCrossRef Pierce Jr DF et al. Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci U S A. 1995;92(10):4254–8.PubMedCentralPubMedCrossRef
90.
Zurück zum Zitat Siegel PM et al. Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci U S A. 2003;100(14):8430–5.PubMedCentralPubMedCrossRef Siegel PM et al. Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci U S A. 2003;100(14):8430–5.PubMedCentralPubMedCrossRef
91.
Zurück zum Zitat Gorska AE et al. Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am J Pathol. 2003;163(4):1539–49.PubMedCentralPubMedCrossRef Gorska AE et al. Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. Am J Pathol. 2003;163(4):1539–49.PubMedCentralPubMedCrossRef
92.
Zurück zum Zitat Bottinger EP et al. Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor beta receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Cancer Res. 1997;57(24):5564–70.PubMed Bottinger EP et al. Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor beta receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Cancer Res. 1997;57(24):5564–70.PubMed
93.
Zurück zum Zitat Forrester E et al. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res. 2005;65(6):2296–302.PubMedCrossRef Forrester E et al. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res. 2005;65(6):2296–302.PubMedCrossRef
94.
Zurück zum Zitat Bierie B et al. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res. 2008;68(6):1809–19.PubMedCrossRef Bierie B et al. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment. Cancer Res. 2008;68(6):1809–19.PubMedCrossRef
95.
Zurück zum Zitat Yang L et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell. 2008;13(1):23–35.PubMedCentralPubMedCrossRef Yang L et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell. 2008;13(1):23–35.PubMedCentralPubMedCrossRef
96.
Zurück zum Zitat Muraoka RS et al. Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1. Mol Cell Biol. 2003;23(23):8691–703.PubMedCentralPubMedCrossRef Muraoka RS et al. Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1. Mol Cell Biol. 2003;23(23):8691–703.PubMedCentralPubMedCrossRef
97.
Zurück zum Zitat Yang YA et al. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest. 2002;109(12):1607–15.PubMedCentralPubMedCrossRef Yang YA et al. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest. 2002;109(12):1607–15.PubMedCentralPubMedCrossRef
98.
Zurück zum Zitat Tan AR, Alexe G, Reiss M. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat. 2009;115(3):453–95.PubMedCentralPubMedCrossRef Tan AR, Alexe G, Reiss M. Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Res Treat. 2009;115(3):453–95.PubMedCentralPubMedCrossRef
99.
Zurück zum Zitat Bhowmick NA et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303(5659):848–51.PubMedCrossRef Bhowmick NA et al. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303(5659):848–51.PubMedCrossRef
100.
Zurück zum Zitat Yadav A, Saini V, Arora S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta. 2010;411(21–22):1570–9.PubMedCrossRef Yadav A, Saini V, Arora S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta. 2010;411(21–22):1570–9.PubMedCrossRef
102.
Zurück zum Zitat Cushing SD et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A. 1990;87(13):5134–8.PubMedCentralPubMedCrossRef Cushing SD et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A. 1990;87(13):5134–8.PubMedCentralPubMedCrossRef
103.
Zurück zum Zitat Standiford TJ et al. Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem. 1991;266(15):9912–8.PubMed Standiford TJ et al. Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem. 1991;266(15):9912–8.PubMed
104.
Zurück zum Zitat Matsushima K et al. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med. 1989;169(4):1485–90.PubMedCrossRef Matsushima K et al. Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med. 1989;169(4):1485–90.PubMedCrossRef
105.
Zurück zum Zitat Yoshimura T et al. Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J Exp Med. 1989;169(4):1449–59.PubMedCrossRef Yoshimura T et al. Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J Exp Med. 1989;169(4):1449–59.PubMedCrossRef
106.
107.
Zurück zum Zitat Allavena P et al. Induction of natural killer cell migration by monocyte chemotactic protein-1, −2 and −3. Eur J Immunol. 1994;24(12):3233–6.PubMedCrossRef Allavena P et al. Induction of natural killer cell migration by monocyte chemotactic protein-1, −2 and −3. Eur J Immunol. 1994;24(12):3233–6.PubMedCrossRef
108.
Zurück zum Zitat Fuentes ME et al. Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J Immunol. 1995;155(12):5769–76.PubMed Fuentes ME et al. Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J Immunol. 1995;155(12):5769–76.PubMed
109.
Zurück zum Zitat Lu B et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med. 1998;187(4):601–8.PubMedCentralPubMedCrossRef Lu B et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med. 1998;187(4):601–8.PubMedCentralPubMedCrossRef
110.
Zurück zum Zitat Rutledge BJ et al. High level monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular pathogens. J Immunol. 1995;155(10):4838–43.PubMed Rutledge BJ et al. High level monocyte chemoattractant protein-1 expression in transgenic mice increases their susceptibility to intracellular pathogens. J Immunol. 1995;155(10):4838–43.PubMed
111.
Zurück zum Zitat Ueno T et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 2000;6(8):3282–9.PubMed Ueno T et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 2000;6(8):3282–9.PubMed
112.
Zurück zum Zitat O'Brien J et al. Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species. Am J Pathol. 2010;176(3):1241–55.PubMedCentralPubMedCrossRef O'Brien J et al. Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species. Am J Pathol. 2010;176(3):1241–55.PubMedCentralPubMedCrossRef
113.
Zurück zum Zitat Glynn DJ, Hutchinson MR, Ingman WV. Toll-like receptor 4 regulates lipopolysaccharide-induced inflammation and lactation insufficiency in a mouse model of mastitis. Biol Reprod. 2014;90(5):91.PubMedCrossRef Glynn DJ, Hutchinson MR, Ingman WV. Toll-like receptor 4 regulates lipopolysaccharide-induced inflammation and lactation insufficiency in a mouse model of mastitis. Biol Reprod. 2014;90(5):91.PubMedCrossRef
114.
Zurück zum Zitat Fujimoto H et al. Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer. 2009;125(6):1276–84.PubMedCrossRef Fujimoto H et al. Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer. 2009;125(6):1276–84.PubMedCrossRef
115.
Zurück zum Zitat Arendt LM et al. Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res. 2013;73(19):6080–93.PubMedCrossRef Arendt LM et al. Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res. 2013;73(19):6080–93.PubMedCrossRef
116.
Zurück zum Zitat Ghilardi G et al. Breast cancer progression and host polymorphisms in the chemokine system: role of the macrophage chemoattractant protein-1 (MCP-1) -2518 G allele. Clin Chem. 2005;51(2):452–5.PubMedCrossRef Ghilardi G et al. Breast cancer progression and host polymorphisms in the chemokine system: role of the macrophage chemoattractant protein-1 (MCP-1) -2518 G allele. Clin Chem. 2005;51(2):452–5.PubMedCrossRef
117.
Zurück zum Zitat Rovin BH, Lu L, Saxena R. A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem Biophys Res Commun. 1999;259(2):344–8.PubMedCrossRef Rovin BH, Lu L, Saxena R. A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem Biophys Res Commun. 1999;259(2):344–8.PubMedCrossRef
118.
Zurück zum Zitat Zafiropoulos A et al. Significant involvement of CCR2-64I and CXCL12-3a in the development of sporadic breast cancer. J Med Genet. 2004;41(5):e59.PubMedCentralPubMedCrossRef Zafiropoulos A et al. Significant involvement of CCR2-64I and CXCL12-3a in the development of sporadic breast cancer. J Med Genet. 2004;41(5):e59.PubMedCentralPubMedCrossRef
119.
Zurück zum Zitat Lu X, Kang Y. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem. 2009;284(42):29087–96.PubMedCentralPubMedCrossRef Lu X, Kang Y. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem. 2009;284(42):29087–96.PubMedCentralPubMedCrossRef
120.
Zurück zum Zitat Yoshimura T et al. Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4 T1 murine breast cancer cells. PLoS One. 2013;8(3):e58791.PubMedCentralPubMedCrossRef Yoshimura T et al. Monocyte chemoattractant protein-1/CCL2 produced by stromal cells promotes lung metastasis of 4 T1 murine breast cancer cells. PLoS One. 2013;8(3):e58791.PubMedCentralPubMedCrossRef
121.
Zurück zum Zitat Takahashi M et al. Chemokine CCL2/MCP-1 negatively regulates metastasis in a highly bone marrow-metastatic mouse breast cancer model. Clin Exp Metastasis. 2009;26(7):817–28.PubMedCrossRef Takahashi M et al. Chemokine CCL2/MCP-1 negatively regulates metastasis in a highly bone marrow-metastatic mouse breast cancer model. Clin Exp Metastasis. 2009;26(7):817–28.PubMedCrossRef
124.
Zurück zum Zitat Khaled WT et al. The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development. Development. 2007;134(15):2739–50.PubMedCrossRef Khaled WT et al. The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development. Development. 2007;134(15):2739–50.PubMedCrossRef
Metadaten
Titel
Cytokine Networks That Mediate Epithelial Cell-Macrophage Crosstalk in the Mammary Gland: Implications for Development and Cancer
verfasst von
Xuan Sun
Wendy V. Ingman
Publikationsdatum
01.07.2014
Verlag
Springer US
Erschienen in
Journal of Mammary Gland Biology and Neoplasia / Ausgabe 2/2014
Print ISSN: 1083-3021
Elektronische ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-014-9319-7

Weitere Artikel der Ausgabe 2/2014

Journal of Mammary Gland Biology and Neoplasia 2/2014 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.