Skip to main content
Erschienen in: Current Diabetes Reports 9/2015

01.09.2015 | Pathogenesis of Type 2 Diabetes and Insulin Resistance (RM Watanabe, Section Editor)

Listening to Our Gut: Contribution of Gut Microbiota and Cardiovascular Risk in Diabetes Pathogenesis

verfasst von: Daniel Li, Jennifer Kirsop, W. H. Wilson Tang

Erschienen in: Current Diabetes Reports | Ausgabe 9/2015

Einloggen, um Zugang zu erhalten

Abstract

What we understand about diabetes from decades of genetics research is now being supplemented with exciting new evidence based on a better understanding of how one of the biggest “environmental” factors the body is exposed to is influencing the pathogenesis of disease. The recent discovery that certain dietary nutrients possessing a trimethylamine (TMA) moiety (namely choline/phosphatidylcholine and L-carnitine) participate in the development of atherosclerotic heart disease has renewed attention towards the contributions of gut microbiota in the development of cardiovascular diseases. Collectively, animal and human studies reveal that conversion of these nutrient precursors to trimethylamine N-oxide (TMAO) depends on both microbial composition and host factors, and can be induced by dietary exposures. In addition, circulating TMAO levels are strongly linked to cardiovascular disease risks and various adverse cardio-renal consequences. Our group and others have further demonstrated that circulating TMAO levels are elevated in patients with type 2 diabetes mellitus compared to healthy controls and gut microbiota-dependent phosphatidylcholine metabolism has been implicated in metabolic dysregulation and insulin resistance in animal models. Therefore, preventive strategies to minimize adverse consequences associated with TMAO generation in the diabetic population are warranted.
Literatur
2.
Zurück zum Zitat Claesson MJ et al. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One. 2009;4(8):e6669.PubMedCentralCrossRefPubMed Claesson MJ et al. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One. 2009;4(8):e6669.PubMedCentralCrossRefPubMed
4.
5.
6.
Zurück zum Zitat Turnbaugh PJ et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.CrossRefPubMed Turnbaugh PJ et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.CrossRefPubMed
7.
Zurück zum Zitat Amar J et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. 2011;54(12):3055–61.CrossRefPubMed Amar J et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. 2011;54(12):3055–61.CrossRefPubMed
8.
Zurück zum Zitat Moreno-Navarrete JM et al. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int J Obes (Lond). 2012;36(11):1442–9.CrossRef Moreno-Navarrete JM et al. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int J Obes (Lond). 2012;36(11):1442–9.CrossRef
9.
Zurück zum Zitat Cani PD et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.CrossRefPubMed Cani PD et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.CrossRefPubMed
10.
Zurück zum Zitat Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81(3):1031–64.PubMed Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81(3):1031–64.PubMed
11.
Zurück zum Zitat Cummings JH et al. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am J Clin Nutr. 1979;32(10):2094–101.PubMed Cummings JH et al. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am J Clin Nutr. 1979;32(10):2094–101.PubMed
12.
Zurück zum Zitat Goncalves P, Martel F. Butyrate and colorectal cancer: the role of butyrate transport. Curr Drug Metab. 2013;14(9):994–1008.CrossRefPubMed Goncalves P, Martel F. Butyrate and colorectal cancer: the role of butyrate transport. Curr Drug Metab. 2013;14(9):994–1008.CrossRefPubMed
13.
Zurück zum Zitat Cook SI, Sellin JH. Review article: short chain fatty acids in health and disease. Aliment Pharmacol Ther. 1998;12(6):499–507.CrossRefPubMed Cook SI, Sellin JH. Review article: short chain fatty acids in health and disease. Aliment Pharmacol Ther. 1998;12(6):499–507.CrossRefPubMed
14.
Zurück zum Zitat Pouteau E et al. Acetate, propionate and butyrate in plasma: determination of the concentration and isotopic enrichment by gas chromatography/mass spectrometry with positive chemical ionization. J Mass Spectrom. 2001;36(7):798–805.CrossRefPubMed Pouteau E et al. Acetate, propionate and butyrate in plasma: determination of the concentration and isotopic enrichment by gas chromatography/mass spectrometry with positive chemical ionization. J Mass Spectrom. 2001;36(7):798–805.CrossRefPubMed
15.
Zurück zum Zitat Ray TK et al. Long-term effects of dietary fiber on glucose tolerance and gastric emptying in noninsulin-dependent diabetic patients. Am J Clin Nutr. 1983;37(3):376–81.PubMed Ray TK et al. Long-term effects of dietary fiber on glucose tolerance and gastric emptying in noninsulin-dependent diabetic patients. Am J Clin Nutr. 1983;37(3):376–81.PubMed
16.
17.
Zurück zum Zitat Robertson MD et al. Prior short-term consumption of resistant starch enhances postprandial insulin sensitivity in healthy subjects. Diabetologia. 2003;46(5):659–65.PubMed Robertson MD et al. Prior short-term consumption of resistant starch enhances postprandial insulin sensitivity in healthy subjects. Diabetologia. 2003;46(5):659–65.PubMed
18.••
Zurück zum Zitat Karlsson FH et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103. These two studies (18,19) provide the first metagenomic evidence of differing profiles between diabetes and normal individuals and suggest the potential to predict development of disease from metagenomic sequences. Karlsson FH et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103. These two studies (18,19) provide the first metagenomic evidence of differing profiles between diabetes and normal individuals and suggest the potential to predict development of disease from metagenomic sequences.
19.••
Zurück zum Zitat Qin J et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. These two studies (18,19) provide the first metagenomic evidence of differing profiles between diabetes and normal individuals and suggest the potential to predict development of disease from metagenomic sequences. CrossRefPubMed Qin J et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60. These two studies (18,19) provide the first metagenomic evidence of differing profiles between diabetes and normal individuals and suggest the potential to predict development of disease from metagenomic sequences. CrossRefPubMed
20.
Zurück zum Zitat Le Poul E et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278(28):25481–9.CrossRefPubMed Le Poul E et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278(28):25481–9.CrossRefPubMed
21.
Zurück zum Zitat Brown AJ et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278(13):11312–9.CrossRefPubMed Brown AJ et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278(13):11312–9.CrossRefPubMed
22.
Zurück zum Zitat Kimura I et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.PubMedCentralCrossRefPubMed Kimura I et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.PubMedCentralCrossRefPubMed
23.
Zurück zum Zitat Samuel BS et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A. 2008;105(43):16767–72.PubMedCentralCrossRefPubMed Samuel BS et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A. 2008;105(43):16767–72.PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Tolhurst G et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364–71.PubMedCentralCrossRefPubMed Tolhurst G et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364–71.PubMedCentralCrossRefPubMed
25.
26.
Zurück zum Zitat Freeland KR, Wolever TM. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. Br J Nutr. 2010;103(3):460–6.CrossRefPubMed Freeland KR, Wolever TM. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. Br J Nutr. 2010;103(3):460–6.CrossRefPubMed
27.
Zurück zum Zitat Vrieze A et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–6. e7.CrossRefPubMed Vrieze A et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–6. e7.CrossRefPubMed
28.
Zurück zum Zitat Amar J et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr. 2008;87(5):1219–23.PubMed Amar J et al. Energy intake is associated with endotoxemia in apparently healthy men. Am J Clin Nutr. 2008;87(5):1219–23.PubMed
30.
Zurück zum Zitat Saemann MD et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14(15):2380–2.PubMed Saemann MD et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14(15):2380–2.PubMed
31.
Zurück zum Zitat Roelofsen H, Priebe MG, Vonk RJ. The interaction of short-chain fatty acids with adipose tissue: relevance for prevention of type 2 diabetes. Benefic Microbes. 2010;1(4):433–7.CrossRef Roelofsen H, Priebe MG, Vonk RJ. The interaction of short-chain fatty acids with adipose tissue: relevance for prevention of type 2 diabetes. Benefic Microbes. 2010;1(4):433–7.CrossRef
32.
Zurück zum Zitat Peng L et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139(9):1619–25.PubMedCentralCrossRefPubMed Peng L et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J Nutr. 2009;139(9):1619–25.PubMedCentralCrossRefPubMed
33.•
Zurück zum Zitat Koeth RA et al. gamma-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. 2014;20(5):799–812. This study and reference [47] provide novel insights into the metabolism of TMAO and its associations with various gut microbiome profiles. CrossRefPubMed Koeth RA et al. gamma-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. 2014;20(5):799–812. This study and reference [47] provide novel insights into the metabolism of TMAO and its associations with various gut microbiome profiles. CrossRefPubMed
35.
Zurück zum Zitat Gregory JC et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2014;290:5647–60.CrossRefPubMed Gregory JC et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2014;290:5647–60.CrossRefPubMed
36.•
Zurück zum Zitat Wang Z et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. In this study, Wang et al. uses a metabolomic screen to identify TMAO as a novel gut microbiota-dependent metabolite that is a potential modifiable risk factor for cardiovascular disease. PubMedCentralCrossRefPubMed Wang Z et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. In this study, Wang et al. uses a metabolomic screen to identify TMAO as a novel gut microbiota-dependent metabolite that is a potential modifiable risk factor for cardiovascular disease. PubMedCentralCrossRefPubMed
37.
Zurück zum Zitat Tang WH et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64(18):1908–14.CrossRefPubMed Tang WH et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64(18):1908–14.CrossRefPubMed
38.•
Zurück zum Zitat Tang WH et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84. In this clinical study with over 4000 participants, the authors reconfirmed the gut microbiota dependence of TMAO in human subjects and found that serum TMAO levels predicted 3-year incident cardiovascular risk in a dose-dependent manner. PubMedCentralCrossRefPubMed Tang WH et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84. In this clinical study with over 4000 participants, the authors reconfirmed the gut microbiota dependence of TMAO in human subjects and found that serum TMAO levels predicted 3-year incident cardiovascular risk in a dose-dependent manner. PubMedCentralCrossRefPubMed
39.
Zurück zum Zitat Tang WH et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction and adverse clinical outcomes in chronic systolic heart failure. J Card Fail. 2014;21:91–6.CrossRefPubMed Tang WH et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction and adverse clinical outcomes in chronic systolic heart failure. J Card Fail. 2014;21:91–6.CrossRefPubMed
40.
Zurück zum Zitat Wang Z et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J. 2014;35(14):904–10.PubMedCentralCrossRefPubMed Wang Z et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J. 2014;35(14):904–10.PubMedCentralCrossRefPubMed
42.
Zurück zum Zitat Lever M et al. Betaine and trimethylamine-N-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: an observational study. PLoS ONE. 2014;9(12), e114969.PubMedCentralCrossRefPubMed Lever M et al. Betaine and trimethylamine-N-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: an observational study. PLoS ONE. 2014;9(12), e114969.PubMedCentralCrossRefPubMed
43.
Zurück zum Zitat Gao X et al. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J Biosci Bioeng. 2014;118(4):476–81.CrossRefPubMed Gao X et al. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J Biosci Bioeng. 2014;118(4):476–81.CrossRefPubMed
44.••
Zurück zum Zitat Miao J et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun. 2015;6:6498. This study shows that knockdown of FMO3 and subsequently TMAO levels can prevent the development of hyperglycemia, hyperlipidemia, and atherosclerosis in a diabetes mouse model. PubMedCentralCrossRefPubMed Miao J et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun. 2015;6:6498. This study shows that knockdown of FMO3 and subsequently TMAO levels can prevent the development of hyperglycemia, hyperlipidemia, and atherosclerosis in a diabetes mouse model. PubMedCentralCrossRefPubMed
45.
Zurück zum Zitat Shih DM et al. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res. 2015;56(1):22–37.CrossRefPubMed Shih DM et al. Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis. J Lipid Res. 2015;56(1):22–37.CrossRefPubMed
46.
Zurück zum Zitat Tang WH et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116(3):448–55.CrossRefPubMed Tang WH et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116(3):448–55.CrossRefPubMed
47.•
Zurück zum Zitat Koeth RA et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. See reference 33. PubMedCentralCrossRefPubMed Koeth RA et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85. See reference 33. PubMedCentralCrossRefPubMed
49.
Zurück zum Zitat Chu DM et al. Choline and betaine food sources and intakes in Taiwanese. Asia Pac J Clin Nutr. 2012;21(4):547–57.PubMed Chu DM et al. Choline and betaine food sources and intakes in Taiwanese. Asia Pac J Clin Nutr. 2012;21(4):547–57.PubMed
50.
Zurück zum Zitat Li Z, Vance DE. Phosphatidylcholine and choline homeostasis. J Lipid Res. 2008;49(6):1187–94.CrossRefPubMed Li Z, Vance DE. Phosphatidylcholine and choline homeostasis. J Lipid Res. 2008;49(6):1187–94.CrossRefPubMed
51.
Zurück zum Zitat Paoletti L et al. Role of phosphatidylcholine during neuronal differentiation. IUBMB Life. 2011;63(9):714–20.PubMed Paoletti L et al. Role of phosphatidylcholine during neuronal differentiation. IUBMB Life. 2011;63(9):714–20.PubMed
52.
Zurück zum Zitat Lever M, Slow S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin Biochem. 2010;43(9):732–44.CrossRefPubMed Lever M, Slow S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin Biochem. 2010;43(9):732–44.CrossRefPubMed
53.
Zurück zum Zitat Lever M et al. Variability of plasma and urine betaine in diabetes mellitus and its relationship to methionine load test responses: an observational study. Cardiovasc Diabetol. 2012;11:34.PubMedCentralCrossRefPubMed Lever M et al. Variability of plasma and urine betaine in diabetes mellitus and its relationship to methionine load test responses: an observational study. Cardiovasc Diabetol. 2012;11:34.PubMedCentralCrossRefPubMed
55.
Zurück zum Zitat Wijekoon EP, Brosnan ME, Brosnan JT. Homocysteine metabolism in diabetes. Biochem Soc Trans. 2007;35(Pt 5):1175–9.CrossRefPubMed Wijekoon EP, Brosnan ME, Brosnan JT. Homocysteine metabolism in diabetes. Biochem Soc Trans. 2007;35(Pt 5):1175–9.CrossRefPubMed
56.
Zurück zum Zitat Konstantinova SV et al. Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women. J Nutr. 2008;138(5):914–20.PubMed Konstantinova SV et al. Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women. J Nutr. 2008;138(5):914–20.PubMed
57.
59.
Zurück zum Zitat Rajaie S, Esmaillzadeh A. Dietary choline and betaine intakes and risk of cardiovascular diseases: review of epidemiological evidence. ARYA Atheroscler. 2011;7(2):78–86.PubMedCentralPubMed Rajaie S, Esmaillzadeh A. Dietary choline and betaine intakes and risk of cardiovascular diseases: review of epidemiological evidence. ARYA Atheroscler. 2011;7(2):78–86.PubMedCentralPubMed
60.
Zurück zum Zitat Danne O et al. Whole blood choline and plasma choline in acute coronary syndromes: prognostic and pathophysiological implications. Clin Chim Acta. 2007;383(1–2):103–9.CrossRefPubMed Danne O et al. Whole blood choline and plasma choline in acute coronary syndromes: prognostic and pathophysiological implications. Clin Chim Acta. 2007;383(1–2):103–9.CrossRefPubMed
61.
Zurück zum Zitat Danne O et al. Prognostic implications of elevated whole blood choline levels in acute coronary syndromes. Am J Cardiol. 2003;91(9):1060–7.CrossRefPubMed Danne O et al. Prognostic implications of elevated whole blood choline levels in acute coronary syndromes. Am J Cardiol. 2003;91(9):1060–7.CrossRefPubMed
62.
Zurück zum Zitat LeLeiko RM et al. Usefulness of elevations in serum choline and free F2)-isoprostane to predict 30-day cardiovascular outcomes in patients with acute coronary syndrome. Am J Cardiol. 2009;104(5):638–43.CrossRefPubMed LeLeiko RM et al. Usefulness of elevations in serum choline and free F2)-isoprostane to predict 30-day cardiovascular outcomes in patients with acute coronary syndrome. Am J Cardiol. 2009;104(5):638–43.CrossRefPubMed
63.
Zurück zum Zitat Bidulescu A et al. Usual choline and betaine dietary intake and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. BMC Cardiovasc Disord. 2007;7:20.PubMedCentralCrossRefPubMed Bidulescu A et al. Usual choline and betaine dietary intake and incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study. BMC Cardiovasc Disord. 2007;7:20.PubMedCentralCrossRefPubMed
64.
Zurück zum Zitat Bidulescu A et al. Repeatability and measurement error in the assessment of choline and betaine dietary intake: the Atherosclerosis Risk in Communities (ARIC) study. Nutr J. 2009;8:14.PubMedCentralCrossRefPubMed Bidulescu A et al. Repeatability and measurement error in the assessment of choline and betaine dietary intake: the Atherosclerosis Risk in Communities (ARIC) study. Nutr J. 2009;8:14.PubMedCentralCrossRefPubMed
65.
Zurück zum Zitat Dumas ME et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A. 2006;103(33):12511–6.PubMedCentralCrossRefPubMed Dumas ME et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A. 2006;103(33):12511–6.PubMedCentralCrossRefPubMed
67.
Zurück zum Zitat Capaldo B et al. Carnitine improves peripheral glucose disposal in non-insulin-dependent diabetic patients. Diabetes Res Clin Pract. 1991;14(3):191–5.CrossRefPubMed Capaldo B et al. Carnitine improves peripheral glucose disposal in non-insulin-dependent diabetic patients. Diabetes Res Clin Pract. 1991;14(3):191–5.CrossRefPubMed
68.
Zurück zum Zitat Ferrannini E et al. Interaction of carnitine with insulin-stimulated glucose metabolism in humans. Am J Physiol. 1988;255(6 Pt 1):E946–52.PubMed Ferrannini E et al. Interaction of carnitine with insulin-stimulated glucose metabolism in humans. Am J Physiol. 1988;255(6 Pt 1):E946–52.PubMed
69.
70.
Zurück zum Zitat Vidal-Casariego A et al. Metabolic effects of L-carnitine on type 2 diabetes mellitus: systematic review and meta-analysis. Exp Clin Endocrinol Diabetes. 2013;121(4):234–8.CrossRefPubMed Vidal-Casariego A et al. Metabolic effects of L-carnitine on type 2 diabetes mellitus: systematic review and meta-analysis. Exp Clin Endocrinol Diabetes. 2013;121(4):234–8.CrossRefPubMed
71.
Zurück zum Zitat DiNicolantonio JJ et al. L-carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Mayo Clin Proc. 2013;88(6):544–51.CrossRefPubMed DiNicolantonio JJ et al. L-carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Mayo Clin Proc. 2013;88(6):544–51.CrossRefPubMed
72.
Zurück zum Zitat Shang R, Sun Z, Li H. Effective dosing of L-carnitine in the secondary prevention of cardiovascular disease: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2014;14:88.PubMedCentralCrossRefPubMed Shang R, Sun Z, Li H. Effective dosing of L-carnitine in the secondary prevention of cardiovascular disease: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2014;14:88.PubMedCentralCrossRefPubMed
73.
Zurück zum Zitat Craciun S, Balskus EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci U S A. 2012;109(52):21307–12.PubMedCentralCrossRefPubMed Craciun S, Balskus EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci U S A. 2012;109(52):21307–12.PubMedCentralCrossRefPubMed
74.
Zurück zum Zitat Zhu Y et al. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci U S A. 2014;111(11):4268–73.PubMedCentralCrossRefPubMed Zhu Y et al. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci U S A. 2014;111(11):4268–73.PubMedCentralCrossRefPubMed
77.
Zurück zum Zitat Furet JP et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57.PubMedCentralCrossRefPubMed Furet JP et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57.PubMedCentralCrossRefPubMed
79.
Zurück zum Zitat Remely M et al. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene. 2014;537(1):85–92.CrossRefPubMed Remely M et al. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene. 2014;537(1):85–92.CrossRefPubMed
80.
Zurück zum Zitat Karlsson CL et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring). 2012;20(11):2257–61.CrossRef Karlsson CL et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring). 2012;20(11):2257–61.CrossRef
81.
Zurück zum Zitat Everard A et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775–86.PubMedCentralCrossRefPubMed Everard A et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011;60(11):2775–86.PubMedCentralCrossRefPubMed
82.
Zurück zum Zitat Everard A et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71.PubMedCentralCrossRefPubMed Everard A et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110(22):9066–71.PubMedCentralCrossRefPubMed
83.
Zurück zum Zitat Shin NR et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–35.CrossRefPubMed Shin NR et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–35.CrossRefPubMed
Metadaten
Titel
Listening to Our Gut: Contribution of Gut Microbiota and Cardiovascular Risk in Diabetes Pathogenesis
verfasst von
Daniel Li
Jennifer Kirsop
W. H. Wilson Tang
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Current Diabetes Reports / Ausgabe 9/2015
Print ISSN: 1534-4827
Elektronische ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-015-0634-1

Weitere Artikel der Ausgabe 9/2015

Current Diabetes Reports 9/2015 Zur Ausgabe

Microvascular Complications—Nephropathy (T Isakova, Section Editor)

Update on Estimation of Kidney Function in Diabetic Kidney Disease

Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (E Mayer-Davis and C Shay, Section Editors)

Infant Feeding and Timing of Complementary Foods in the Development of Type 1 Diabetes

Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (E Mayer-Davis and C Shay, Section Editors)

Salt Restriction in Diabetes

Microvascular Complications—Nephropathy (T Isakova, Section Editor)

Impact of Lifestyle Modification on Diabetic Kidney Disease

Pathogenesis of Type 2 Diabetes and Insulin Resistance (RM Watanabe, Section Editor)

Transcriptional Regulation of the Pancreatic Islet: Implications for Islet Function

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.