Skip to main content
Erschienen in: Current Neurology and Neuroscience Reports 3/2014

01.03.2014 | Sleep (M Thorpy, M Billiard, Section Editors)

Epigenetics of Sleep and Chronobiology

verfasst von: Irfan A. Qureshi, Mark F. Mehler

Erschienen in: Current Neurology and Neuroscience Reports | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

The circadian clock choreographs fundamental biological rhythms. This system is comprised of the master circadian pacemaker in the suprachiasmatic nucleus and associated pacemakers in other tissues that coordinate complex physiological processes and behaviors, such as sleep, feeding, and metabolism. The molecular circuitry that underlies these clocks and orchestrates circadian gene expression has been the focus of intensive investigation, and it is becoming clear that epigenetic factors are highly integrated into these networks. In this review, we draw attention to the fundamental roles played by epigenetic mechanisms in transcriptional and post-transcriptional regulation within the circadian clock system. We also highlight how alterations in epigenetic factors and mechanisms are being linked with sleep-wake disorders. These observations provide important insights into the pathogenesis and potential treatment of these disorders and implicate epigenetic deregulation in the significant but poorly understood interconnections now emerging between circadian processes and neurodegeneration, metabolic diseases, cancer, and aging.
Literatur
1.
2.
Zurück zum Zitat Qureshi IA, Mehler MF. Emerging roles of noncoding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci. 2012;13:528–41.PubMedCentralPubMedCrossRef Qureshi IA, Mehler MF. Emerging roles of noncoding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci. 2012;13:528–41.PubMedCentralPubMedCrossRef
3.
Zurück zum Zitat Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol [Review]. 2010;28:1057–68.CrossRef Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol [Review]. 2010;28:1057–68.CrossRef
4.
Zurück zum Zitat Qureshi IA, Mehler MF. Understanding neurological disease mechanisms in the era of epigenetics. JAMA Neurol. 2013;70:703–10.PubMedCrossRef Qureshi IA, Mehler MF. Understanding neurological disease mechanisms in the era of epigenetics. JAMA Neurol. 2013;70:703–10.PubMedCrossRef
5.
Zurück zum Zitat Qureshi IA, Mehler MF. Developing epigenetic diagnostics and therapeutics for brain disorders. Trends Mol Med. 2013;19(12):732–41.PubMedCrossRef Qureshi IA, Mehler MF. Developing epigenetic diagnostics and therapeutics for brain disorders. Trends Mol Med. 2013;19(12):732–41.PubMedCrossRef
6.
Zurück zum Zitat Qureshi IA, Mehler MF. Long noncoding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics. 2013;10:632–46.PubMedCrossRef Qureshi IA, Mehler MF. Long noncoding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics. 2013;10:632–46.PubMedCrossRef
7.
Zurück zum Zitat Masri S, Sassone-Corsi P. The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nat Rev Neurosci. 2012;14:69–75.PubMedCrossRef Masri S, Sassone-Corsi P. The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nat Rev Neurosci. 2012;14:69–75.PubMedCrossRef
8.
Zurück zum Zitat Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74:246–60.PubMedCrossRef Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74:246–60.PubMedCrossRef
9.
Zurück zum Zitat Lim C, Allada R. Emerging roles for post-transcriptional regulation in circadian clocks. Nat Neurosci. 2013;16:1544–50.PubMedCrossRef Lim C, Allada R. Emerging roles for post-transcriptional regulation in circadian clocks. Nat Neurosci. 2013;16:1544–50.PubMedCrossRef
10.
Zurück zum Zitat Mellen M, Ayata P, Dewell S, et al. MeCP2 Binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell. 2012;151:1417–30.PubMedCentralPubMedCrossRef Mellen M, Ayata P, Dewell S, et al. MeCP2 Binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell. 2012;151:1417–30.PubMedCentralPubMedCrossRef
11.
12.
Zurück zum Zitat Bonsch D, Hothorn T, Krieglstein C, et al. Daily variations of homocysteine concentration may influence methylation of DNA in normal healthy individuals. Chronobiol Int. 2007;24:315–26.PubMedCrossRef Bonsch D, Hothorn T, Krieglstein C, et al. Daily variations of homocysteine concentration may influence methylation of DNA in normal healthy individuals. Chronobiol Int. 2007;24:315–26.PubMedCrossRef
13.
Zurück zum Zitat Li JZ, Bunney BG, Meng F, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci U S A. 2013;110:9950–5.PubMedCentralPubMedCrossRef Li JZ, Bunney BG, Meng F, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci U S A. 2013;110:9950–5.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Maekawa F, Shimba S, Takumi S, et al. Diurnal expression of Dnmt3b mRNA in mouse liver is regulated by feeding and hepatic clockwork. Epigenetics. 2012;7:1046–56.PubMedCentralPubMedCrossRef Maekawa F, Shimba S, Takumi S, et al. Diurnal expression of Dnmt3b mRNA in mouse liver is regulated by feeding and hepatic clockwork. Epigenetics. 2012;7:1046–56.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Zhou Z, Hong EJ, Cohen S, et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron. 2006;52:255–69.PubMedCrossRef Zhou Z, Hong EJ, Cohen S, et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron. 2006;52:255–69.PubMedCrossRef
16.
Zurück zum Zitat Belden WJ, Lewis ZA, Selker EU, et al. CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. PLoS Genet. 2011;7:e1002166.PubMedCentralPubMedCrossRef Belden WJ, Lewis ZA, Selker EU, et al. CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. PLoS Genet. 2011;7:e1002166.PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Ji Y, Qin Y, Shu H, Li X. Methylation analyses on promoters of mPer1, mPer2, and mCry1 during perinatal development. Biochem Biophys Res Commun. 2010;391:1742–7.PubMedCrossRef Ji Y, Qin Y, Shu H, Li X. Methylation analyses on promoters of mPer1, mPer2, and mCry1 during perinatal development. Biochem Biophys Res Commun. 2010;391:1742–7.PubMedCrossRef
18.
Zurück zum Zitat Zhang L, Lin QL, Lu L, et al. Tissue-specific modification of clock methylation in aging mice. Eur Rev Med Pharmacol Sci. 2013;17:1874–80.PubMed Zhang L, Lin QL, Lu L, et al. Tissue-specific modification of clock methylation in aging mice. Eur Rev Med Pharmacol Sci. 2013;17:1874–80.PubMed
19.
Zurück zum Zitat Nakatome M, Orii M, Hamajima M, et al. Methylation analysis of circadian clock gene promoters in forensic autopsy specimens. Leg Med. 2011;13:205–9.CrossRef Nakatome M, Orii M, Hamajima M, et al. Methylation analysis of circadian clock gene promoters in forensic autopsy specimens. Leg Med. 2011;13:205–9.CrossRef
20.
Zurück zum Zitat Neumann O, Kesselmeier M, Geffers R, et al. Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. Hepatology. 2012;56:1817–27.PubMedCrossRef Neumann O, Kesselmeier M, Geffers R, et al. Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. Hepatology. 2012;56:1817–27.PubMedCrossRef
21.
Zurück zum Zitat Hanoun M, Eisele L, Suzuki M, et al. Epigenetic silencing of the circadian clock gene CRY1 is associated with an indolent clinical course in chronic lymphocytic leukemia. PLoS One. 2012;7:e34347.PubMedCentralPubMedCrossRef Hanoun M, Eisele L, Suzuki M, et al. Epigenetic silencing of the circadian clock gene CRY1 is associated with an indolent clinical course in chronic lymphocytic leukemia. PLoS One. 2012;7:e34347.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Hoffman AE, Zheng T, Yi CH, et al. The core circadian gene Cryptochrome 2 influences breast cancer risk, possibly by mediating hormone signaling. Cancer Prev Res. 2010;3:539–48.CrossRef Hoffman AE, Zheng T, Yi CH, et al. The core circadian gene Cryptochrome 2 influences breast cancer risk, possibly by mediating hormone signaling. Cancer Prev Res. 2010;3:539–48.CrossRef
23.
Zurück zum Zitat Taniguchi H, Fernandez AF, Setien F, et al. Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res. 2009;69:8447–54.PubMedCrossRef Taniguchi H, Fernandez AF, Setien F, et al. Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res. 2009;69:8447–54.PubMedCrossRef
24.
Zurück zum Zitat Milagro FI, Gomez-Abellan P, Campion J, et al. CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int. 2012;29:1180–94.PubMedCrossRef Milagro FI, Gomez-Abellan P, Campion J, et al. CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int. 2012;29:1180–94.PubMedCrossRef
25.
Zurück zum Zitat Wither RG, Colic S, Wu C, et al. Daily rhythmic behaviors and thermoregulatory patterns are disrupted in adult female MeCP2-deficient mice. PLoS One. 2012;7:e35396.PubMedCentralPubMedCrossRef Wither RG, Colic S, Wu C, et al. Daily rhythmic behaviors and thermoregulatory patterns are disrupted in adult female MeCP2-deficient mice. PLoS One. 2012;7:e35396.PubMedCentralPubMedCrossRef
26.••
Zurück zum Zitat Nanduri J, Makarenko V, Reddy VD, et al. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc Natl Acad Sci U S A. 2012;109:2515–20. This paper demonstrated that DNA methylation plays a role in the neonatal programming of hypoxic sensitivity and subsequent autonomic deregulation during adulthood.PubMedCentralPubMedCrossRef Nanduri J, Makarenko V, Reddy VD, et al. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc Natl Acad Sci U S A. 2012;109:2515–20. This paper demonstrated that DNA methylation plays a role in the neonatal programming of hypoxic sensitivity and subsequent autonomic deregulation during adulthood.PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat Winkelmann J, Lin L, Schormair B, et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet. 2012;21:2205–10.PubMedCentralPubMedCrossRef Winkelmann J, Lin L, Schormair B, et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet. 2012;21:2205–10.PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Pedroso JL, Povoas Barsottini OG, Lin L, et al. A novel de novo exon 21 DNMT1 mutation causes cerebellar ataxia, deafness, and narcolepsy in a Brazilian patient. Sleep. 2013;36:1257–9, 59A.PubMedCentralPubMed Pedroso JL, Povoas Barsottini OG, Lin L, et al. A novel de novo exon 21 DNMT1 mutation causes cerebellar ataxia, deafness, and narcolepsy in a Brazilian patient. Sleep. 2013;36:1257–9, 59A.PubMedCentralPubMed
30.
Zurück zum Zitat Syeda F, Fagan RL, Wean M, et al. The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1. J Biol Chem. 2011;286:15344–51.PubMedCentralPubMedCrossRef Syeda F, Fagan RL, Wean M, et al. The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1. J Biol Chem. 2011;286:15344–51.PubMedCentralPubMedCrossRef
31.
32.
Zurück zum Zitat Zhu Y, Stevens RG, Hoffman AE, et al. Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int. 2011;28:852–61.PubMedCentralPubMedCrossRef Zhu Y, Stevens RG, Hoffman AE, et al. Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int. 2011;28:852–61.PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Shi F, Chen X, Fu A, et al. Aberrant DNA methylation of miR-219 promoter in long-term night shiftworkers. Environ Mol Mutagen. 2013;54:406–13.PubMedCrossRef Shi F, Chen X, Fu A, et al. Aberrant DNA methylation of miR-219 promoter in long-term night shiftworkers. Environ Mol Mutagen. 2013;54:406–13.PubMedCrossRef
34.
Zurück zum Zitat Jacobs DI, Hansen J, Fu A, et al. Methylation alterations at imprinted genes detected among long-term shiftworkers. Environ Mol Mutagen. 2013;54:141–6.PubMedCrossRef Jacobs DI, Hansen J, Fu A, et al. Methylation alterations at imprinted genes detected among long-term shiftworkers. Environ Mol Mutagen. 2013;54:141–6.PubMedCrossRef
35.
Zurück zum Zitat Kim J, Bhattacharjee R, Khalyfa A, et al. DNA methylation in inflammatory genes among children with obstructive sleep apnea. Am J Respir Crit Care Med. 2012;185:330–8.PubMedCentralPubMedCrossRef Kim J, Bhattacharjee R, Khalyfa A, et al. DNA methylation in inflammatory genes among children with obstructive sleep apnea. Am J Respir Crit Care Med. 2012;185:330–8.PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat Rotter A, Asemann R, Decker A, et al. Orexin expression and promoter-methylation in peripheral blood of patients suffering from major depressive disorder. J Affect Disord. 2011;131:186–92.PubMedCrossRef Rotter A, Asemann R, Decker A, et al. Orexin expression and promoter-methylation in peripheral blood of patients suffering from major depressive disorder. J Affect Disord. 2011;131:186–92.PubMedCrossRef
37.
Zurück zum Zitat Lin Q, Ding H, Zheng Z, et al. Promoter methylation analysis of seven clock genes in Parkinson's disease. Neurosci Lett. 2012;507:147–50.PubMedCrossRef Lin Q, Ding H, Zheng Z, et al. Promoter methylation analysis of seven clock genes in Parkinson's disease. Neurosci Lett. 2012;507:147–50.PubMedCrossRef
38.
Zurück zum Zitat Liu HC, Hu CJ, Tang YC, Chang JG. A pilot study for circadian gene disturbance in dementia patients. Neurosci Lett. 2008;435:229–33.PubMedCrossRef Liu HC, Hu CJ, Tang YC, Chang JG. A pilot study for circadian gene disturbance in dementia patients. Neurosci Lett. 2008;435:229–33.PubMedCrossRef
39.••
Zurück zum Zitat Hirayama J, Sahar S, Grimaldi B, et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature. 2007;450:1086–90. This study revealed that the CLOCK protein serves as a histone acetyltransferase enzyme and that this activity plays a role in mediating circadian gene expression.PubMedCrossRef Hirayama J, Sahar S, Grimaldi B, et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature. 2007;450:1086–90. This study revealed that the CLOCK protein serves as a histone acetyltransferase enzyme and that this activity plays a role in mediating circadian gene expression.PubMedCrossRef
40.
Zurück zum Zitat Etchegaray JP, Lee C, Wade PA, Reppert SM. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature. 2003;421:177–82.PubMedCrossRef Etchegaray JP, Lee C, Wade PA, Reppert SM. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature. 2003;421:177–82.PubMedCrossRef
41.•
Zurück zum Zitat Valekunja UK, Edgar RS, Oklejewicz M, et al. Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc Natl Acad Sci U S A. 2013;110:1554–9. This analysis showed that the expression and function of the mixed lineage leukemia 3, a histone-modifying enzyme, is controlled by the circadian clock and is involved in regulating rhythmic gene expression on a genome-wide scale.PubMedCentralPubMedCrossRef Valekunja UK, Edgar RS, Oklejewicz M, et al. Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc Natl Acad Sci U S A. 2013;110:1554–9. This analysis showed that the expression and function of the mixed lineage leukemia 3, a histone-modifying enzyme, is controlled by the circadian clock and is involved in regulating rhythmic gene expression on a genome-wide scale.PubMedCentralPubMedCrossRef
42.
Zurück zum Zitat Katada S, Sassone-Corsi P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol. 2010;17:1414–21.PubMedCrossRef Katada S, Sassone-Corsi P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol. 2010;17:1414–21.PubMedCrossRef
43.
Zurück zum Zitat DiTacchio L, Le HD, Vollmers C, et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science. 2011;333:1881–5.PubMedCentralPubMedCrossRef DiTacchio L, Le HD, Vollmers C, et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science. 2011;333:1881–5.PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Cha J, Zhou M, Liu Y. CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus. EMBO Rep. 2013;14:923–30.PubMedCrossRef Cha J, Zhou M, Liu Y. CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus. EMBO Rep. 2013;14:923–30.PubMedCrossRef
45.•
Zurück zum Zitat Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD + -dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134:329–40. This paper reported that NAD + -dependent sirtuin 1 is a histone deacetylase, which is involved in regulating circadian gene expression, and whose enzymatic activity is, both, dependent on cellular metabolic state and subject to circadian regulation.PubMedCentralPubMedCrossRef Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD + -dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134:329–40. This paper reported that NAD + -dependent sirtuin 1 is a histone deacetylase, which is involved in regulating circadian gene expression, and whose enzymatic activity is, both, dependent on cellular metabolic state and subject to circadian regulation.PubMedCentralPubMedCrossRef
46.
Zurück zum Zitat Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134:317–28.PubMedCrossRef Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134:317–28.PubMedCrossRef
47.
Zurück zum Zitat Nakahata Y, Sahar S, Astarita G, et al. Circadian control of the NA + salvage pathway by CLOCK-SIRT1. Science. 2009;324:654–7.PubMedCrossRef Nakahata Y, Sahar S, Astarita G, et al. Circadian control of the NA + salvage pathway by CLOCK-SIRT1. Science. 2009;324:654–7.PubMedCrossRef
48.
49.
Zurück zum Zitat Singh N, Lorbeck MT, Zervos A, et al. The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila. J Neurochem. 2010;115:493–504.PubMedCrossRef Singh N, Lorbeck MT, Zervos A, et al. The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila. J Neurochem. 2010;115:493–504.PubMedCrossRef
50.
Zurück zum Zitat Pirooznia SK, Chiu K, Chan MT, et al. Epigenetic regulation of axonal growth of Drosophila pacemaker cells by histone acetyltransferase tip60 controls sleep. Genetics. 2012;192:1327–45.PubMedCentralPubMedCrossRef Pirooznia SK, Chiu K, Chan MT, et al. Epigenetic regulation of axonal growth of Drosophila pacemaker cells by histone acetyltransferase tip60 controls sleep. Genetics. 2012;192:1327–45.PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat Kleefstra T, Smidt M, Banning MJ, et al. Disruption of the gene Euchromatin Histone Methyl Transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet. 2005;42:299–306.PubMedCentralPubMedCrossRef Kleefstra T, Smidt M, Banning MJ, et al. Disruption of the gene Euchromatin Histone Methyl Transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet. 2005;42:299–306.PubMedCentralPubMedCrossRef
53.
Zurück zum Zitat Kleefstra T, Brunner HG, Amiel J, et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet. 2006;79:370–7.PubMedCentralPubMedCrossRef Kleefstra T, Brunner HG, Amiel J, et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet. 2006;79:370–7.PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Verhoeven WM, Kleefstra T, Egger JI. Behavioral phenotype in the 9q subtelomeric deletion syndrome: a report about two adult patients. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:536–41.PubMed Verhoeven WM, Kleefstra T, Egger JI. Behavioral phenotype in the 9q subtelomeric deletion syndrome: a report about two adult patients. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:536–41.PubMed
55.
Zurück zum Zitat Williams SR, Aldred MA, Der Kaloustian VM, et al. Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems. Am J Hum Genet. 2010;87:219–28.PubMedCentralPubMedCrossRef Williams SR, Aldred MA, Der Kaloustian VM, et al. Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems. Am J Hum Genet. 2010;87:219–28.PubMedCentralPubMedCrossRef
56.
Zurück zum Zitat Villavicencio-Lorini P, Klopocki E, Trimborn M, et al. Phenotypic variant of Brachydactyly-mental retardation syndrome in a family with an inherited interstitial 2q37.3 microdeletion including HDAC4. Eur J Hum Genet. 2013;21:743–8.PubMedCrossRef Villavicencio-Lorini P, Klopocki E, Trimborn M, et al. Phenotypic variant of Brachydactyly-mental retardation syndrome in a family with an inherited interstitial 2q37.3 microdeletion including HDAC4. Eur J Hum Genet. 2013;21:743–8.PubMedCrossRef
57.
Zurück zum Zitat Williams SR, Zies D, Mullegama SV, et al. Smith-Magenis syndrome results in disruption of CLOCK gene transcription and reveals an integral role for RAI1 in the maintenance of circadian rhythmicity. Am J Hum Genet. 2012;90:941–9.PubMedCentralPubMedCrossRef Williams SR, Zies D, Mullegama SV, et al. Smith-Magenis syndrome results in disruption of CLOCK gene transcription and reveals an integral role for RAI1 in the maintenance of circadian rhythmicity. Am J Hum Genet. 2012;90:941–9.PubMedCentralPubMedCrossRef
58.•
Zurück zum Zitat Deardorff MA, Bando M, Nakato R, et al. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature. 2012;489:313–7. This investigation identified loss-of-function mutations in the histone deacetylase 8 gene that deregulate the cohesin complex and are responsible for causing Cornelia de Lange syndrome.PubMedCentralPubMedCrossRef Deardorff MA, Bando M, Nakato R, et al. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature. 2012;489:313–7. This investigation identified loss-of-function mutations in the histone deacetylase 8 gene that deregulate the cohesin complex and are responsible for causing Cornelia de Lange syndrome.PubMedCentralPubMedCrossRef
59.
Zurück zum Zitat Rajan R, Benke JR, Kline AD, et al. Insomnia in Cornelia de Lange syndrome. Int J Pediatr Otorhinolaryngol. 2012;76:972–5.PubMedCrossRef Rajan R, Benke JR, Kline AD, et al. Insomnia in Cornelia de Lange syndrome. Int J Pediatr Otorhinolaryngol. 2012;76:972–5.PubMedCrossRef
60.
Zurück zum Zitat Stavinoha RC, Kline AD, Levy HP, et al. Characterization of sleep disturbance in Cornelia de Lange Syndrome. Int J Pediatr Otorhinolaryngol. 2011;75:215–8.PubMedCrossRef Stavinoha RC, Kline AD, Levy HP, et al. Characterization of sleep disturbance in Cornelia de Lange Syndrome. Int J Pediatr Otorhinolaryngol. 2011;75:215–8.PubMedCrossRef
61.
Zurück zum Zitat Askarian-Amiri ME, Crawford J, French JD, et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA. 2011;17:878–91.PubMedCentralPubMedCrossRef Askarian-Amiri ME, Crawford J, French JD, et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA. 2011;17:878–91.PubMedCentralPubMedCrossRef
62.
Zurück zum Zitat Clokie SJ, Lau P, Kim HH, et al. MicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase. J Biol Chem. 2012;287:25312–24.PubMedCentralPubMedCrossRef Clokie SJ, Lau P, Kim HH, et al. MicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase. J Biol Chem. 2012;287:25312–24.PubMedCentralPubMedCrossRef
63.
Zurück zum Zitat Xu S, Witmer PD, Lumayag S, et al. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem. 2007;282:25053–66.PubMedCrossRef Xu S, Witmer PD, Lumayag S, et al. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem. 2007;282:25053–66.PubMedCrossRef
64.
Zurück zum Zitat Sire C, Moreno AB, Garcia-Chapa M, et al. Diurnal oscillation in the accumulation of Arabidopsis microRNAs, miR167, miR168, miR171 and miR398. FEBS Lett. 2009;583:1039–44.PubMedCrossRef Sire C, Moreno AB, Garcia-Chapa M, et al. Diurnal oscillation in the accumulation of Arabidopsis microRNAs, miR167, miR168, miR171 and miR398. FEBS Lett. 2009;583:1039–44.PubMedCrossRef
65.
66.
Zurück zum Zitat Vodala S, Pescatore S, Rodriguez J, et al. The oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs. Cell Metab. 2012;16:601–12.PubMedCentralPubMedCrossRef Vodala S, Pescatore S, Rodriguez J, et al. The oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs. Cell Metab. 2012;16:601–12.PubMedCentralPubMedCrossRef
67.
Zurück zum Zitat Davis CJ, Bohnet SG, Meyerson JM, Krueger JM. Sleep. loss changes microRNA levels in the brain: a possible mechanism for state-dependent translational regulation. Neurosci Lett. 2007;422:68–73.PubMedCentralPubMedCrossRef Davis CJ, Bohnet SG, Meyerson JM, Krueger JM. Sleep. loss changes microRNA levels in the brain: a possible mechanism for state-dependent translational regulation. Neurosci Lett. 2007;422:68–73.PubMedCentralPubMedCrossRef
68.
Zurück zum Zitat Davis CJ, Clinton JM, Krueger JM. MicroRNA 138, let-7b, and 125a inhibitors differentially alter sleep and EEG delta-wave activity in rats. J Appl Physiol. 2012;113:1756–62.PubMedCentralPubMedCrossRef Davis CJ, Clinton JM, Krueger JM. MicroRNA 138, let-7b, and 125a inhibitors differentially alter sleep and EEG delta-wave activity in rats. J Appl Physiol. 2012;113:1756–62.PubMedCentralPubMedCrossRef
69.••
Zurück zum Zitat Cheng HY, Papp JW, Varlamova O, et al. microRNA modulation of circadian-clock period and entrainment. Neuron. 2007;54:813–29. This paper provided the first, robust mechanistic evidence that environmentally responsive microRNA activity is involved in the circadian clock within the suprachiasmatic nucleus.PubMedCentralPubMedCrossRef Cheng HY, Papp JW, Varlamova O, et al. microRNA modulation of circadian-clock period and entrainment. Neuron. 2007;54:813–29. This paper provided the first, robust mechanistic evidence that environmentally responsive microRNA activity is involved in the circadian clock within the suprachiasmatic nucleus.PubMedCentralPubMedCrossRef
70.
71.
73.
Zurück zum Zitat Nagel R, Clijsters L, Agami R. The miRNA-192/194 cluster regulates the Period gene family and the circadian clock. FEBS J. 2009;276:5447–55.PubMedCrossRef Nagel R, Clijsters L, Agami R. The miRNA-192/194 cluster regulates the Period gene family and the circadian clock. FEBS J. 2009;276:5447–55.PubMedCrossRef
74.
Zurück zum Zitat Shende VR, Goldrick MM, Ramani S, Earnest DJ. Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice. PLoS One. 2011;6:e22586.PubMedCentralPubMedCrossRef Shende VR, Goldrick MM, Ramani S, Earnest DJ. Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice. PLoS One. 2011;6:e22586.PubMedCentralPubMedCrossRef
75.
Zurück zum Zitat Alvarez-Saavedra M, Antoun G, Yanagiya A, et al. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet. 2011;20:731–51.PubMedCentralPubMedCrossRef Alvarez-Saavedra M, Antoun G, Yanagiya A, et al. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet. 2011;20:731–51.PubMedCentralPubMedCrossRef
76.
Zurück zum Zitat Zhang Y, Emery P. GW182 controls Drosophila circadian behavior and PDF-receptor signaling. Neuron. 2013;78:152–65.PubMedCrossRef Zhang Y, Emery P. GW182 controls Drosophila circadian behavior and PDF-receptor signaling. Neuron. 2013;78:152–65.PubMedCrossRef
77.
Zurück zum Zitat Lee KH, Kim SH, Lee HR, et al. MicroRNA-185 oscillation controls circadian amplitude of mouse Cryptochrome 1 via translational regulation. Mol Biol Cell. 2013;24:2248–55.PubMedCentralPubMedCrossRef Lee KH, Kim SH, Lee HR, et al. MicroRNA-185 oscillation controls circadian amplitude of mouse Cryptochrome 1 via translational regulation. Mol Biol Cell. 2013;24:2248–55.PubMedCentralPubMedCrossRef
78.
Zurück zum Zitat Chen R, D'Alessandro M, Lee C. miRNAs are required for generating a time delay critical for the circadian oscillator. Curr Biol. 2013;23:1959–68.PubMedCrossRef Chen R, D'Alessandro M, Lee C. miRNAs are required for generating a time delay critical for the circadian oscillator. Curr Biol. 2013;23:1959–68.PubMedCrossRef
79.•
Zurück zum Zitat Hughes ME, Grant GR, Paquin C, et al. Deep sequencing the circadian and diurnal transcriptome of Drosophila brain. Genome Res. 2012;22:1266–81. This study performed RNA sequencing of Drosophila brain and identified hundreds of transcripts with circadian expression profiles, including many noncoding RNAs and those that were targets of RNA editing.PubMedCentralPubMedCrossRef Hughes ME, Grant GR, Paquin C, et al. Deep sequencing the circadian and diurnal transcriptome of Drosophila brain. Genome Res. 2012;22:1266–81. This study performed RNA sequencing of Drosophila brain and identified hundreds of transcripts with circadian expression profiles, including many noncoding RNAs and those that were targets of RNA editing.PubMedCentralPubMedCrossRef
80.•
Zurück zum Zitat Coon SL, Munson PJ, Cherukuri PF, et al. Circadian changes in long noncoding RNAs in the pineal gland. Proc Natl Acad Sci U S A. 2012;109:13319–24. This investigation of long noncoding RNA profiles in the rat pineal gland found diurnal expression patterns for 112 transcripts that were responsive to light exposure and regulated by norepinephrine signaling from the suprachiasmatic nucleus.PubMedCentralPubMedCrossRef Coon SL, Munson PJ, Cherukuri PF, et al. Circadian changes in long noncoding RNAs in the pineal gland. Proc Natl Acad Sci U S A. 2012;109:13319–24. This investigation of long noncoding RNA profiles in the rat pineal gland found diurnal expression patterns for 112 transcripts that were responsive to light exposure and regulated by norepinephrine signaling from the suprachiasmatic nucleus.PubMedCentralPubMedCrossRef
81.
Zurück zum Zitat Menet JS, Rodriguez J, Abruzzi KC, Rosbash M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. ELife. 2012;1:e00011.PubMedCentralPubMedCrossRef Menet JS, Rodriguez J, Abruzzi KC, Rosbash M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. ELife. 2012;1:e00011.PubMedCentralPubMedCrossRef
83.
84.
Zurück zum Zitat Saus E, Soria V, Escaramis G, et al. Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet. 2010;19:4017–25.PubMedCrossRef Saus E, Soria V, Escaramis G, et al. Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet. 2010;19:4017–25.PubMedCrossRef
85.•
Zurück zum Zitat Powell WT, Coulson RL, Crary FK, et al. A Prader-Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum Mol Genet. 2013;22:4318–28. This analysis of the 116HG long noncoding RNA encoded by the imprinted Prader-Willi locus suggested that this factor is involved in transcriptional regulation of key metabolic and clock genes, in postnatal neurons and during sleep, via the formation of a novel subnuclear domain.PubMedCentralPubMedCrossRef Powell WT, Coulson RL, Crary FK, et al. A Prader-Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum Mol Genet. 2013;22:4318–28. This analysis of the 116HG long noncoding RNA encoded by the imprinted Prader-Willi locus suggested that this factor is involved in transcriptional regulation of key metabolic and clock genes, in postnatal neurons and during sleep, via the formation of a novel subnuclear domain.PubMedCentralPubMedCrossRef
86.
Zurück zum Zitat Jepson JE, Savva YA, Yokose C, et al. Engineered alterations in RNA editing modulate complex behavior in Drosophila: regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J Biol Chem. 2011;286:8325–37.PubMedCentralPubMedCrossRef Jepson JE, Savva YA, Yokose C, et al. Engineered alterations in RNA editing modulate complex behavior in Drosophila: regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J Biol Chem. 2011;286:8325–37.PubMedCentralPubMedCrossRef
87.•
Zurück zum Zitat Fustin JM, Doi M, Yamaguchi Y, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 2013;155:793–806. This paper demonstrated that post-transcriptional RNA methylation is a novel component of the circadian clock responsible for targeting core clock transcripts and thereby regulating the length of the circadian period.PubMedCrossRef Fustin JM, Doi M, Yamaguchi Y, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 2013;155:793–806. This paper demonstrated that post-transcriptional RNA methylation is a novel component of the circadian clock responsible for targeting core clock transcripts and thereby regulating the length of the circadian period.PubMedCrossRef
88.
Zurück zum Zitat Qureshi IA, Mehler MF. Towards a 'systems'-level understanding of the nervous system and its disorders. Trends Neurosci. 2013;36:674–84.PubMedCrossRef Qureshi IA, Mehler MF. Towards a 'systems'-level understanding of the nervous system and its disorders. Trends Neurosci. 2013;36:674–84.PubMedCrossRef
Metadaten
Titel
Epigenetics of Sleep and Chronobiology
verfasst von
Irfan A. Qureshi
Mark F. Mehler
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Current Neurology and Neuroscience Reports / Ausgabe 3/2014
Print ISSN: 1528-4042
Elektronische ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-013-0432-6

Weitere Artikel der Ausgabe 3/2014

Current Neurology and Neuroscience Reports 3/2014 Zur Ausgabe

Sleep (M Thorpy, M Billiard, Section Editors)

Dreaming and Offline Memory Consolidation

Nerve and Muscle (L Weimer, Section Editor)

Distal Myopathies

Headache (R Halker, Section Editor)

Hemicrania Continua

Nerve and Muscle (L Weimer, Section Editor)

FAP Neuropathy and Emerging Treatments

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.