Skip to main content
Erschienen in: Current Osteoporosis Reports 2/2015

01.04.2015 | Rare Bone Disease (CB Langman and E Shore, Section Editors)

Hyperphosphatemic Familial Tumoral Calcinosis: Genetic Models of Deficient FGF23 Action

verfasst von: Lisal J. Folsom, Erik A. Imel

Erschienen in: Current Osteoporosis Reports | Ausgabe 2/2015

Einloggen, um Zugang zu erhalten

Abstract

Hyperphosphatemic familial tumoral calcinosis (hFTC) is a rare disorder of phosphate metabolism defined by hyperphosphatemia and ectopic calcifications in various locations. To date, recessive mutations have been described in three genes involving phosphate metabolism: FGF23, GALNT3, and α-Klotho, all of which result in the phenotypic presentation of hFTC. These mutations result in either inadequate intact fibroblast growth factor-23 (FGF23) secretion (FGF23 or GALNT3) or resistance to FGF23 activity at the fibroblast growth factor receptor/α-Klotho complex (α-Klotho). The biochemical consequence of limitations in FGF23 activity includes increased renal tubular reabsorption of phosphate, hyperphosphatemia, and increased production of 1,25-dihydroxyvitamin D. The resultant ectopic calcifications can be painful and debilitating. Medical treatments are targeted toward decreasing intestinal phosphate absorption or increasing phosphate excretion; however, results have been variable and generally limited. Treatments that would increase FGF23 levels or signaling would more appropriately target the genetic etiologies of this disease and perhaps be more effective.
Literatur
1.
Zurück zum Zitat Farrow E, Imel EI, White K. Hyperphosphatemic familial tumoral calcinosis (FGF23, GALNT3, and alpha-Klotho). Best Pract Res Clin Rheumatol. 2011;25:735–47.CrossRefPubMedCentralPubMed Farrow E, Imel EI, White K. Hyperphosphatemic familial tumoral calcinosis (FGF23, GALNT3, and alpha-Klotho). Best Pract Res Clin Rheumatol. 2011;25:735–47.CrossRefPubMedCentralPubMed
2.
Zurück zum Zitat DiMeglio LA, Imel EA. Calcium and phosphate: hormonal regulation and metabolism. In: Burr DB, Allen MR, eds. Basic and applied bone Biology. New York: Elsevier, Academic Press; 2014:261-282. DiMeglio LA, Imel EA. Calcium and phosphate: hormonal regulation and metabolism. In: Burr DB, Allen MR, eds. Basic and applied bone Biology. New York: Elsevier, Academic Press; 2014:261-282.
3.
Zurück zum Zitat Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv in Chronic Kidney Dis. 2011;18(2):85–90.CrossRef Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv in Chronic Kidney Dis. 2011;18(2):85–90.CrossRef
4.
Zurück zum Zitat Portale A, Halloran B, Morris JRR. Physiologic regulation of the serum concentration of 1,25-dihydroxyvitamin D by phosphate in normal men. J Clin Invest. 1989;83:1494–9.CrossRefPubMedCentralPubMed Portale A, Halloran B, Morris JRR. Physiologic regulation of the serum concentration of 1,25-dihydroxyvitamin D by phosphate in normal men. J Clin Invest. 1989;83:1494–9.CrossRefPubMedCentralPubMed
5.
Zurück zum Zitat Silva BC, Costa AG, Cusano NE, Kousteni S, Bilezikian JP. Catabolic and anabolic actions of parathyroid hormone on the skeleton. J Endocrinol Invest. 2011;34(10):801–10.PubMedCentralPubMed Silva BC, Costa AG, Cusano NE, Kousteni S, Bilezikian JP. Catabolic and anabolic actions of parathyroid hormone on the skeleton. J Endocrinol Invest. 2011;34(10):801–10.PubMedCentralPubMed
6.
Zurück zum Zitat Blaine J, Weinman EJ, Cunningham R. The regulation of renal phosphate transport. Adv Chronic Kidney Dis. 2011;18(2):77–84.CrossRefPubMed Blaine J, Weinman EJ, Cunningham R. The regulation of renal phosphate transport. Adv Chronic Kidney Dis. 2011;18(2):77–84.CrossRefPubMed
7.
Zurück zum Zitat Boron WF. The parathyroid glands and vitamin D. Medical Physiology: a cellular and molecular approach. Elsevier/Saunders 2003. 1094. Boron WF. The parathyroid glands and vitamin D. Medical Physiology: a cellular and molecular approach. Elsevier/Saunders 2003. 1094.
8.
Zurück zum Zitat Itoh N, Omitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20:563–9.CrossRefPubMed Itoh N, Omitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20:563–9.CrossRefPubMed
9.
Zurück zum Zitat Fukumoto S. Physiological regulation and disorders of phosphate metabolism—pivotal role of fibroblast growth factor 23. Intern Med. 2008;47(5):337–43.CrossRefPubMed Fukumoto S. Physiological regulation and disorders of phosphate metabolism—pivotal role of fibroblast growth factor 23. Intern Med. 2008;47(5):337–43.CrossRefPubMed
10.
Zurück zum Zitat Liu S, Guo R, Tu Q, Quarles LD. Overexpression of Phex in osteoblasts fails to rescue the Hyp mouse phenotype. J Biol Chem. 2002;277(5):3686–97.CrossRefPubMed Liu S, Guo R, Tu Q, Quarles LD. Overexpression of Phex in osteoblasts fails to rescue the Hyp mouse phenotype. J Biol Chem. 2002;277(5):3686–97.CrossRefPubMed
11.
Zurück zum Zitat Burnett SM, Gunawardene SC, Bringhurst FR, et al. Regulation of C-terminal and intact FGF23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21(8):1187–96.CrossRefPubMed Burnett SM, Gunawardene SC, Bringhurst FR, et al. Regulation of C-terminal and intact FGF23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21(8):1187–96.CrossRefPubMed
12.
Zurück zum Zitat Saito H, Maeda A, Ohtomo S, et al. Circulating FGF23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005;280(4):2543–9.CrossRefPubMed Saito H, Maeda A, Ohtomo S, et al. Circulating FGF23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005;280(4):2543–9.CrossRefPubMed
13.
Zurück zum Zitat Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro OM. Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem. Jan 25 2006. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro OM. Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem. Jan 25 2006.
14.
Zurück zum Zitat Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4.CrossRefPubMed Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4.CrossRefPubMed
15.
Zurück zum Zitat Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35. 
16.
Zurück zum Zitat Li H, Martin A, David V, Quarles LD. Compound deletion of Fgfr3 and Fgfr4 partially rescues the Hyp mouse phenotype. Am J Physiol Endocrinol Metab. 2011;300(3):E508–517. Li H, Martin A, David V, Quarles LD. Compound deletion of Fgfr3 and Fgfr4 partially rescues the Hyp mouse phenotype. Am J Physiol Endocrinol Metab. 2011;300(3):E508–517. 
17.
Zurück zum Zitat Gattineni J, Twombley K, Goetz R, Mohammadi M, Baum M. Regulation of serum 1,25(OH)2 vitamin D3 levels by fibroblast growth factor 23 is mediated by FGF receptors 3 and 4. Am J Physiol Renal Physiol. 2011;301(2):F371–377. Gattineni J, Twombley K, Goetz R, Mohammadi M, Baum M. Regulation of serum 1,25(OH)2 vitamin D3 levels by fibroblast growth factor 23 is mediated by FGF receptors 3 and 4. Am J Physiol Renal Physiol. 2011;301(2):F371–377.
18.
Zurück zum Zitat Gattineni J, Alphonse P, Zhang Q, Mathews N, Bates CM, Baum M. Regulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4. Am J Physiol Renal Physiol. 2014;306:F351–358. Gattineni J, Alphonse P, Zhang Q, Mathews N, Bates CM, Baum M. Regulation of renal phosphate transport by FGF23 is mediated by FGFR1 and FGFR4. Am J Physiol Renal Physiol. 2014;306:F351–358. 
19.
Zurück zum Zitat Haussler M, Hughes M, Baylink D, Littledike ET, Cork D, Pitt M. Influence of phosphate depletion on the biosynthesis and circulating level of 1α, 25-dihydroxyvitamin D. Adv Exp Med Biol. 1977;81:233–50. Haussler M, Hughes M, Baylink D, Littledike ET, Cork D, Pitt M. Influence of phosphate depletion on the biosynthesis and circulating level of 1α, 25-dihydroxyvitamin D. Adv Exp Med Biol. 1977;81:233–50. 
20.
Zurück zum Zitat Ichikawa S, Baujat G, Seyahi A, Garoufali AG, Imel EA, Padgett LR, et al. Clinical variability of familial tumoral calcinosis caused by novel GALNT3 mutations. Am J Med Genet A. 2010;152A(4):896–903. Ichikawa S, Baujat G, Seyahi A, Garoufali AG, Imel EA, Padgett LR, et al. Clinical variability of familial tumoral calcinosis caused by novel GALNT3 mutations. Am J Med Genet A. 2010;152A(4):896–903.
21.
Zurück zum Zitat McGrath E, Harney F, Kinsella F. An ocular presentation of familial tumoral calcinosis. BMJ Case Rep. 2010. McGrath E, Harney F, Kinsella F. An ocular presentation of familial tumoral calcinosis. BMJ Case Rep. 2010.
22.
Zurück zum Zitat Carmichael KD, Bynum JA, Evans EB. Familial tumoral calcinosis: a forty-year follow-up on one family. J Bone Joint Surg Am. 2009;91(3):664–71. Carmichael KD, Bynum JA, Evans EB. Familial tumoral calcinosis: a forty-year follow-up on one family. J Bone Joint Surg Am. 2009;91(3):664–71.
23.
Zurück zum Zitat Weisinger JR et al. Massive cerebral calcifications associated with increased renal phosphate reabsorption. Arch Intern Med. 1986;146(3):473–7. Weisinger JR et al. Massive cerebral calcifications associated with increased renal phosphate reabsorption. Arch Intern Med. 1986;146(3):473–7.
24.
Zurück zum Zitat Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH, et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest. 2007;117:2684–91. Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH, et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest. 2007;117:2684–91.
25.
Zurück zum Zitat Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet. 2005;14:385–90. Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet. 2005;14:385–90.
26.
Zurück zum Zitat Larsson T, Yu X, Davis SI, Draman MS, Mooney SD, Cullen MJ, et al. A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J Clin Endocrinol Metab. 2005;90(4):2424–7.CrossRefPubMed Larsson T, Yu X, Davis SI, Draman MS, Mooney SD, Cullen MJ, et al. A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J Clin Endocrinol Metab. 2005;90(4):2424–7.CrossRefPubMed
27.
Zurück zum Zitat Garringer HJ, Fisher C, Larsson TE, Davis SI, Koller DL, Cullen MJ, et al. The role of mutant UDP-N-acetyl-alpha-D-galactosamine-polypeptide N-acetylgalactosaminyltransferase 3 in regulating serum intact fibroblast growth factor 23 and matrix extracellular phosphoglycoprotein in heritable tumoral calcinosis. J Clin Endocrinol Metab. 2006;91(10):4037–42.CrossRefPubMed Garringer HJ, Fisher C, Larsson TE, Davis SI, Koller DL, Cullen MJ, et al. The role of mutant UDP-N-acetyl-alpha-D-galactosamine-polypeptide N-acetylgalactosaminyltransferase 3 in regulating serum intact fibroblast growth factor 23 and matrix extracellular phosphoglycoprotein in heritable tumoral calcinosis. J Clin Endocrinol Metab. 2006;91(10):4037–42.CrossRefPubMed
28.
Zurück zum Zitat Yancovitch A, Hershkovitz D, Indelman M, Galloway P, Whiteford M, Sprecher E, et al. Novel mutations in GALNT3 causing hyperphosphatemic familial tumoral calcinosis. J Bone Miner Metab. 2011;29(5):621–5. Yancovitch A, Hershkovitz D, Indelman M, Galloway P, Whiteford M, Sprecher E, et al. Novel mutations in GALNT3 causing hyperphosphatemic familial tumoral calcinosis. J Bone Miner Metab. 2011;29(5):621–5.
29.
Zurück zum Zitat Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taquchi T, Erben RG, et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverse hypophosphatemia in Phex-deficient mice. Matrix Biol. 2004;23(7):421–32. Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taquchi T, Erben RG, et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverse hypophosphatemia in Phex-deficient mice. Matrix Biol. 2004;23(7):421–32.
30.
Zurück zum Zitat Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M, Khamaysi Z, Behar D, Petronius D, Friedman V, Zelikovic I, Raimer S, Metzker A, Richard G, Sprecher E. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nature Genetics 2004;36:579–81. Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M, Khamaysi Z, Behar D, Petronius D, Friedman V, Zelikovic I, Raimer S, Metzker A, Richard G, Sprecher E. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nature Genetics 2004;36:579–81.
31.
Zurück zum Zitat Kato K, Jeanneau C, Tarp MA, Benet-Pages A, Lorenz-Depiereux B, Bennett EP, Mandel U, Strom TM, Clausen H. Polypeptide GaINAc-transferase T3 and familial tumoral calcinosis: Secretion of FGF23 requires O-glycosylation. J Biol Chem 2006;281:18370–18377. Kato K, Jeanneau C, Tarp MA, Benet-Pages A, Lorenz-Depiereux B, Bennett EP, Mandel U, Strom TM, Clausen H. Polypeptide GaINAc-transferase T3 and familial tumoral calcinosis: Secretion of FGF23 requires O-glycosylation. J Biol Chem 2006;281:18370–18377.
32.
Zurück zum Zitat Frishberg Y, Ito N, Rinat C, Yamazaki Y, Feinstein S, Urakawa I, et al. Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23. J Bone Miner Res. 2007;22:235–42.CrossRefPubMed Frishberg Y, Ito N, Rinat C, Yamazaki Y, Feinstein S, Urakawa I, et al. Hyperostosis-hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23. J Bone Miner Res. 2007;22:235–42.CrossRefPubMed
33.
Zurück zum Zitat Ichikawa S, Sorenson A, Austin A, Mackenzie D, Fritz T, Moh A, et al. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (FGF23) concentrations and hyperphosphatemia despite increased FGF23 expression. Endocrinology. 2009;150(6):2543–50. Ichikawa S, Sorenson A, Austin A, Mackenzie D, Fritz T, Moh A, et al. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23 (FGF23) concentrations and hyperphosphatemia despite increased FGF23 expression. Endocrinology. 2009;150(6):2543–50. 
34.
Zurück zum Zitat Mikati MA, Melhem RE, Najjar SS. The syndrome of hyperostosis and hyperphosphatemia. J Pediatr. 1981;99(6):900–4. Mikati MA, Melhem RE, Najjar SS. The syndrome of hyperostosis and hyperphosphatemia. J Pediatr. 1981;99(6):900–4.
35.
Zurück zum Zitat Ichikawa S, Guigonis V, Imel EA, Courouble M, Heissat S, Henley JD, Sorenson AH, Petit B, Lienhardt A, Econs MJ. Novel GALNT3 mutations causing hyperostosis-hyperphosphatemia syndrome result in low intact fibroblast growth factor 23 concentrations. J Clin Endocrinol Metab. 2007;92:1943–7. Ichikawa S, Guigonis V, Imel EA, Courouble M, Heissat S, Henley JD, Sorenson AH, Petit B, Lienhardt A, Econs MJ. Novel GALNT3 mutations causing hyperostosis-hyperphosphatemia syndrome result in low intact fibroblast growth factor 23 concentrations. J Clin Endocrinol Metab. 2007;92:1943–7.
36.
Zurück zum Zitat Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, et al. Tissue-specific expression of beta-Klotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282:26687–95. Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, et al. Tissue-specific expression of beta-Klotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282:26687–95. 
37.
Zurück zum Zitat Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol. 2003;17:2393–403. Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol. 2003;17:2393–403.
38.
Zurück zum Zitat Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, Furutani J, Tomoe Y, Ito M, Kuwahata M, Imura A, Nabeshima Y, Miyamoto K. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol. 2007;292:F769–79. Segawa H, Yamanaka S, Ohno Y, Onitsuka A, Shiozawa K, Aranami F, Furutani J, Tomoe Y, Ito M, Kuwahata M, Imura A, Nabeshima Y, Miyamoto K. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol. 2007;292:F769–79.
39.
Zurück zum Zitat Masai H, Joki N, Sugi K, Moroi M. A preliminary study of the potential role of FGF23 in coronary calcification in patients with suspected coronary artery disease. Atherosclerosis. 2013;226(1):228–33. Masai H, Joki N, Sugi K, Moroi M. A preliminary study of the potential role of FGF23 in coronary calcification in patients with suspected coronary artery disease. Atherosclerosis. 2013;226(1):228–33. 
40.
Zurück zum Zitat Scialla JJ, Ling Lau W, Reilly MP, Isakova T, Yang H-Y, Crouthamel MH, et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 2013;83(6):1159–68. Scialla JJ, Ling Lau W, Reilly MP, Isakova T, Yang H-Y, Crouthamel MH, et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 2013;83(6):1159–68. 
41.
Zurück zum Zitat Topaz O, Indelman M, Chefetz I, Geiger D, Metzker A, Altschuler Y, et al. A deleterious mutation in SAMD9 causes normophosphatemic familial tumoral calcinosis. Am J Hum Genet. 2006;79(4):759–64. Topaz O, Indelman M, Chefetz I, Geiger D, Metzker A, Altschuler Y, et al. A deleterious mutation in SAMD9 causes normophosphatemic familial tumoral calcinosis. Am J Hum Genet. 2006;79(4):759–64. 
42.
Zurück zum Zitat Lufkin EG, Kumar R, Heath 3rd H. Hyperphosphatemic tumoral calcinosis: effects of phosphate depletion on vitamin D metabolism, and of acute hypocalcemia on parathyroid hormone secretion and action. J Clin Endocrinol Metab. 1983;56(6):1319–22. Lufkin EG, Kumar R, Heath 3rd H. Hyperphosphatemic tumoral calcinosis: effects of phosphate depletion on vitamin D metabolism, and of acute hypocalcemia on parathyroid hormone secretion and action. J Clin Endocrinol Metab. 1983;56(6):1319–22. 
43.
Zurück zum Zitat Lammoglia JJ, Mericq V. Familial tumoral calcinosis caused by a novel FGF23 mutation: response to induction of tubular renal acidosis with acetazolamide and the non-calcium phosphate binder sevelamer. Horm Res. 2009;71(3):178–84. Lammoglia JJ, Mericq V. Familial tumoral calcinosis caused by a novel FGF23 mutation: response to induction of tubular renal acidosis with acetazolamide and the non-calcium phosphate binder sevelamer. Horm Res. 2009;71(3):178–84.
44.
Zurück zum Zitat Finer G, Price HE, Shore RM, White KE, Langman CB. Hyperphosphatemic familial tumoral calcinosis: response to acetazolamide and postulated mechanisms. Am J Med Gent A. 2014;164(6):1545–9.CrossRef Finer G, Price HE, Shore RM, White KE, Langman CB. Hyperphosphatemic familial tumoral calcinosis: response to acetazolamide and postulated mechanisms. Am J Med Gent A. 2014;164(6):1545–9.CrossRef
45.
Zurück zum Zitat Keskar VS IE, Kulkarni M, Mane S, Jamale TE, Econs MJ, and Hase NK. The case: Ectopic calcification. Kidney International 2015; In Press. Keskar VS IE, Kulkarni M, Mane S, Jamale TE, Econs MJ, and Hase NK. The case: Ectopic calcification. Kidney International 2015; In Press.
46.
Zurück zum Zitat Steinherz R, Chesney RW, Eisenstein B, Metzker A, DeLuca HF, Phelps M. Elevated serum calcitriol concentrations do not fall in response to hyperphosphatemia in familial tumoral calcinosis. Am J Dis Child. 1985;139(8):816–9. Steinherz R, Chesney RW, Eisenstein B, Metzker A, DeLuca HF, Phelps M. Elevated serum calcitriol concentrations do not fall in response to hyperphosphatemia in familial tumoral calcinosis. Am J Dis Child. 1985;139(8):816–9.
47.
Zurück zum Zitat Gregosiewicz A, Warda E. Tumoral calcinosis: successful medical treatment. A case report. J Bone Joint Surg Am. 1989;71(8):1244–9.PubMed Gregosiewicz A, Warda E. Tumoral calcinosis: successful medical treatment. A case report. J Bone Joint Surg Am. 1989;71(8):1244–9.PubMed
49.
Zurück zum Zitat Alves C, Lima R. Hyperphosphatemic tumoral calcinosis: a 10-year follow-up. J Pediatr Endocrinol Metab. 2011;24(1–2):25–7. Alves C, Lima R. Hyperphosphatemic tumoral calcinosis: a 10-year follow-up. J Pediatr Endocrinol Metab. 2011;24(1–2):25–7.
50.
Zurück zum Zitat Yamaguchi T, Sugimoto T, Imai Y, Fukase M, Fujita T, Chihara K. Successful treatment of hyperphosphatemic tumoral calcinosis with long-term acetazolamide. Bone. 1995;16:247S–50S. Yamaguchi T, Sugimoto T, Imai Y, Fukase M, Fujita T, Chihara K. Successful treatment of hyperphosphatemic tumoral calcinosis with long-term acetazolamide. Bone. 1995;16:247S–50S.
51.
Zurück zum Zitat Dumitrescu CEI, Kelly MH, Khosravi A, Hart TC, Brahim J, White KE, et al. A case of familial tumoral calcinosis/hyperostosis-hyperphosphatemia syndrome due to a compound heterozygous mutation in GALNT3 demonstrating new phenotypic features. Osteoporos Int. 2009;20(7):1273–8. Dumitrescu CEI, Kelly MH, Khosravi A, Hart TC, Brahim J, White KE, et al. A case of familial tumoral calcinosis/hyperostosis-hyperphosphatemia syndrome due to a compound heterozygous mutation in GALNT3 demonstrating new phenotypic features. Osteoporos Int. 2009;20(7):1273–8.
52.
Zurück zum Zitat Alkhooly AZ. Medical treatment for tumoral calcinosis with eight years of follow-up: a report of four cases. J Orthop Surg (Hong Kong). 2009;17(3):379–82. Alkhooly AZ. Medical treatment for tumoral calcinosis with eight years of follow-up: a report of four cases. J Orthop Surg (Hong Kong). 2009;17(3):379–82.
53.
Zurück zum Zitat Mozaffarian G, Lafferty FW, Pearson OH. Treatment of tumoral calcinosis with phosphorus deprivation. Ann Intern Med. 1972;77:741–5. Mozaffarian G, Lafferty FW, Pearson OH. Treatment of tumoral calcinosis with phosphorus deprivation. Ann Intern Med. 1972;77:741–5.
54.
Zurück zum Zitat Mozaffarian G, Nakhjavani MK, Hedayati MH, Shamekh S. Phosphorus deprivation treatment of tumoral calcinosis. Ann Intern Med. 1977;86:120. Mozaffarian G, Nakhjavani MK, Hedayati MH, Shamekh S. Phosphorus deprivation treatment of tumoral calcinosis. Ann Intern Med. 1977;86:120.
55.
Zurück zum Zitat Lufkin EG, Wilson DM, Smith LH, Bill NJ, DeLuca HF, Dousa TP, et al. Phosphorus excretion in tumoral calcinosis: response to parathyroid hormone and acetazolamide. J Clin Endocrinol Metab. 1980;50:648–53. Lufkin EG, Wilson DM, Smith LH, Bill NJ, DeLuca HF, Dousa TP, et al. Phosphorus excretion in tumoral calcinosis: response to parathyroid hormone and acetazolamide. J Clin Endocrinol Metab. 1980;50:648–53.
56.
Zurück zum Zitat Kallmeyer JC, Seimon LP, MacSearraigh ET. The effect of thyrocalcitonin therapy and phosphate deprivation on tumoral calcinosis. S Afr Med J. 1978;54:963–6. Kallmeyer JC, Seimon LP, MacSearraigh ET. The effect of thyrocalcitonin therapy and phosphate deprivation on tumoral calcinosis. S Afr Med J. 1978;54:963–6.
57.
Zurück zum Zitat Salvi A, Cerudelli B, Cimino A, Zuccato F, Giustina G. Phosphaturic action of calcitonin in pseudotumoral calcinosis. Horm Metab Res. 1983;15:260. Salvi A, Cerudelli B, Cimino A, Zuccato F, Giustina G. Phosphaturic action of calcitonin in pseudotumoral calcinosis. Horm Metab Res. 1983;15:260.
58.
Zurück zum Zitat Knox FG, Haas JA, Lechene CP. Effect of parathyroid hormone on phosphate reabsorption in the presence of acetazolamide. Kidney Int. 1976;10:216–20. Knox FG, Haas JA, Lechene CP. Effect of parathyroid hormone on phosphate reabsorption in the presence of acetazolamide. Kidney Int. 1976;10:216–20.
59.
Zurück zum Zitat Sinha TK, Allen DO, Queener SF, Bell NH, Larson S, McClintock R. Effects of acetazolamide on the renal excretion of phosphate in hypoparathyroidism and pseudohypoparathyroidism. J Lab Clin Med. 1977;89:1188–97. Sinha TK, Allen DO, Queener SF, Bell NH, Larson S, McClintock R. Effects of acetazolamide on the renal excretion of phosphate in hypoparathyroidism and pseudohypoparathyroidism. J Lab Clin Med. 1977;89:1188–97.
60.
Zurück zum Zitat Candrina R, Cerudelli B, Braga V, Salvi A. Effects of the acute subcutaneous administration of synthetic salmon calcitonin in tumoral calcinosis. J Endocrinol Invest. 1989;12:55–7. Candrina R, Cerudelli B, Braga V, Salvi A. Effects of the acute subcutaneous administration of synthetic salmon calcitonin in tumoral calcinosis. J Endocrinol Invest. 1989;12:55–7.
61.
Zurück zum Zitat Liu ES, Carpenter TO, Gundberg CM, Simpson CA, Insogna KL. Calcitonin administration in X-linked hypophosphatemia. N Engl J Med. 2011;364:1678–80. Liu ES, Carpenter TO, Gundberg CM, Simpson CA, Insogna KL. Calcitonin administration in X-linked hypophosphatemia. N Engl J Med. 2011;364:1678–80.
62.
Zurück zum Zitat Marco Puche A, Calvo Penades I, Lopez MB. Effectiveness of the treatment with intravenous pamidronate in calcinosis in juvenile dermatomyositis. Clin Exp Rheumatol. 2010;28:135–40. Marco Puche A, Calvo Penades I, Lopez MB. Effectiveness of the treatment with intravenous pamidronate in calcinosis in juvenile dermatomyositis. Clin Exp Rheumatol. 2010;28:135–40.
63.
Zurück zum Zitat Leicht E, Tkocz HJ, Seeliger H, Lauffenburger T, Haas HG. Tumoral calcinosis. Observations during six years. Horm Metab Res. 1980;12:269–73. Leicht E, Tkocz HJ, Seeliger H, Lauffenburger T, Haas HG. Tumoral calcinosis. Observations during six years. Horm Metab Res. 1980;12:269–73.
64.
Zurück zum Zitat Ichikawa S, Austin AM, Gray AK, Econs MJ, Ichikawa S, Austin AM, et al. A Phex mutation in a murine model of X-linked hypophosphatemia alters phosphate responsiveness of bone cells. J Bone Miner Res. 2012;27(2):453–60. Ichikawa S, Austin AM, Gray AK, Econs MJ, Ichikawa S, Austin AM, et al. A Phex mutation in a murine model of X-linked hypophosphatemia alters phosphate responsiveness of bone cells. J Bone Miner Res. 2012;27(2):453–60.
65.
Zurück zum Zitat Smith RC, O’Bryan LM, Farrow EG, Summers LJ, Clinkenbeard EL, Roberts JL, et al. Circulating αKlotho influences phosphate handling by controlling FGF23 production. J Clin Invest. 2012;122(12):4710–5. Smith RC, O’Bryan LM, Farrow EG, Summers LJ, Clinkenbeard EL, Roberts JL, et al. Circulating αKlotho influences phosphate handling by controlling FGF23 production. J Clin Invest. 2012;122(12):4710–5.
Metadaten
Titel
Hyperphosphatemic Familial Tumoral Calcinosis: Genetic Models of Deficient FGF23 Action
verfasst von
Lisal J. Folsom
Erik A. Imel
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Current Osteoporosis Reports / Ausgabe 2/2015
Print ISSN: 1544-1873
Elektronische ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-015-0254-3

Weitere Artikel der Ausgabe 2/2015

Current Osteoporosis Reports 2/2015 Zur Ausgabe

Skeletal Development (E Schanipani and E Zelzer, Section Editors)

The Immunological Contribution to Heterotopic Ossification Disorders

Osteocytes (T Bellido and J Klein-Nulend, Section Editors)

Cx43 and Mechanotransduction in Bone

Nutrition, Exercise, and Lifestyle in Osteoporosis (CM Weaver and R Daly, Section Editors)

Diet, Gut Microbiome, and Bone Health

Bone and Diabetes (AV Schwartz and P Vestergaard, Section Editors)

Diabetes, Diabetic Complications, and Fracture Risk

Osteocytes (T Bellido and J Klein-Nulend, Section Editors)

Osteocyte Shape and Mechanical Loading

Rare Bone Disease (CB Langman and E Shore, Section Editors)

Hypophosphatemic Rickets: Lessons from Disrupted FGF23 Control of Phosphorus Homeostasis

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.