Skip to main content
Erschienen in: NeuroMolecular Medicine 4/2007

01.12.2007 | Original Paper

Soluble Neuroprotective Antioxidant Uric Acid Analogs Ameliorate Ischemic Brain Injury in Mice

verfasst von: Frank Haberman, Sung-Chun Tang, Thiruma V. Arumugam, Dong-Hoon Hyun, Qian-Sheng Yu, Roy G. Cutler, Zhihong Guo, Harold W. Holloway, Nigel H. Greig, Mark P. Mattson

Erschienen in: NeuroMolecular Medicine | Ausgabe 4/2007

Einloggen, um Zugang zu erhalten

Abstract

Uric acid is a major antioxidant in the blood of humans that can protect cultured neurons against oxidative and metabolic insults. However, uric acid has a very low solubility which compromises its potential clinical use for neurodegenerative disorders. Here we describe the synthesis, characterization and preclinical development of neuroprotective methyl- and sulfur-containing analogs of uric acid with increased solubility. In vitro and cell culture screening identified 1,7-dimethyluric acid (mUA2) and 6,8-dithiouric acid (sUA2) as two analogs with high antioxidant and neuroprotective activities. When administered intravenously in mice, uric acid analogs mUA2 and sUA2 lessened damage to the brain and improved functional outcome in an ischemia-reperfusion mouse model of stroke. Analogs sUA2 and mUA2 were also effective in reducing damage to the cerebral cortex when administered up to 4 h after stroke onset in a permanent middle cerebral artery occlusion mouse model. These findings suggest a therapeutic potential for soluble analogs of uric acid in the treatment of stroke and related neurodegenerative conditions.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ames, B. N., Cathcart, R., Schwiers, E., & Hochstein, P. (1981). Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 78, 6858–6862.PubMedCrossRef Ames, B. N., Cathcart, R., Schwiers, E., & Hochstein, P. (1981). Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 78, 6858–6862.PubMedCrossRef
Zurück zum Zitat Arumugam, T. V., Chan, S. L., Jo, D. G., et al. (2006). Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nature Medicine, 12, 621–623.PubMedCrossRef Arumugam, T. V., Chan, S. L., Jo, D. G., et al. (2006). Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nature Medicine, 12, 621–623.PubMedCrossRef
Zurück zum Zitat Arumugam, T. V., Salter, J. W., Chidlow, J. H., Ballantyne, C. M., Kevil, C. G., & Granger, D. N. (2004). Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. American Journal of Physiology. Heart and Circulatory Physiology, 287, H2555–H2560.PubMedCrossRef Arumugam, T. V., Salter, J. W., Chidlow, J. H., Ballantyne, C. M., Kevil, C. G., & Granger, D. N. (2004). Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. American Journal of Physiology. Heart and Circulatory Physiology, 287, H2555–H2560.PubMedCrossRef
Zurück zum Zitat Beaman, A. G., Gerster, J. F., & Robins, R. K. (1962). The preparation of various bromopurines. The Journal of Organic Chemistry, 27, 986–990.CrossRef Beaman, A. G., Gerster, J. F., & Robins, R. K. (1962). The preparation of various bromopurines. The Journal of Organic Chemistry, 27, 986–990.CrossRef
Zurück zum Zitat Begley, J. G., Butterfield, D. A., Keller, J. N., Koppal, T., Drake, J., & Mattson, M. P. (1998). Cryopreservation of rat cortical synaptosomes and analysis of glucose and glutamate transporter activities, and mitochondrial function. Brain Research. Brain Research Protocols, 3, 76–82.PubMedCrossRef Begley, J. G., Butterfield, D. A., Keller, J. N., Koppal, T., Drake, J., & Mattson, M. P. (1998). Cryopreservation of rat cortical synaptosomes and analysis of glucose and glutamate transporter activities, and mitochondrial function. Brain Research. Brain Research Protocols, 3, 76–82.PubMedCrossRef
Zurück zum Zitat Chan, P. H. (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. Journal of Cerebral Blood flow and Metabolism, 21, 2–14.PubMed Chan, P. H. (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. Journal of Cerebral Blood flow and Metabolism, 21, 2–14.PubMed
Zurück zum Zitat Cronstein, B. N., & Terkeltaub, R. (2006). The inflammatory process of gout and its treatment. Arthritis Research & Therapy, 8(1), S3.CrossRef Cronstein, B. N., & Terkeltaub, R. (2006). The inflammatory process of gout and its treatment. Arthritis Research & Therapy, 8(1), S3.CrossRef
Zurück zum Zitat Cutler, R. G. (1984). Urate and ascorbate: Their possible roles as antioxidants in determining longevity of mammalian species. Archives of Gerontology and Geriatrics, 3, 321–348.PubMedCrossRef Cutler, R. G. (1984). Urate and ascorbate: Their possible roles as antioxidants in determining longevity of mammalian species. Archives of Gerontology and Geriatrics, 3, 321–348.PubMedCrossRef
Zurück zum Zitat Dalbeth, N., & Haskard, D. O. (2005). Inflammation and tissue damage in crystal deposition diseases. Current Opinion in Rheumatology, 17, 314–318.PubMedCrossRef Dalbeth, N., & Haskard, D. O. (2005). Inflammation and tissue damage in crystal deposition diseases. Current Opinion in Rheumatology, 17, 314–318.PubMedCrossRef
Zurück zum Zitat Dauer, W., & Przedborski, S. (2003). Parkinson’s disease: Mechanisms and models. Neuron, 39, 889–909.PubMedCrossRef Dauer, W., & Przedborski, S. (2003). Parkinson’s disease: Mechanisms and models. Neuron, 39, 889–909.PubMedCrossRef
Zurück zum Zitat Dickinson, D. A., & Forman, H. J. (2002). Glutathione in defense and signaling: Lessons from a small thiol. Annals of the New York Academy of Sciences, 973, 488–504.PubMedCrossRef Dickinson, D. A., & Forman, H. J. (2002). Glutathione in defense and signaling: Lessons from a small thiol. Annals of the New York Academy of Sciences, 973, 488–504.PubMedCrossRef
Zurück zum Zitat Eliasson, M. J., Huang, Z., Ferrante, R. J., Sasamata, M., Molliver, M. E., Snyder, S. H., & Moskowitz, M. A. (1999). Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. The Journal of Neuroscience, 19, 5910–5918.PubMed Eliasson, M. J., Huang, Z., Ferrante, R. J., Sasamata, M., Molliver, M. E., Snyder, S. H., & Moskowitz, M. A. (1999). Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. The Journal of Neuroscience, 19, 5910–5918.PubMed
Zurück zum Zitat Furukawa, K., Fu, W., Li, Y., Witke, W., Kwiatkowski, D. J., & Mattson, M. P. (1997). The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. The Journal of Neuroscience, 17, 8178–8186.PubMed Furukawa, K., Fu, W., Li, Y., Witke, W., Kwiatkowski, D. J., & Mattson, M. P. (1997). The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons. The Journal of Neuroscience, 17, 8178–8186.PubMed
Zurück zum Zitat Ghoneim, A. I., Abdel-Naim, A. B., Khalifa, A. E., & El-Denshary, E. S. (2002). Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacological Research, 46, 273–279.PubMedCrossRef Ghoneim, A. I., Abdel-Naim, A. B., Khalifa, A. E., & El-Denshary, E. S. (2002). Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacological Research, 46, 273–279.PubMedCrossRef
Zurück zum Zitat Glantzounis, G. K., Tsimoyiannis, E. C., Kappas, A. M., & Galaris, D. A. (2005). Uric acid and oxidative stress. Current Pharmaceutical Design, 11, 4145–4151.PubMedCrossRef Glantzounis, G. K., Tsimoyiannis, E. C., Kappas, A. M., & Galaris, D. A. (2005). Uric acid and oxidative stress. Current Pharmaceutical Design, 11, 4145–4151.PubMedCrossRef
Zurück zum Zitat Guo, Q., Sebastian, L., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., & Mattson, M. P. (1999). Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: Central roles of superoxide production and caspase activation. Journal of Neurochemistry, 72, 1019–1029.PubMedCrossRef Guo, Q., Sebastian, L., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., & Mattson, M. P. (1999). Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: Central roles of superoxide production and caspase activation. Journal of Neurochemistry, 72, 1019–1029.PubMedCrossRef
Zurück zum Zitat Hall, E. D. (1997). Brain attack. Acute therapeutic interventions. Free radical scavengers and antioxidants. Neurosurgery Clinics of North America, 8, 195–206.PubMed Hall, E. D. (1997). Brain attack. Acute therapeutic interventions. Free radical scavengers and antioxidants. Neurosurgery Clinics of North America, 8, 195–206.PubMed
Zurück zum Zitat Hooper, D. C., Bagasra, O., Marini, J. C., et al. (1997). Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: implications for the treatment of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 94, 2528–2533.PubMedCrossRef Hooper, D. C., Bagasra, O., Marini, J. C., et al. (1997). Prevention of experimental allergic encephalomyelitis by targeting nitric oxide and peroxynitrite: implications for the treatment of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 94, 2528–2533.PubMedCrossRef
Zurück zum Zitat Ingall, T. (2004). Stroke–incidence, mortality, morbidity and risk. Journal of Insurance Medicine, 36, 143–152.PubMed Ingall, T. (2004). Stroke–incidence, mortality, morbidity and risk. Journal of Insurance Medicine, 36, 143–152.PubMed
Zurück zum Zitat Keller, J. N., Guo, Q., Holtsberg, F. W., Bruce-Keller, A. J., & Mattson, M. P. (1998). Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. The Journal of Neuroscience, 18, 4439–4450.PubMed Keller, J. N., Guo, Q., Holtsberg, F. W., Bruce-Keller, A. J., & Mattson, M. P. (1998). Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. The Journal of Neuroscience, 18, 4439–4450.PubMed
Zurück zum Zitat Keller, J. N., Kindy, M. S., Holtsberg, F. W., St Clair, D. K., Yen, H. C., Germeyer, A., Steiner, S. M., Bruce-Keller, A. J., Hutchins, J. B., & Mattson, M. P. (1998). Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. The Journal of Neuroscience, 18, 687–697.PubMed Keller, J. N., Kindy, M. S., Holtsberg, F. W., St Clair, D. K., Yen, H. C., Germeyer, A., Steiner, S. M., Bruce-Keller, A. J., Hutchins, J. B., & Mattson, M. P. (1998). Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. The Journal of Neuroscience, 18, 687–697.PubMed
Zurück zum Zitat Keller, J. N., Pang, Z., Geddes, J. W., Begley, J. G., Germeyer, A., Waeg, G., & Mattson, M. P. (1997). Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: role of the lipid peroxidation product 4-hydroxynonenal. The Journal of Neuroscience, 69, 273–284. Keller, J. N., Pang, Z., Geddes, J. W., Begley, J. G., Germeyer, A., Waeg, G., & Mattson, M. P. (1997). Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: role of the lipid peroxidation product 4-hydroxynonenal. The Journal of Neuroscience, 69, 273–284.
Zurück zum Zitat Keuzenkamp-Jansen, C. W., DeAbreu, R. A., Bokkerink, J. P., Lambooy, M. A., & Trijbels, J. M. (1996). Metabolism of intravenously administered high-dose 6-mercaptopurine with and without allopurinol treatment in patients with non-Hodgkin lymphoma. Journal of Pediatric Hematology/Oncology, 18, 145–150.PubMedCrossRef Keuzenkamp-Jansen, C. W., DeAbreu, R. A., Bokkerink, J. P., Lambooy, M. A., & Trijbels, J. M. (1996). Metabolism of intravenously administered high-dose 6-mercaptopurine with and without allopurinol treatment in patients with non-Hodgkin lymphoma. Journal of Pediatric Hematology/Oncology, 18, 145–150.PubMedCrossRef
Zurück zum Zitat Keynes, R. G., & Garthwaite, J. (2004). Nitric oxide and its role in ischaemic brain injury. Current Molecular Medicine, 4, 179–191.PubMedCrossRef Keynes, R. G., & Garthwaite, J. (2004). Nitric oxide and its role in ischaemic brain injury. Current Molecular Medicine, 4, 179–191.PubMedCrossRef
Zurück zum Zitat Kondo, T., Reaume, A. G., Huang, T. T., Carlson, E., Murakami, K., Chen, S. F., Hoffman, E. K., Scott, R. W., Epstein, C. J., & Chan, P. H. (1997). Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. The Journal of Neuroscience, 17, 4180–4189.PubMed Kondo, T., Reaume, A. G., Huang, T. T., Carlson, E., Murakami, K., Chen, S. F., Hoffman, E. K., Scott, R. W., Epstein, C. J., & Chan, P. H. (1997). Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. The Journal of Neuroscience, 17, 4180–4189.PubMed
Zurück zum Zitat Kuo, W. Y., & Tang, T. K. (1998). Effects of G6PD overexpression in NIH3T3 cells treated with tert-butyl hydroperoxide or paraquat. Free Radical Biology & Medicine, 24, 1130–1138.CrossRef Kuo, W. Y., & Tang, T. K. (1998). Effects of G6PD overexpression in NIH3T3 cells treated with tert-butyl hydroperoxide or paraquat. Free Radical Biology & Medicine, 24, 1130–1138.CrossRef
Zurück zum Zitat Lekishvili, T., Sassoon, J., Thompsett, A. R., Green, A., Ironside, J. W., & Brown, D. R. (2004). BSE and vCJD cause disturbance to uric acid levels. Experimental Neurology, 190, 233–244.PubMedCrossRef Lekishvili, T., Sassoon, J., Thompsett, A. R., Green, A., Ironside, J. W., & Brown, D. R. (2004). BSE and vCJD cause disturbance to uric acid levels. Experimental Neurology, 190, 233–244.PubMedCrossRef
Zurück zum Zitat Li, H., Klein, G., Sun, P., & Buchan, A. M. (2000). CoQ10 fails to protect brain against focal and global ischemia in rats. Brain Research, 877, 7–11.PubMedCrossRef Li, H., Klein, G., Sun, P., & Buchan, A. M. (2000). CoQ10 fails to protect brain against focal and global ischemia in rats. Brain Research, 877, 7–11.PubMedCrossRef
Zurück zum Zitat Lipton, P. (1999). Ischemic cell death in brain neurons. Physiological Reviews, 79, 1431–1568.PubMed Lipton, P. (1999). Ischemic cell death in brain neurons. Physiological Reviews, 79, 1431–1568.PubMed
Zurück zum Zitat Liu, D., Wu, L., Breyer, R., Mattson, M. P., & Andreasson, K. (2005). Neuroprotection by the PGE2 EP2 receptor in permanent focal cerebral ischemia. Annals of Neurology, 57, 758–761.PubMedCrossRef Liu, D., Wu, L., Breyer, R., Mattson, M. P., & Andreasson, K. (2005). Neuroprotection by the PGE2 EP2 receptor in permanent focal cerebral ischemia. Annals of Neurology, 57, 758–761.PubMedCrossRef
Zurück zum Zitat Mandel, S., Weinreb, O., Amit, T., & Youdim, M. B. (2004). Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. Journal of Neurochemistry, 88, 1555–1569.PubMedCrossRef Mandel, S., Weinreb, O., Amit, T., & Youdim, M. B. (2004). Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. Journal of Neurochemistry, 88, 1555–1569.PubMedCrossRef
Zurück zum Zitat Maruyama, T., Kozai, S., & Sasaki, F. (2000). Method for the synthesis of uric acid derivatives. Nucleosides Nucleotides Nucleic Acids, 19, 1193–1203.PubMedCrossRef Maruyama, T., Kozai, S., & Sasaki, F. (2000). Method for the synthesis of uric acid derivatives. Nucleosides Nucleotides Nucleic Acids, 19, 1193–1203.PubMedCrossRef
Zurück zum Zitat Milionis, H. J., Kalantzi, K. J., Goudevenos, J. A., Seferiadis, K., Mikhailidis, D. P., & Elisaf, M. S. (2005). Serum uric acid levels and risk for acute ischaemic non-embolic stroke in elderly subjects. Journal of Internal Medicine, 258, 435–441.PubMedCrossRef Milionis, H. J., Kalantzi, K. J., Goudevenos, J. A., Seferiadis, K., Mikhailidis, D. P., & Elisaf, M. S. (2005). Serum uric acid levels and risk for acute ischaemic non-embolic stroke in elderly subjects. Journal of Internal Medicine, 258, 435–441.PubMedCrossRef
Zurück zum Zitat Murakami, K., Kondo, T., Kawase, M., Li, Y., Sato, S., Chen, S. F., & Chan, P. H. (1998). Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. The Journal of Neuroscience, 18, 205–213.PubMed Murakami, K., Kondo, T., Kawase, M., Li, Y., Sato, S., Chen, S. F., & Chan, P. H. (1998). Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. The Journal of Neuroscience, 18, 205–213.PubMed
Zurück zum Zitat Nishida, Y. (1991). Inhibition of lipid peroxidation by methylated analogues of uric acid. The Journal of Pharmacy and Pharmacology, 43, 885–887.PubMed Nishida, Y. (1991). Inhibition of lipid peroxidation by methylated analogues of uric acid. The Journal of Pharmacy and Pharmacology, 43, 885–887.PubMed
Zurück zum Zitat Schlotte, V., Sevanian, A., Hochstein, P., & Weithmann, K. U. (1998). Effect of uric acid and chemical analogues on oxidation of human low density lipoprotein in vitro. Free Radical Biology & Medicine, 25, 839–847.CrossRef Schlotte, V., Sevanian, A., Hochstein, P., & Weithmann, K. U. (1998). Effect of uric acid and chemical analogues on oxidation of human low density lipoprotein in vitro. Free Radical Biology & Medicine, 25, 839–847.CrossRef
Zurück zum Zitat Scott, G. S., Cuzzocrea, S., Genovese, T., Koprowski, H., & Hooper, D. C. (2005). Uric acid protects against secondary damage after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 102, 3483–3488.PubMedCrossRef Scott, G. S., Cuzzocrea, S., Genovese, T., Koprowski, H., & Hooper, D. C. (2005). Uric acid protects against secondary damage after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 102, 3483–3488.PubMedCrossRef
Zurück zum Zitat Selim, M. H., & Ratan, R. R. (2004). The role of iron neurotoxicity in ischemic stroke. Ageing Research Reviews, 3, 345–353.PubMedCrossRef Selim, M. H., & Ratan, R. R. (2004). The role of iron neurotoxicity in ischemic stroke. Ageing Research Reviews, 3, 345–353.PubMedCrossRef
Zurück zum Zitat Sheng, H., Batine-Haberle, I., & Warner, D. S. (2002). Catalytic antioxidants as novel pharmacologic approaches to treatment of ischemic brain injury. Drug News & Perspectives, 15, 654–665.CrossRef Sheng, H., Batine-Haberle, I., & Warner, D. S. (2002). Catalytic antioxidants as novel pharmacologic approaches to treatment of ischemic brain injury. Drug News & Perspectives, 15, 654–665.CrossRef
Zurück zum Zitat Ste-Marie, L., Vachon, P., Vachon, L., Bemeur, C., Guertin, M. C., & Montgomery, J. (2000). Hydroxyl radical production in the cortex and striatum in a rat model of focal cerebral ischemia. The Canadian Journal of Neurological Sciences, 27, 152–159.PubMed Ste-Marie, L., Vachon, P., Vachon, L., Bemeur, C., Guertin, M. C., & Montgomery, J. (2000). Hydroxyl radical production in the cortex and striatum in a rat model of focal cerebral ischemia. The Canadian Journal of Neurological Sciences, 27, 152–159.PubMed
Zurück zum Zitat Stinefelt, B., Leonard, S. S., Blemings, K. P., Shi, X., & Klandorf, H. (2005). Free radical scavenging, DNA protection, and inhibition of lipid peroxidation mediated by uric acid. Annals of Clinical and Laboratory Science, 35, 37–45.PubMed Stinefelt, B., Leonard, S. S., Blemings, K. P., Shi, X., & Klandorf, H. (2005). Free radical scavenging, DNA protection, and inhibition of lipid peroxidation mediated by uric acid. Annals of Clinical and Laboratory Science, 35, 37–45.PubMed
Zurück zum Zitat Toncev, G., Milicic, B., Toncev, S., & Samardzic, G. (2002). Serum uric acid levels in multiple sclerosis patients correlate with activity of disease and blood-brain barrier dysfunction. European Journal of Neurology, 9, 221–226.PubMedCrossRef Toncev, G., Milicic, B., Toncev, S., & Samardzic, G. (2002). Serum uric acid levels in multiple sclerosis patients correlate with activity of disease and blood-brain barrier dysfunction. European Journal of Neurology, 9, 221–226.PubMedCrossRef
Zurück zum Zitat Wannamethee, S. G. (2005). Serum uric acid and risk of coronary heart disease. Current Pharmaceutical Design, 11, 4125–4132.PubMedCrossRef Wannamethee, S. G. (2005). Serum uric acid and risk of coronary heart disease. Current Pharmaceutical Design, 11, 4125–4132.PubMedCrossRef
Zurück zum Zitat Yu, Z. F., Bruce-Keller, A. J., Goodman, Y., & Mattson, M. P. (1998). Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. Journal of Neuroscience Research, 53, 613–625.PubMedCrossRef Yu, Z. F., Bruce-Keller, A. J., Goodman, Y., & Mattson, M. P. (1998). Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. Journal of Neuroscience Research, 53, 613–625.PubMedCrossRef
Zurück zum Zitat Zhao, J., Kobori, N., Aronowski, J., & Dash, P. K. (2006). Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neuroscience Letters, 393, 108–112.PubMedCrossRef Zhao, J., Kobori, N., Aronowski, J., & Dash, P. K. (2006). Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neuroscience Letters, 393, 108–112.PubMedCrossRef
Zurück zum Zitat Zheng, Z., Lee, J. E., & Yenari, M. A. (2003). Stroke: Molecular mechanisms and potential targets for treatment. Current Molecular Medicine, 3, 361–372.PubMedCrossRef Zheng, Z., Lee, J. E., & Yenari, M. A. (2003). Stroke: Molecular mechanisms and potential targets for treatment. Current Molecular Medicine, 3, 361–372.PubMedCrossRef
Metadaten
Titel
Soluble Neuroprotective Antioxidant Uric Acid Analogs Ameliorate Ischemic Brain Injury in Mice
verfasst von
Frank Haberman
Sung-Chun Tang
Thiruma V. Arumugam
Dong-Hoon Hyun
Qian-Sheng Yu
Roy G. Cutler
Zhihong Guo
Harold W. Holloway
Nigel H. Greig
Mark P. Mattson
Publikationsdatum
01.12.2007
Verlag
Humana Press Inc
Erschienen in
NeuroMolecular Medicine / Ausgabe 4/2007
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-007-8010-1

Weitere Artikel der Ausgabe 4/2007

NeuroMolecular Medicine 4/2007 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.