Skip to main content
Erschienen in: NeuroMolecular Medicine 3/2009

01.09.2009 | Review Paper

MicroRNAs in Adult and Embryonic Neurogenesis

verfasst von: Changmei Liu, Xinyu Zhao

Erschienen in: NeuroMolecular Medicine | Ausgabe 3/2009

Einloggen, um Zugang zu erhalten

Abstract

Neurogenesis is defined as a process that includes the proliferation of neural stem/progenitor cells (NPCs) and the differentiation of these cells into new neurons that integrate into the existing neuronal circuitry. MicroRNAs (miRNAs) are a recently discovered class of small non-protein coding RNA molecules implicated in a wide range of diverse gene regulatory mechanisms. More and more data demonstrate that numerous miRNAs are expressed in a spatially and temporally controlled manners in the nervous system, which suggests that miRNAs have important roles in the gene regulatory networks involved in both brain development and adult neural plasticity. This review summarizes the roles of miRNAs-mediated gene regulation in the nervous system with focus on neurogenesis in both embryonic and adult brains.
Literatur
Zurück zum Zitat Ahn, S., & Joyner, A. L. (2005). In vivo analysis of quiescent adult neural stem cells responding to sonic hedgehog. Nature, 437, 894–897.PubMedCrossRef Ahn, S., & Joyner, A. L. (2005). In vivo analysis of quiescent adult neural stem cells responding to sonic hedgehog. Nature, 437, 894–897.PubMedCrossRef
Zurück zum Zitat Alonso, M., Viollet, C., Gabellec, M. M., Meas-Yedid, V., Olivo-Marin, J. C., & Lledo, P. M. (2006). Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. Journal of Neuroscience, 26, 10508–10513.PubMedCrossRef Alonso, M., Viollet, C., Gabellec, M. M., Meas-Yedid, V., Olivo-Marin, J. C., & Lledo, P. M. (2006). Olfactory discrimination learning increases the survival of adult-born neurons in the olfactory bulb. Journal of Neuroscience, 26, 10508–10513.PubMedCrossRef
Zurück zum Zitat Balordi, F., & Fishell, G. (2007). Hedgehog signaling in the subventricular zone is required for both the maintenance of stem cells and the migration of newborn neurons. Journal of Neuroscience, 27, 5936–5947.PubMedCrossRef Balordi, F., & Fishell, G. (2007). Hedgehog signaling in the subventricular zone is required for both the maintenance of stem cells and the migration of newborn neurons. Journal of Neuroscience, 27, 5936–5947.PubMedCrossRef
Zurück zum Zitat Barkho, B. Z., Munoz, A. E., Li, X., Li, L., Cunningham, L. A., & Zhao, X. (2008). Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells, 26, 3139–3149.PubMedCrossRef Barkho, B. Z., Munoz, A. E., Li, X., Li, L., Cunningham, L. A., & Zhao, X. (2008). Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells, 26, 3139–3149.PubMedCrossRef
Zurück zum Zitat Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.PubMedCrossRef Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.PubMedCrossRef
Zurück zum Zitat Borchert, G. M., Lanier, W., & Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nature Structural and Molecular Biology, 13, 1097–1101.PubMedCrossRef Borchert, G. M., Lanier, W., & Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nature Structural and Molecular Biology, 13, 1097–1101.PubMedCrossRef
Zurück zum Zitat Burns, K. A., Ayoub, A. E., Breunig, J. J., Adhami, F., Weng, W. L., Colbert, M. C., et al. (2007). Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia-hypoxia. Cerebral Cortex, 17, 2585–2592.PubMedCrossRef Burns, K. A., Ayoub, A. E., Breunig, J. J., Adhami, F., Weng, W. L., Colbert, M. C., et al. (2007). Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia-hypoxia. Cerebral Cortex, 17, 2585–2592.PubMedCrossRef
Zurück zum Zitat Cameron, H. A., Tanapat, P., & Gould, E. (1998). Adrenal steroids and N-methyl-D-aspartate receptor activation regulate neurogenesis in the dentate gyrus of adult rats through a common pathway. Neuroscience, 82, 349–354.PubMedCrossRef Cameron, H. A., Tanapat, P., & Gould, E. (1998). Adrenal steroids and N-methyl-D-aspartate receptor activation regulate neurogenesis in the dentate gyrus of adult rats through a common pathway. Neuroscience, 82, 349–354.PubMedCrossRef
Zurück zum Zitat Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136, 642–655.PubMedCrossRef Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136, 642–655.PubMedCrossRef
Zurück zum Zitat Chalfie, M., Horvitz, H. R., & Sulston, J. E. (1981). Mutations that lead to reiterations in the cell lineages of C. elegans. Cell, 24, 59–69.PubMedCrossRef Chalfie, M., Horvitz, H. R., & Sulston, J. E. (1981). Mutations that lead to reiterations in the cell lineages of C. elegans. Cell, 24, 59–69.PubMedCrossRef
Zurück zum Zitat Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33, e179.PubMedCrossRef Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Research, 33, e179.PubMedCrossRef
Zurück zum Zitat Cheng, L. C., Pastrana, E., Tavazoie, M., & Doetsch, F. (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neuroscience, 12, 399–408.PubMedCrossRef Cheng, L. C., Pastrana, E., Tavazoie, M., & Doetsch, F. (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature Neuroscience, 12, 399–408.PubMedCrossRef
Zurück zum Zitat Chi, S. W., Zang, J. B., Mele, A., & Darnell, R. B. (2009). Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature [Epub ahead of print]. Chi, S. W., Zang, J. B., Mele, A., & Darnell, R. B. (2009). Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature [Epub ahead of print].
Zurück zum Zitat Choi, P. S., Zakhary, L., Choi, W. Y., Caron, S., Alvarez-Saavedra, E., Miska, E. A., et al. (2008). Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron, 57, 41–55.PubMedCrossRef Choi, P. S., Zakhary, L., Choi, W. Y., Caron, S., Alvarez-Saavedra, E., Miska, E. A., et al. (2008). Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron, 57, 41–55.PubMedCrossRef
Zurück zum Zitat Conaco, C., Otto, S., Han, J. J., & Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proceedings of the National Academy of Sciences of the United States of America, 103, 2422–2427.PubMedCrossRef Conaco, C., Otto, S., Han, J. J., & Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proceedings of the National Academy of Sciences of the United States of America, 103, 2422–2427.PubMedCrossRef
Zurück zum Zitat Corbin, J. G., Gaiano, N., Juliano, S. L., Poluch, S., Stancik, E., & Haydar, T. F. (2008). Regulation of neural progenitor cell development in the nervous system. Journal of Neurochemistry, 106, 2272–2287.PubMedCrossRef Corbin, J. G., Gaiano, N., Juliano, S. L., Poluch, S., Stancik, E., & Haydar, T. F. (2008). Regulation of neural progenitor cell development in the nervous system. Journal of Neurochemistry, 106, 2272–2287.PubMedCrossRef
Zurück zum Zitat Curtis, M. A., Kam, M., Nannmark, U., Anderson, M. F., Axell, M. Z., Wikkelso, C., et al. (2007). Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 315, 1243–1249.PubMedCrossRef Curtis, M. A., Kam, M., Nannmark, U., Anderson, M. F., Axell, M. Z., Wikkelso, C., et al. (2007). Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 315, 1243–1249.PubMedCrossRef
Zurück zum Zitat Devor, E. J., Huang, L., Abdukarimov, A., & Abdurakhmonov, I. Y. (2009). Methodologies for in vitro cloning of small RNAs and application for plant genome(s). International Journal of Plant Genomics, 2009, 915061.PubMedCrossRef Devor, E. J., Huang, L., Abdukarimov, A., & Abdurakhmonov, I. Y. (2009). Methodologies for in vitro cloning of small RNAs and application for plant genome(s). International Journal of Plant Genomics, 2009, 915061.PubMedCrossRef
Zurück zum Zitat Doetsch, F. (2003). A niche for adult neural stem cells. Current Opinion in Genetics and Development, 13, 543–550.PubMedCrossRef Doetsch, F. (2003). A niche for adult neural stem cells. Current Opinion in Genetics and Development, 13, 543–550.PubMedCrossRef
Zurück zum Zitat Duan, X., Chang, J. H., Ge, S., Faulkner, R. L., Kim, J. Y., Kitabatake, Y., et al. (2007). Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell, 130, 1146–1158.PubMedCrossRef Duan, X., Chang, J. H., Ge, S., Faulkner, R. L., Kim, J. Y., Kitabatake, Y., et al. (2007). Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell, 130, 1146–1158.PubMedCrossRef
Zurück zum Zitat Dupret, D., Revest, J. M., Koehl, M., Ichas, F., De Giorgi, F., Costet, P., et al. (2008). Spatial relational memory requires hippocampal adult neurogenesis. PLoS ONE, 3, e1959.PubMedCrossRef Dupret, D., Revest, J. M., Koehl, M., Ichas, F., De Giorgi, F., Costet, P., et al. (2008). Spatial relational memory requires hippocampal adult neurogenesis. PLoS ONE, 3, e1959.PubMedCrossRef
Zurück zum Zitat Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., et al. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 1313–1317.PubMedCrossRef Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., et al. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4, 1313–1317.PubMedCrossRef
Zurück zum Zitat Ferri, A. L. M., Cavallaro, M., Braida, D., Di Cristofano, A., Canta, A., Vezzani, A., et al. (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 131, 3805–3819.PubMedCrossRef Ferri, A. L. M., Cavallaro, M., Braida, D., Di Cristofano, A., Canta, A., Vezzani, A., et al. (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 131, 3805–3819.PubMedCrossRef
Zurück zum Zitat Fiore, R., Siegel, G., & Schratt, G. (2008). MicroRNA function in neuronal development, plasticity and disease. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms, 1779, 471–478.CrossRef Fiore, R., Siegel, G., & Schratt, G. (2008). MicroRNA function in neuronal development, plasticity and disease. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms, 1779, 471–478.CrossRef
Zurück zum Zitat Gentner, B., Schira, G., Giustacchini, A., Amendola, M., Brown, B. D., Ponzoni, M., et al. (2009). Stable knockdown of microRNA in vivo by lentiviral vectors. Nature Methods, 6, 63–66.PubMedCrossRef Gentner, B., Schira, G., Giustacchini, A., Amendola, M., Brown, B. D., Ponzoni, M., et al. (2009). Stable knockdown of microRNA in vivo by lentiviral vectors. Nature Methods, 6, 63–66.PubMedCrossRef
Zurück zum Zitat Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., Baskerville, S., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833–838.PubMedCrossRef Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., Baskerville, S., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833–838.PubMedCrossRef
Zurück zum Zitat Graham, V., Khudyakov, J., Ellis, P., & Pevny, L. (2003). SOX2 functions to maintain neural progenitor identity. Neuron, 39, 749–765.PubMedCrossRef Graham, V., Khudyakov, J., Ellis, P., & Pevny, L. (2003). SOX2 functions to maintain neural progenitor identity. Neuron, 39, 749–765.PubMedCrossRef
Zurück zum Zitat Gritti, A., Frolichsthal-Schoeller, P., Galli, R., Parati, E. A., Cova, L., Pagano, S. F., et al. (1999). Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. Journal of Neuroscience, 19, 3287–3297.PubMed Gritti, A., Frolichsthal-Schoeller, P., Galli, R., Parati, E. A., Cova, L., Pagano, S. F., et al. (1999). Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. Journal of Neuroscience, 19, 3287–3297.PubMed
Zurück zum Zitat Hafner, M., Landgraf, P., Ludwig, J., Rice, A., Ojo, T., Lin, C., et al. (2008). Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods, 44, 3–12.PubMedCrossRef Hafner, M., Landgraf, P., Ludwig, J., Rice, A., Ojo, T., Lin, C., et al. (2008). Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods, 44, 3–12.PubMedCrossRef
Zurück zum Zitat Houbaviy, H. B., Dennis, L., Jaenisch, R., & Sharp, P. A. (2005). Characterization of a highly variable eutherian microRNA gene. RNA, 11, 1245–1257.PubMedCrossRef Houbaviy, H. B., Dennis, L., Jaenisch, R., & Sharp, P. A. (2005). Characterization of a highly variable eutherian microRNA gene. RNA, 11, 1245–1257.PubMedCrossRef
Zurück zum Zitat Houbaviy, H. B., Murray, M. F., & Sharp, P. A. (2003). Embryonic stem cell-specific microRNAs. Developmental Cell, 5, 351–358.PubMedCrossRef Houbaviy, H. B., Murray, M. F., & Sharp, P. A. (2003). Embryonic stem cell-specific microRNAs. Developmental Cell, 5, 351–358.PubMedCrossRef
Zurück zum Zitat Imayoshi, I., Sakamoto, M., Ohtsuka, T., Takao, K., Miyakawa, T., Yamaguchi, M., et al. (2008). Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nature Neuroscience, 11, 1153–1161.PubMedCrossRef Imayoshi, I., Sakamoto, M., Ohtsuka, T., Takao, K., Miyakawa, T., Yamaguchi, M., et al. (2008). Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nature Neuroscience, 11, 1153–1161.PubMedCrossRef
Zurück zum Zitat Jessberger, S., Clark, R. E., Broadbent, N. J., Clemenson, G. D., Consiglio, A., Lie, D. C., et al. (2009). Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learning and Memory, 16, 147–154.PubMedCrossRef Jessberger, S., Clark, R. E., Broadbent, N. J., Clemenson, G. D., Consiglio, A., Lie, D. C., et al. (2009). Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learning and Memory, 16, 147–154.PubMedCrossRef
Zurück zum Zitat Jin, K. L., Wang, X. M., Xie, L., Mao, X. O., Zhu, W., Wang, Y., et al. (2006). Evidence for stroke-induced neurogenesis in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 103, 13198–13202.PubMedCrossRef Jin, K. L., Wang, X. M., Xie, L., Mao, X. O., Zhu, W., Wang, Y., et al. (2006). Evidence for stroke-induced neurogenesis in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 103, 13198–13202.PubMedCrossRef
Zurück zum Zitat Kanellopoulou, C., Muljo, S. A., Kung, A. L., Ganesan, S., Drapkin, R., Jenuwein, T., et al. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes and Development, 19, 489–501.PubMedCrossRef Kanellopoulou, C., Muljo, S. A., Kung, A. L., Ganesan, S., Drapkin, R., Jenuwein, T., et al. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes and Development, 19, 489–501.PubMedCrossRef
Zurück zum Zitat Kapsimali, M., Kloosterman, W. P., de Bruijn, E., Rosa, F., Plasterk, R. H. A., & Wilson, S. W. (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biology, 8, R173.PubMedCrossRef Kapsimali, M., Kloosterman, W. P., de Bruijn, E., Rosa, F., Plasterk, R. H. A., & Wilson, S. W. (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biology, 8, R173.PubMedCrossRef
Zurück zum Zitat Keller, G. (2005). Embryonic stem cell differentiation: Emergence of a new era in biology and medicine. Genes and Development, 19, 1129–1155.PubMedCrossRef Keller, G. (2005). Embryonic stem cell differentiation: Emergence of a new era in biology and medicine. Genes and Development, 19, 1129–1155.PubMedCrossRef
Zurück zum Zitat Keller, G., Kennedy, M., Papayannopoulou, T., & Wiles, M. V. (1993). Hematopoietic commitment during embryonic stem-cell differentiation in culture. Molecular and Cellular Biology, 13, 473–486.PubMed Keller, G., Kennedy, M., Papayannopoulou, T., & Wiles, M. V. (1993). Hematopoietic commitment during embryonic stem-cell differentiation in culture. Molecular and Cellular Biology, 13, 473–486.PubMed
Zurück zum Zitat Kempermann, G., & Kronenberg, G. (2003). Depressed new neurons—Adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biological Psychiatry, 54, 499–503.PubMedCrossRef Kempermann, G., & Kronenberg, G. (2003). Depressed new neurons—Adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biological Psychiatry, 54, 499–503.PubMedCrossRef
Zurück zum Zitat Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386, 493–495.PubMedCrossRef Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386, 493–495.PubMedCrossRef
Zurück zum Zitat Kennedy, M., & Keller, G. M. (2003). Hematopoietic commitment of ES cells in culture. Differentiation of Embryonic Stem Cells, 365, 39–59.CrossRef Kennedy, M., & Keller, G. M. (2003). Hematopoietic commitment of ES cells in culture. Differentiation of Embryonic Stem Cells, 365, 39–59.CrossRef
Zurück zum Zitat Kilpatrick, T. J., & Bartlett, P. F. (1993). Cloning and growth of multipotential neural precursors—Requirements for proliferation and differentiation. Neuron, 10, 255–265.PubMedCrossRef Kilpatrick, T. J., & Bartlett, P. F. (1993). Cloning and growth of multipotential neural precursors—Requirements for proliferation and differentiation. Neuron, 10, 255–265.PubMedCrossRef
Zurück zum Zitat Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 10, 126–139.PubMedCrossRef Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 10, 126–139.PubMedCrossRef
Zurück zum Zitat Kim, J., Inoue, K., Ishii, J., Vanti, W. B., Voronov, S. V., Murchison, E., et al. (2007). A microRNA feedback circuit in midbrain dopamine neurons. Science, 317, 1220–1224.PubMedCrossRef Kim, J., Inoue, K., Ishii, J., Vanti, W. B., Voronov, S. V., Murchison, E., et al. (2007). A microRNA feedback circuit in midbrain dopamine neurons. Science, 317, 1220–1224.PubMedCrossRef
Zurück zum Zitat Kim, J., Krichevsky, A., Grad, Y., Hayes, G. D., Kosik, K. S., Church, G. M., et al. (2004). Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proceedings of the National Academy of Sciences of the United States of America, 101, 360–365.PubMedCrossRef Kim, J., Krichevsky, A., Grad, Y., Hayes, G. D., Kosik, K. S., Church, G. M., et al. (2004). Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proceedings of the National Academy of Sciences of the United States of America, 101, 360–365.PubMedCrossRef
Zurück zum Zitat Kornack, D. R., & Rakic, P. (2001). The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proceedings of the National Academy of Sciences of the United States of America, 98, 4752–4757.PubMedCrossRef Kornack, D. R., & Rakic, P. (2001). The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proceedings of the National Academy of Sciences of the United States of America, 98, 4752–4757.PubMedCrossRef
Zurück zum Zitat Krichevsky, A. M., Sonntag, K. C., Isacson, O., & Kosik, K. S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells, 24, 857–864.PubMedCrossRef Krichevsky, A. M., Sonntag, K. C., Isacson, O., & Kosik, K. S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells, 24, 857–864.PubMedCrossRef
Zurück zum Zitat Lagace, D. C., Whitman, M. C., Noonan, M. A., Ables, J. L., DeCarolis, N. A., Arguello, A. A., et al. (2007). Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. Journal of Neuroscience, 27, 12623–12629.PubMedCrossRef Lagace, D. C., Whitman, M. C., Noonan, M. A., Ables, J. L., DeCarolis, N. A., Arguello, A. A., et al. (2007). Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. Journal of Neuroscience, 27, 12623–12629.PubMedCrossRef
Zurück zum Zitat Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Current Biology, 12, 735–739.PubMedCrossRef Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Current Biology, 12, 735–739.PubMedCrossRef
Zurück zum Zitat Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129, 1401–1414.PubMedCrossRef Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., et al. (2007). A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 129, 1401–1414.PubMedCrossRef
Zurück zum Zitat Larson, J., Jessen, R. E., Kim, D., Fine, A. K. S., & du Hoffmann, J. (2005). Age-dependent and selective impairment of long-term potentiation in the anterior piriform cortex of mice lacking the fragile X mental retardation protein. Journal of Neuroscience, 25, 9460–9469.PubMedCrossRef Larson, J., Jessen, R. E., Kim, D., Fine, A. K. S., & du Hoffmann, J. (2005). Age-dependent and selective impairment of long-term potentiation in the anterior piriform cortex of mice lacking the fragile X mental retardation protein. Journal of Neuroscience, 25, 9460–9469.PubMedCrossRef
Zurück zum Zitat Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans Heterochronic gene Lin-4 encodes small RNAS with antisense complementarity to Lin-14. Cell, 75, 843–854.PubMedCrossRef Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans Heterochronic gene Lin-4 encodes small RNAS with antisense complementarity to Lin-14. Cell, 75, 843–854.PubMedCrossRef
Zurück zum Zitat Li, X., Barkho, B. Z., Luo, Y., Smrt, R. D., Santistevan, N. J., Liu, C., et al. (2008). Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. Journal of Biological Chemistry, 283, 27644–27652.PubMedCrossRef Li, X., Barkho, B. Z., Luo, Y., Smrt, R. D., Santistevan, N. J., Liu, C., et al. (2008). Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. Journal of Biological Chemistry, 283, 27644–27652.PubMedCrossRef
Zurück zum Zitat Li, O., Li, J. M., & Droge, P. (2007). DNA architectural factor and proto-oncogene HMGA2 regulates key developmental genes in pluripotent human embryonic stem cells. FEBS Letters, 581, 3533–3537.PubMedCrossRef Li, O., Li, J. M., & Droge, P. (2007). DNA architectural factor and proto-oncogene HMGA2 regulates key developmental genes in pluripotent human embryonic stem cells. FEBS Letters, 581, 3533–3537.PubMedCrossRef
Zurück zum Zitat Li, O., Vasudevan, D., Davey, C. A., & Droge, P. (2006). High-level expression of DNA architectural factor HMGA2 and its association with nucleosomes in human embryonic stem cells. Genesis, 44, 523–529.PubMedCrossRef Li, O., Vasudevan, D., Davey, C. A., & Droge, P. (2006). High-level expression of DNA architectural factor HMGA2 and its association with nucleosomes in human embryonic stem cells. Genesis, 44, 523–529.PubMedCrossRef
Zurück zum Zitat Li, X. K., & Zhao, X. Y. (2008). Epigenetic regulation of mammalian stem cells. Stem Cells and Development, 17, 1043–1052.PubMedCrossRef Li, X. K., & Zhao, X. Y. (2008). Epigenetic regulation of mammalian stem cells. Stem Cells and Development, 17, 1043–1052.PubMedCrossRef
Zurück zum Zitat Lie, D. C., Dziewczapolski, G., Willhoite, A. R., Kaspar, B. K., Shults, C. W., & Gage, F. H. (2002). The adult substantia nigra contains progenitor cells with neurogenic potential. Journal of Neuroscience, 22, 6639–6649.PubMed Lie, D. C., Dziewczapolski, G., Willhoite, A. R., Kaspar, B. K., Shults, C. W., & Gage, F. H. (2002). The adult substantia nigra contains progenitor cells with neurogenic potential. Journal of Neuroscience, 22, 6639–6649.PubMed
Zurück zum Zitat Lu, Y., Thomson, J. M., Wong, H. Y. F., Hammond, S. M., & Hogan, B. L. M. (2007). Transgenic over-expression of the microRNA miR-17–92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Developmental Biology, 310, 442–453.PubMedCrossRef Lu, Y., Thomson, J. M., Wong, H. Y. F., Hammond, S. M., & Hogan, B. L. M. (2007). Transgenic over-expression of the microRNA miR-17–92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Developmental Biology, 310, 442–453.PubMedCrossRef
Zurück zum Zitat Lytle, J. R., Yario, T. A., & Steitz, J. A. (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proceedings of the National Academy of Sciences of the United States of America, 104, 9667–9672.PubMedCrossRef Lytle, J. R., Yario, T. A., & Steitz, J. A. (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proceedings of the National Academy of Sciences of the United States of America, 104, 9667–9672.PubMedCrossRef
Zurück zum Zitat Makeyev, E. V., Zhang, J. W., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative Pre-mRNA splicing. Molecular Cell, 27, 435–448.PubMedCrossRef Makeyev, E. V., Zhang, J. W., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative Pre-mRNA splicing. Molecular Cell, 27, 435–448.PubMedCrossRef
Zurück zum Zitat Martin, G. R. (1981). Isolation of a pluripotent cell-line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem-cells. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 78, 7634–7638.CrossRef Martin, G. R. (1981). Isolation of a pluripotent cell-line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem-cells. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 78, 7634–7638.CrossRef
Zurück zum Zitat Mayoral, R. J., Pipkin, M. E., Pachkov, M., van Nimwegen, E., Rao, A., & Monticelli, S. (2009). MicroRNA-221–222 regulate the cell cycle in mast cells. Journal of Immunology, 182, 433–445. Mayoral, R. J., Pipkin, M. E., Pachkov, M., van Nimwegen, E., Rao, A., & Monticelli, S. (2009). MicroRNA-221–222 regulate the cell cycle in mast cells. Journal of Immunology, 182, 433–445.
Zurück zum Zitat Mellios, N., Huang, H. S., Grigorenko, A., Rogaev, E., & Akbarian, S. (2008). A set of differentially expressed miRNAs, including miR-30a–5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Human Molecular Genetics, 17, 3030–3042.PubMedCrossRef Mellios, N., Huang, H. S., Grigorenko, A., Rogaev, E., & Akbarian, S. (2008). A set of differentially expressed miRNAs, including miR-30a–5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Human Molecular Genetics, 17, 3030–3042.PubMedCrossRef
Zurück zum Zitat Molofsky, A. V., Pardal, R., Iwashita, T., Park, I. K., Clarke, M. F., & Morrison, S. J. (2003). Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 425, 962–967.PubMedCrossRef Molofsky, A. V., Pardal, R., Iwashita, T., Park, I. K., Clarke, M. F., & Morrison, S. J. (2003). Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 425, 962–967.PubMedCrossRef
Zurück zum Zitat Morozova, O., & Marra, M. A. (2008). Applications of next-generation sequencing technologies in functional genomics. Genomics, 92, 255–264.PubMedCrossRef Morozova, O., & Marra, M. A. (2008). Applications of next-generation sequencing technologies in functional genomics. Genomics, 92, 255–264.PubMedCrossRef
Zurück zum Zitat Morshead, C. M., Reynolds, B. A., Craig, C. G., Mcburney, M. W., Staines, W. A., Morassutti, D., et al. (1994). Neural stem-cells in the adult mammalian forebrain—a relatively quiescent subpopulation of subependymal cells. Neuron, 13, 1071–1082.PubMedCrossRef Morshead, C. M., Reynolds, B. A., Craig, C. G., Mcburney, M. W., Staines, W. A., Morassutti, D., et al. (1994). Neural stem-cells in the adult mammalian forebrain—a relatively quiescent subpopulation of subependymal cells. Neuron, 13, 1071–1082.PubMedCrossRef
Zurück zum Zitat Mott, J. L., Kobayashi, S., Bronk, S. F., & Gores, G. J. (2007). mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene, 26, 6133–6140.PubMedCrossRef Mott, J. L., Kobayashi, S., Bronk, S. F., & Gores, G. J. (2007). mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene, 26, 6133–6140.PubMedCrossRef
Zurück zum Zitat Nishino, J., Kim, I., Chada, K., & Morrison, S. J. (2008). Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell, 135, 227–239.PubMedCrossRef Nishino, J., Kim, I., Chada, K., & Morrison, S. J. (2008). Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell, 135, 227–239.PubMedCrossRef
Zurück zum Zitat Noctor, S. C., Martinez-Cerdeno, V., Ivic, L., & Kriegstein, A. R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neuroscience, 7, 136–144.PubMedCrossRef Noctor, S. C., Martinez-Cerdeno, V., Ivic, L., & Kriegstein, A. R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neuroscience, 7, 136–144.PubMedCrossRef
Zurück zum Zitat Orom, U. A., Nielsen, F. C., & Lund, A. H. (2008). MicroRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Molecular Cell, 30, 460–471.PubMedCrossRef Orom, U. A., Nielsen, F. C., & Lund, A. H. (2008). MicroRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Molecular Cell, 30, 460–471.PubMedCrossRef
Zurück zum Zitat Packer, A. N., Xing, Y., Harper, S. Q., Jones, L., & Davidson, B. L. (2008). The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. Journal of Neuroscience, 28, 14341–14346.PubMedCrossRef Packer, A. N., Xing, Y., Harper, S. Q., Jones, L., & Davidson, B. L. (2008). The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. Journal of Neuroscience, 28, 14341–14346.PubMedCrossRef
Zurück zum Zitat Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F., & Gage, F. H. (1999). Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. Journal of Neuroscience, 19, 8487–8497.PubMed Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F., & Gage, F. H. (1999). Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. Journal of Neuroscience, 19, 8487–8497.PubMed
Zurück zum Zitat Palmer, T. D., Takahashi, J., & Gage, F. H. (1997). The adult rat hippocampus contains primordial neural stem cells. Molecular and Cellular Neuroscience, 8, 389–404.PubMedCrossRef Palmer, T. D., Takahashi, J., & Gage, F. H. (1997). The adult rat hippocampus contains primordial neural stem cells. Molecular and Cellular Neuroscience, 8, 389–404.PubMedCrossRef
Zurück zum Zitat Parent, J. M., Yu, T. W., Leibowitz, R. T., Geschwind, D. H., Sloviter, R. S., & Lowenstein, D. H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. Journal of Neuroscience, 17, 3727–3738.PubMed Parent, J. M., Yu, T. W., Leibowitz, R. T., Geschwind, D. H., Sloviter, R. S., & Lowenstein, D. H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. Journal of Neuroscience, 17, 3727–3738.PubMed
Zurück zum Zitat Pencea, V., Bingaman, K. D., Freedman, L. J., & Luskin, M. B. (2001). Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Experimental Neurology, 172, 1–16.PubMedCrossRef Pencea, V., Bingaman, K. D., Freedman, L. J., & Luskin, M. B. (2001). Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Experimental Neurology, 172, 1–16.PubMedCrossRef
Zurück zum Zitat Pomraning, K. R., Smith, K. M., & Freitag, M. (2009). Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods, 47, 142–150.PubMedCrossRef Pomraning, K. R., Smith, K. M., & Freitag, M. (2009). Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods, 47, 142–150.PubMedCrossRef
Zurück zum Zitat Reynolds, B. A., Tetzlaff, W., & Weiss, S. (1992). A multipotent Egf-responsive striatal embryonic progenitor-cell produces neurons and astrocytes. Journal of Neuroscience, 12, 4565–4574.PubMed Reynolds, B. A., Tetzlaff, W., & Weiss, S. (1992). A multipotent Egf-responsive striatal embryonic progenitor-cell produces neurons and astrocytes. Journal of Neuroscience, 12, 4565–4574.PubMed
Zurück zum Zitat Sanosaka, T., Namihira, M., & Nakashima, K. (2009). Epigenetic mechanisms in sequential differentiation of neural stem cells. Epigenetics, 4, 89–92.PubMedCrossRef Sanosaka, T., Namihira, M., & Nakashima, K. (2009). Epigenetic mechanisms in sequential differentiation of neural stem cells. Epigenetics, 4, 89–92.PubMedCrossRef
Zurück zum Zitat Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289. (Erratum in Nature 441, 902).PubMedCrossRef Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289. (Erratum in Nature 441, 902).PubMedCrossRef
Zurück zum Zitat Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., & Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5, R13.PubMedCrossRef Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., & Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5, R13.PubMedCrossRef
Zurück zum Zitat Shi, Y. H., Lie, D. C., Taupin, P., Nakashima, K., Ray, J., Yu, R. T., et al. (2004). Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature, 427, 78–83.PubMedCrossRef Shi, Y. H., Lie, D. C., Taupin, P., Nakashima, K., Ray, J., Yu, R. T., et al. (2004). Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature, 427, 78–83.PubMedCrossRef
Zurück zum Zitat Shihabuddin, L. S., Horner, P. J., Ray, J., & Gage, F. H. (2000). Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. Journal of Neuroscience, 20, 8727–8735.PubMed Shihabuddin, L. S., Horner, P. J., Ray, J., & Gage, F. H. (2000). Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. Journal of Neuroscience, 20, 8727–8735.PubMed
Zurück zum Zitat Shimozaki, K., Namihira, M., Nakashima, K., & Taga, T. (2005). Stage- and site-specific DNA demethylation during neural cell development from embryonic stem cells. Journal of Neurochemistry, 93, 432–439.PubMedCrossRef Shimozaki, K., Namihira, M., Nakashima, K., & Taga, T. (2005). Stage- and site-specific DNA demethylation during neural cell development from embryonic stem cells. Journal of Neurochemistry, 93, 432–439.PubMedCrossRef
Zurück zum Zitat Suh, M. R., Lee, Y., Kim, J. Y., Kim, S. K., Moon, S. H., Lee, J. Y., et al. (2004). Human embryonic stem cells express a unique set of microRNAs. Developmental Biology, 270, 488–498.PubMedCrossRef Suh, M. R., Lee, Y., Kim, J. Y., Kim, S. K., Moon, S. H., Lee, J. Y., et al. (2004). Human embryonic stem cells express a unique set of microRNAs. Developmental Biology, 270, 488–498.PubMedCrossRef
Zurück zum Zitat Sun, Y. J., Jin, K. L., Childs, J. T., Xie, L., Mao, X. O., & Greenberg, D. A. (2005). Neuronal nitric oxide synthase and ischemia-induced neurogenesis. Journal of Cerebral Blood Flow and Metabolism, 25, 485–492.PubMedCrossRef Sun, Y. J., Jin, K. L., Childs, J. T., Xie, L., Mao, X. O., & Greenberg, D. A. (2005). Neuronal nitric oxide synthase and ischemia-induced neurogenesis. Journal of Cerebral Blood Flow and Metabolism, 25, 485–492.PubMedCrossRef
Zurück zum Zitat Tay, Y., Zhang, J. Q., Thomson, A. M., Lim, B., & Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455, 1124.PubMedCrossRef Tay, Y., Zhang, J. Q., Thomson, A. M., Lim, B., & Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455, 1124.PubMedCrossRef
Zurück zum Zitat Thai, T. H., Calado, D. P., Casola, S., Ansel, K. M., Xiao, C. C., Xue, Y. Z., et al. (2007). Regulation of the germinal center response by microRNA-155. Science, 316, 604–608.PubMedCrossRef Thai, T. H., Calado, D. P., Casola, S., Ansel, K. M., Xiao, C. C., Xue, Y. Z., et al. (2007). Regulation of the germinal center response by microRNA-155. Science, 316, 604–608.PubMedCrossRef
Zurück zum Zitat Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934.PubMedCrossRef Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934.PubMedCrossRef
Zurück zum Zitat Visvanathan, J., Lee, S., Lee, B., Lee, J. W., & Lee, S. K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes and Development, 21, 744–749.PubMedCrossRef Visvanathan, J., Lee, S., Lee, B., Lee, J. W., & Lee, S. K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes and Development, 21, 744–749.PubMedCrossRef
Zurück zum Zitat Wang, S. S., Aurora, A. B., Johnson, B. A., Qi, X. X., McAnally, J., Hill, J. A., et al. (2008a). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developmental Cell, 15, 261–271.PubMedCrossRef Wang, S. S., Aurora, A. B., Johnson, B. A., Qi, X. X., McAnally, J., Hill, J. A., et al. (2008a). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developmental Cell, 15, 261–271.PubMedCrossRef
Zurück zum Zitat Wang, Y., Baskerville, S., Shenoy, A., Babiarz, J. E., Baehner, L., & Blelloch, R. (2008b). Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nature Genetics, 40, 1478–1483.PubMedCrossRef Wang, Y., Baskerville, S., Shenoy, A., Babiarz, J. E., Baehner, L., & Blelloch, R. (2008b). Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nature Genetics, 40, 1478–1483.PubMedCrossRef
Zurück zum Zitat Wang, Y. L., Keys, D. N., Au-Young, J. K., & Chen, C. F. (2009). MicroRNAs in embryonic stem cells. Journal of Cellular Physiology, 218, 251–255.PubMedCrossRef Wang, Y. L., Keys, D. N., Au-Young, J. K., & Chen, C. F. (2009). MicroRNAs in embryonic stem cells. Journal of Cellular Physiology, 218, 251–255.PubMedCrossRef
Zurück zum Zitat Wang, Y. M., Medvid, R., Melton, C., Jaenisch, R., & Blelloch, R. (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genetics, 39, 380–385.PubMedCrossRef Wang, Y. M., Medvid, R., Melton, C., Jaenisch, R., & Blelloch, R. (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genetics, 39, 380–385.PubMedCrossRef
Zurück zum Zitat Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A. C., et al. (1996). Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. Journal of Neuroscience, 16, 7599–7609.PubMed Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A. C., et al. (1996). Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. Journal of Neuroscience, 16, 7599–7609.PubMed
Zurück zum Zitat Williams, A. E. (2008). Functional aspects of animal microRNAs. Cellular and Molecular Life Sciences, 65, 545–562.PubMedCrossRef Williams, A. E. (2008). Functional aspects of animal microRNAs. Cellular and Molecular Life Sciences, 65, 545–562.PubMedCrossRef
Zurück zum Zitat Xu, J., Zeng, J. Q., Wan, G., Hu, G. B., Yan, H., & Ma, L. X. (2009). Construction of siRNA/miRNA expression vectors based on a one-step PCR process. BMC Biotechnology, 9, 53.PubMedCrossRef Xu, J., Zeng, J. Q., Wan, G., Hu, G. B., Yan, H., & Ma, L. X. (2009). Construction of siRNA/miRNA expression vectors based on a one-step PCR process. BMC Biotechnology, 9, 53.PubMedCrossRef
Zurück zum Zitat Yu, J. Y., Chung, K. H., Deo, M., Thompson, R. C., & Turner, D. L. (2008). MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Experimental Cell Research, 314, 2618–2633.PubMedCrossRef Yu, J. Y., Chung, K. H., Deo, M., Thompson, R. C., & Turner, D. L. (2008). MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Experimental Cell Research, 314, 2618–2633.PubMedCrossRef
Zurück zum Zitat Yu, F., Yao, H., Zhu, P. C., Zhang, X. Q., Pan, Q. H., Gong, C., et al. (2007). Iet-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131, 1109–1123.PubMedCrossRef Yu, F., Yao, H., Zhu, P. C., Zhang, X. Q., Pan, Q. H., Gong, C., et al. (2007). Iet-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131, 1109–1123.PubMedCrossRef
Zurück zum Zitat Zhao, C. M., Deng, W., & Gage, F. H. (2008a). Mechanisms and functional implications of adult neurogenesis. Cell, 132, 645–660.PubMedCrossRef Zhao, C. M., Deng, W., & Gage, F. H. (2008a). Mechanisms and functional implications of adult neurogenesis. Cell, 132, 645–660.PubMedCrossRef
Zurück zum Zitat Zhao, J. J., Lin, J. H., Yang, H., Kong, W., He, L. L., Ma, X., et al. (2008b). MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. Journal of Biological Chemistry, 283, 31079–31086.PubMedCrossRef Zhao, J. J., Lin, J. H., Yang, H., Kong, W., He, L. L., Ma, X., et al. (2008b). MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. Journal of Biological Chemistry, 283, 31079–31086.PubMedCrossRef
Zurück zum Zitat Zhao, C., Sun, G., Li, S., & Shi, Y. (2009). A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nature Structural and Molecular Biology, 16, 365–371.PubMedCrossRef Zhao, C., Sun, G., Li, S., & Shi, Y. (2009). A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nature Structural and Molecular Biology, 16, 365–371.PubMedCrossRef
Zurück zum Zitat Zhao, X., Ueba, T., Christie, B. R., Barkho, B., McConnell, M. J., Nakashima, K., et al. (2003). Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proceedings of the National Academy of Sciences of the United States of America, 100, 6777–6782.PubMedCrossRef Zhao, X., Ueba, T., Christie, B. R., Barkho, B., McConnell, M. J., Nakashima, K., et al. (2003). Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proceedings of the National Academy of Sciences of the United States of America, 100, 6777–6782.PubMedCrossRef
Metadaten
Titel
MicroRNAs in Adult and Embryonic Neurogenesis
verfasst von
Changmei Liu
Xinyu Zhao
Publikationsdatum
01.09.2009
Verlag
Humana Press Inc
Erschienen in
NeuroMolecular Medicine / Ausgabe 3/2009
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-009-8077-y

Weitere Artikel der Ausgabe 3/2009

NeuroMolecular Medicine 3/2009 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.