Skip to main content
Erschienen in: NeuroMolecular Medicine 3/2016

Open Access 04.05.2016 | Review Paper

Nutraceuticals in Parkinson’s Disease

verfasst von: Liting Hang, Adeline Henry Basil, Kah-Leong Lim

Erschienen in: NeuroMolecular Medicine | Ausgabe 3/2016

Abstract

Current pharmacological strategies for Parkinson’s disease (PD), the most common neurological movement disorder worldwide, are predominantly symptom relieving and are often plagued with undesirable side effects after prolonged treatment. Despite this, they remain as the mainstay treatment for PD due to the lack of better alternatives. Nutraceuticals are compounds derived from natural food sources that have certain therapeutic value and the advent of which has opened doors to the use of alternative strategies to tackle neurodegenerative diseases such as PD. Notably, nutraceuticals are able to position themselves as a “safer” strategy due to the fact that they are naturally derived compounds, therefore possibly having less side effects. Significant efforts have been put into better comprehending the role of nutraceuticals in PD, and we will look at some of them in this review. Broadly speaking, these compounds execute their positive effects via modulating signalling pathways, inhibiting oxidative stress, inflammation and apoptosis, as well as regulating mitochondrial homoeostasis. Importantly, we will highlight how a component of green tea, epigallocatechin-3-gallate (EGCG), confers neuroprotection in PD via its ability to activate AMP kinase and articulate how its beneficial effects in PD are possibly due to enhancing mitochondrial quality control.

Introduction

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder currently affecting around 5–6 million predominantly elderly individuals worldwide. PD is expected to be even more commonplace in the near future as the world’s population rapidly ages. In 2030, about 10 million or more are expected to be afflicted with PD (Dorsey et al. 2007). Clinically, the disease is characterized by a constellation of motoric deficits including resting tremor, bradykinesia (slowness in movements), postural instability and rigidity that arises from the depletion of striatal dopamine—a result of the progressive loss of midbrain dopaminergic neurons in the substantia nigra pars compacta (SNpc) that innervate the striatum. This is accompanied by the characteristic neuropathological pattern of eosinophilic intracytoplasmic inclusions known as Lewy bodies (LBs) in surviving neurons in the SN. Notably, α-synuclein, a presynaptic protein whose mutations are causative of familial PD, is a major component of LBs (Polymeropoulos et al. 1997). Although a small percentage of PD cases are inheritable as a result of mutations in genes including α-synuclein, Parkin, LRRK2, PINK1, and DJ-1, exposure to environmental toxins and pesticides, such as paraquat and rotenone, and synthetic toxins, such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), can also lead to PD (Goldman 2014). To date, the exact disease mechanisms underlying PD pathogenesis are not fully understood, but studies have consistently implicated aberrant mitochondrial and protein homoeostasis as key contributors to the development of PD, with oxidative stress likely acting as an important nexus (Lim and Zhang 2013).
At present, therapeutic strategies for the PD patient remain largely symptomatic and more often than not, existing pharmacological treatments come with undesirable side effects. Indeed, pharmacological replacement of dopamine with l-Dopa remains as the gold standard for PD treatment despite its association with diminishing effects and problematic drug-induced dyskinesia after prolonged intake. These inadequacies of the gold standard treatment highlight an urgent need to develop more effective disease-modifying drugs for PD. In recent years, several alternative approaches to delay the progression of the disease have been considered and coming under the spotlight recently is nutraceuticals. Functional foods and nutritional supplements, which are common sources of nutraceuticals, are beginning to gain international recognition due to the potential health benefits they harbour when consumed as part of a varied diet on a regular basis and at optimal levels. Consequently, both the scientific community and food industry are motivated to exploit these benefits for the prevention and even treatment of chronic ageing diseases, including PD.

Nutraceuticals and PD

As the word suggests, “nutraceuticals” refers to compounds that are derived from natural sources, and these food or derivatives therein have been clinically substantiated with reasonable scientific evidence to support their beneficial role in the prevention and/or treatment of a particular disease (Chao et al. 2012). It is this very reason that nutraceuticals are more readily accepted by the general populace as a form of treatment. There is a greater tendency to believe that there are fewer side effects associated with compounds derived from natural sources as compared to the many known side effects of synthetic drug compounds.
In the context of PD, several nutraceuticals have been shown to provide neuroprotection in experimental models and may serve as alternatives to synthetic drug compounds like l-Dopa that is known to cause many undesirable side effects. The mechanisms by which they work can be broadly classified into the following themes: (1) reactive oxygen species (ROS)/free radical scavenging; (2) anti-inflammation; (3) iron chelation; (4) modulation of cell signalling pathways; (5) anti-apoptosis; and (6) mitochondrial homoeostasis, although several nutraceuticals essentially function via a myriad of mechanistic pathways rather than adhere to a single mechanism (Fig. 1). Table 1 summarizes existing nutraceuticals that have been found to confer neuroprotection in PD. We will discuss a few examples of these below.
Table 1
Summary of nutraceuticals in PD
Nutraceuticals
Compound
Proposed mechanism of action
Evidence on potential neuroprotective effects
References
Clinical trials
In vivo
In vitro
Vitamin B complex
Vitamin supplement
Regulate levels of homocysteine
Optimize mitochondrial function
PD patients treated with l-Dopa and vitamin B showed a reduction in homocysteine levels compared to without vitamin B.
Protect against MPTP-induced SNpc dopaminergic neuronal loss and striatal DA depletion in mice
 
Miller et al. (2003), Lamberti et al. (2005), Yokoyama et al. (2010), Anderson et al. (2008), Mukherjee et al. (1997)
Vitamin C and E
Antioxidant vitamin supplements
Vitamin C: Free radical scavenger in the cytosol
Vitamin E: Lipid-soluble antioxidant to prevent lipid peroxidation in membranes
Conflicting reports
  
Fahn (1991), Martin et al. (2002), Parkinson Study Group (1993), Olanow (2003), Zhang et al. (2002), Etminan et al. (2005)
Vitamin D
Vitamin supplement
Upregulate GDNF levels (promote outgrowth of dopaminergic axons)
Increase glutathione levels
Calcium homoeostasis
Anti-apoptotic
Immunomodulatory effects
Reduce nitric oxide synthase
Regulate dopamine levels
Higher vitamin D serum levels, significantly lower risk of developing PD later in life
Attenuate 6-OHDA-induced and MPP+-induced neurotoxicity in rodent model
Vitamin D receptor knockout mice developed motor defect
 
Wang et al. (2001), Knekt et al. (2010), Kirik et al. (2001), Garcion et al. (2002), Evatt et al. (2008)
Coenzyme Q10 (CoQ10)
Fat-soluble and vitamin-like quinone found abundantly in liver and the brain
Maintain proper transfer of electrons in the electron transport chain of mitochondria and ATP production
Potent antioxidant that can reduce oxidized form of alpha-tocopherol to prevent lipid peroxidation
Conflicting reports
Attenuate MPTP-induced neurotoxicity in rodent model
 
Beal et al. (1998), Cleren et al. (2008), Shults et al. (2002), Muller et al. (2003), Shults (2005)
Creatine
Nitrogenous organic acid
Phosphorylated by creatine kinase to form phosphocreatine, an energy reserve in the brain and skeletal muscles
Phosphocreatine is a key player in the maintenance of ATP levels, which in turn are important in synaptic activity and skeletal muscle functions
Creatine treatment improved mood and reduced the dosages required for dopamine replacement therapy
Reduce loss of dopaminergic neurons in MPTP mouse model
 
Matthews et al. (1999), Bender et al. (2006)
Fish oil
Polyunsaturated fatty acids (n-3 PUFA)
Important modulators for dopaminergic neurons in the basal ganglia
Antidepressant effects mediated by an increase in serotonergic neurotransmission
 
Reduce dopamine loss and prevent formation of DOPAC in MPTP-induced parkinsonism in mice
Calon F et al. (2007)
 
Denny Joseph and Muralidhara (2015), de Lau et al. (2005), Chen et al. (2003), Bousquet et al. (2008), Garcia-Arencibia et al. (2009)
Mucunapruriens, Mucunasanjappae
Natural sources of l-Dopa—plants belonging to Mucuna genus family
Consists of significant amounts of NADH and CoQ10
NADH: increases dopamine levels via upregulation of TH), counteracts the inhibition of mitochondrial complex 1 activity) and protects neurons against DNA damage caused by free radicals produced during the interaction between l-Dopa and divalent copper ions
Patients prescribed with mucuna seed powder extract showed significant improvements with better tolerability compared to l-Dopa treatment alone
Importantly, in the mucuna-treated patients, severe dyskinesia or peripheral dopaminergic neuronal damage was observed
Protects against 6-OHDA toxicity in rodent model
 
Vaidya et al. (1978), Nagashayana et al. (2000), HP-200 in Parkinson’s Disease Study Group (1995), Manyam et al. (2004), Tharakan et al. (2007), Spencer et al. (1994), Patil et al. (2015), Hussian and Manyam (1997), Katzenschlager et al. (2004)
EGCG in green tea
Polyphenolic compounds
Passes BBB
Iron chelation
Free radical scavenger
Antioxidant
Regulation of PKC
Modulation of ROS–NO pathway
AMPK activation
Prospective cohort study of Singapore Chinese Health Study showed no relationship between green tea consumption and PD risk
Protects against 6-OHDA- and MPTP-induced parkinsonism in mice
Protects against 6-OHDA-induced toxicity in PC12 cells
Protects against TNF-α and hydrogen peroxide-induced apoptosis in rat mesencephalic cells
Ng, Guan, et al. (2012), Pan et al. (2003), Mandel et al. (2006), Levites et al. (2001), Mandel et al. (2004), Guo et al. (2007), Tan et al. (2008), Xu et al. (2015)
Curcuminoids in curry
Polyphenolic flavonoid that constitutes approximately 4 % of turmeric
Antioxidant
Restoring glutathione levels (protect neurons against protein oxidation and preserving mitochondrial complex 1 activity)
Anti-inflammatory (inhibits LPS-induced morphological changes of microglia and reduces LPS-induced production of pro-inflammatory factors and their gene expressions)
 
Protect neurons against protein oxidation and preserve mitochondrial complex I activity
Reduce 6-OHDA-induced neurotoxicity in rodent models
Significantly reversed MPTP-induced depletion of DA and DOPAC in mice
Protect neurons against protein oxidation and preserve mitochondrial complex I activity
Reduce 6-OHDA-induced neurotoxicity in MES 23.5 cells by modulating NF-κB translocation
Prevent MPTP-induced neurotoxicity in SH-SY5Y cells and PC12 cells by targeting the JNK, the Bcl-2 mitochondria and the ROS–iNOS pathways
Jagatha et al. (2008), Zbarsky et al. (2005), Wang et al. (2009a), Yang et al. (2008), Yu et al. (2010), Chen et al. (2006), Rajeswari and Sabesan (2008), Wang et al. (2010), Pandey et al. (2008)
Baicalein
Flavonoid extracted from the root of Scutellariabaicalensis, a traditional Chinese herb commonly known as Huang Qin
Antioxidant
Anti-inflammatory
Inhibit fibrillization of alpha-synuclein
 
Rescues MPTP- and 6-OHDA-induced neurotoxicity in rodent models
Attenuate mitochondrial depolarization and proteasome inhibition in PC12 cells induced by familial alpha-synuclein mutation (E46K).
van Leyen et al. (2006), Chen et al. (2008), Cheng et al. (2008), Mu et al. (2009), Waxman et al. (2010), Jiang et al. (2010)
Resveratrol
A phytoalexin found in plants such as grapes, peanuts, berries and pines
Inhibition of NADPH oxidase and suppression of IL1-a and TNF-α triggered by LPS
Modulate levels of BAX and Bcl-2 in vitro
Stimulation of SIRT1 in SK-N-BE cells
Free radical scavenger
 
Attenuate MPTP-, 6-OHDA- and LPS-induced toxicity in rodent models
Protect dopaminergic neurons against toxicity induced by LPS, DA or MPTP
Zhang et al. (2010), Bournival et al. (2009), Lee et al. (2007), Lu et al. (2008), Khan et al. (2010), Bureau et al. (2008), Albani et al. (2009), Pallas et al. (2009), Pallas et al. (2008)
Oxyresveratrol
Heartwood or fruit of Artocarpusheterophyllus, Artocarpuslakoocha, Actocarpusgomezianus and Actocarpusdadah
Wood or fruit of mulberry trees
Fruit of Melaleucaleucadendron
Rhizomes of Smilacischinae
Egyptian herb Schoenocaulonofficinale
Anti-inflammatory effects, particularly those isolated from Artocarpusheterophyllus, Artocarpusdadahor mulberry wood
Free radical scavenger (penetrates neurons easily)
Upregulate SIRT1
  
Protect against 6-OHDA-induced toxicity in SH-SY5Y cells by reducing the release of lactate dehydrogenase and caspase-3-specific activity
Fang et al. (2008), Su et al. 2002), Chao et al. (2008)
Ginsenoside
Ginsenosides, a phytoestrogen, are a class of molecules extracted from several species of ginseng
Regulate several pathways (P13K/AKT, ERK, JNK, ROS-NFkB, IGF-1 receptor signalling pathways and oestrogen receptor pathway)
Maintain glutathione levels
Anti-apoptotic (Attenuate JNK signalling)
Prevent elevation of iron levels by regulating the expression of iron transport proteins
 
Attenuate MPTP-, 6-OHDA- and rotenone-induced toxicity in rodent models
 
Chen et al. (2005), Wang et al. (2009b), Xu et al. (2009), Leppa and Bohmann (1999)
Genistein
A phytoestrogen found mainly in soy and peanuts
Binds to oestrogen receptor β and upregulates anti-oxidative and anti-apoptotic genes
Antioxidant (Increase the levels of malondialdehyde, superoxide dismutase, and monoamine oxidase)
Anti-apoptotic (Tyrosine kinase inhibitor, attenuate activation of PKC)
 
Attenuate 6-OHDA-induced toxicity in rodents
Attenuate hydrogen peroxide-induced cell death in N27 cells
Kaul et al. (2005), Baluchnejadmojarad et al. (2009)
Holy Basil (Ocimum sanctum)
A leaf extract from a plant known as Tulsi, which is found throughout India
Anti-microbial
Anti-stress
Anti-diabetic
Hepatoprotective
Anti-inflammatory
Neuroprotective
Cardioprotective
 
Delay loss of climbing ability and reduce the oxidative stress in brain of the Drosophila PD model
 
Siddique et al. (2014)
Nucleoprotein
Extracted from salmon soft roe and consists mainly of a mixture of DNA nucleotide and protamine
ROS scavenger
Reduce accumulation of lipofuscin-like substances in the brain, which is often related to Lewy body formation
 
Prevent locomotor impairment and dopaminergic neuronal degeneration in MPTP-induced toxicity mice model
 
Kiriyama et al. (2015)
Nordihydroguaiaretic acid (NDGA)
Polyphenol extracted from compound of creosote bush (Larrea tridentate)
Antioxidant
Anti-genotoxic
Anti-neoplastic
Antiviral
Anti-inflammatory
Inhibit the accumulation of alpha-synuclein (hallmark of PD)
 
Delay the loss of climbing ability in Drosophila PD model
 
Siddique et al. (2012)
Quercetin (Q)
Natural flavonoid found in fruits and vegetables such as onion, broccoli and apple
Antioxidant
Anti-inflammatory
Anti-cancer
 
Protect against chronic rotenone toxicity and dopaminergic neuronal loss in 6-OHDA rat models of PD
 
Haleagrahara et al. (2011), Denny Joseph and Muralidhara (2015)
Magnesium
Dietary supplement
DA uptake
Vesicular storage and transport
Alter Ca2+-mediated neurotoxicity
Activate CuZn-SOD, thereby attenuating formation of ONOO–, involved with α-synuclein aggregation
   
Philippu et al. (1975), Safar et al. (2010), Lin et al. (2002), Johnson (2001)
Caffeine
Psychoactive CNS stimulant found in coffee
Regulate expression of genes involved in oxidative stress (cytochrome c oxidase subunits, enolase alpha, NADH dehydrogenase, aldehyde dehydrogenase)
Regulate expression of ubiquitin–proteasome pathway-related genes (ubiquitin-conjugating enzyme, protease 26S subunit, ubiquitin B and C)
Cell-cycle regulation
Risk of suffering PD decreases as consumption of coffee increases
Protect against 6-OHDA- and MPTP-induced dopaminergic neuronal loss in mice
 
Gongora-Alfaro (2010), Singh et al. (2010)
Eucalyptus Oil
Eucalyptus citriodora leaf extract
Antioxidant
 
Delay of the loss of climbing ability in Drosophila PD model
 
Siddique et al. (2013)
Ginkobiloba extract (EGb 761)
Ginkobiloba leaves containing flavonoids and terpenoids
Antioxidant
Anti-inflammatory
Anti-apoptotic
 
Pretreatment with EGb 761
decreases lipid peroxidation and improves locomotor activity in 6-OHDA rat model
In a MPTP rat model, EGb 761 prevents dopaminergic neurotoxicity, decreases SOD activity, decreases oxidative stress and apoptosis induced by MPP+
EGb 761 provide neuroprotection against paraquat-induced apoptosis of PC12 cells
Kim et al. (2004), Kang et al. (2007), Rojas et al. (2012), Ahmad et al. (2005), Yang et al. (2001)
Shengmai San (SMS) and LingGuiZhuGanTang (LGZGT)
Traditional Chinese Medicine
SMS comprise of three crude drug components, Radix Ginseng (Panax ginseng) (Araliaceae), Radix Ophiopogonis (Ophiopogonjaponicus) (Liliaceae) and FructusSchisandrae (Schisandrachinensis) (Schisandraceae)
LGZGT comprise of four crude drug components, Cinnamon twig (Cinnamomum cassia Presl.) (Lauraceae), Atractylodisrhizoma (AtractylodesmacrocephalaKoidz.) (Compositae), Glycyrrhizae radix (GlycyrrhizauralensisFisch.) (Leguminosae) and one fungi Hoelen (Poriacocos (Schw.) (Wolf Polyporaceae)
Antioxidant
 
Protects against MPTP-induced dopaminergic neuronal loss in mice
 
Giridharan et al. (2011)
Swallow root (Decalepishamiltonii)
Extract from plant species swallow root
Antioxidant
 
Improved climbing ability and circadian rhythm of locomotor activity of transgenic alpha-synuclein Drosophila PD model and resulted in an associated reduction in levels of ROS and lipid peroxidation and enhancement in the activities of catalase and superoxide dismutase
 
Jahromi et al. (2015)
TianmaGouteng Yin (TGY)
Traditional Chinese Medicine
Unclear
 
Improved survival rates and locomotor function of rotenone-intoxicated Drosophila PD model
Reduced levels of alpha-synuclein and prevented degeneration of dopaminergic neurons in alpha-synuclein transgenic Drosophila
Protects rotenone-induced dopaminergic neuronal loss in mice
Alleviated apoptotic cell death in human dopaminergic neuroblastoma SH-SY5Y cell line treated with rotenone
Liu et al. (2015)
The seeds of the Mucuna plant, also affectionately known as dopa bean, are well known for containing l-Dopa, the go-to drug for treating PD. Although some species of Mucuna contain more l-Dopa than others, the Mucuna plant is generally favoured for the exploitation of l-Dopa due to its relative abundance of which compared to other plant families that have been studied (Patil et al. 2015). Other microbial and chemical means of synthesizing l-Dopa have also been explored (Surwase et al. 2012; Krishnaveni et al. 2009; Ali et al. 2007; Sikander and Ikram ul 2006), but the Mucuna plant has been preferred as it is a natural and inexpensive source, and it provides additional benefits as an antioxidant (Manyam et al. 2004). In fact, a species of Mucuna plant, Mucuna pruriens, has been shown in both the PD mice model and patients to be more effective than l-Dopa without the accompanying increase in dyskinesia (Hussian and Manyam 1997; Katzenschlager et al. 2004).
Apart from the Mucuna plants, there are many other nutraceuticals that appear to be neuroprotective due to their anti-oxidative properties. Such properties are particularly important in the context of PD as several studies have pointed to oxidative stress, which results in ROS generation and inflammation, as a pivotal contributor to age-related neuronal loss in PD (Jenner 1998). An example of a nutraceutical that possesses both anti-oxidative and anti-inflammatory properties is ginsenoside, a phytoestrogen that is extracted from several species of ginseng (Chen et al. 2005). It executes its anti-oxidative properties by maintaining glutathione levels, and its anti-inflammatory properties are a result of the regulation of several inflammatory pathways including the ROS-NFκB, JNK, P13K/AKT, ERK, IGF-1 receptor signalling pathways and oestrogen receptor pathway. In addition, ginsenoside also reduces the levels of nigral iron of MPTP-treated mice by regulating the expression of iron transport proteins (Wang et al. 2009b). This is of importance as the build-up of iron in conjunction with ROS at the site of neurodegeneration is thought to constitute a major trigger in neurotoxicity and neuronal demise in PD (Zecca et al. 2004). As such, nutraceuticals like ginsenoside that can inhibit pro-inflammatory and oxidative processes should, in theory, be able to attenuate dopaminergic neuronal damage. Indeed, it has been demonstrated that ginsenoside protects against toxicities and dopaminergic neuronal loss induced by PD toxins including 6-hydroxydopamine (6-OHDA) and MPTP (Chen et al. 2005; Xu et al. 2009). Due to its role in the regulation of JNK signalling, ginsenoside also possesses anti-apoptotic properties. Hence, another postulated mechanism through which the neuroprotective effect of ginsenoside is facilitated is its reduction of c-Jun phosphorylation, which prevents pro-apoptotic JNK signalling and dopaminergic neuronal loss during MPTP-induced neurotoxicity (Leppa and Bohmann 1999).
Besides ginseng, dietary soy and peanut products have also been reported to have similar anti-apoptotic effects. Soy and peanut are rich sources of genistein, a phytoestrogen-like ginsenoside. Genistein acts as a tyrosine kinase inhibitor that attenuates protein kinase C (PKC) activation and thereby downstream apoptotic effects (Kaul et al. 2005; Baluchnejadmojarad et al. 2009). Another potent anti-apoptotic nutraceutical that has been shown to protect against PD toxin-induced neurotoxicity is Ginkobiloba extract EGb 761. EGb 761 prevents the formation of apoptosome and the apoptotic cascade by blocking cytochrome-c release (Liu et al. 2008; Yeh et al. 2009; Nevado et al. 2010). Like ginsenoside, EGb 761 also attenuates the phosphorylation of c-Jun (Shi et al. 2009) and furthermore inhibits the cleavage of caspase-3 (Liu et al. 2008; Shi et al. 2009), thereby preventing DNA fragmentation, a hallmark of apoptosis. By blocking apoptosis through various mechanistic pathways, genistein and EGb 761 were found to attenuate dopaminergic neuronal loss and reduce associated locomotion impairment in 6-OHDA and MPTP mice models (Ahmad et al. 2005; Baluchnejadmojarad et al. 2009; Rojas et al. 2012; Yang et al. 2001).

Nutraceuticals and Mitochondrial Homoeostasis

As mentioned earlier, aberrant mitochondrial homoeostasis is commonly implicated in PD pathogenesis. Intuitively, one would propose that nutraceuticals that have a role in mitochondrial regulation can potentially mitigate PD pathology. Coenzyme Q10 (CoQ10) is a component of the mitochondrial electron transport chain and participates actively in ATP generation. It is noteworthy to mention that in PD animal models, CoQ10 attenuates MPTP-induced neurotoxicity, possibly due to its unique electron-accepting property, rendering it critical to the electron transfer between mitochondrial complex 1 and other complexes of the electron transport chain (Beal et al. 1998; Cleren et al. 2008). Although it has been proposed as a therapeutic strategy for PD (Shults 2005), clinical trials involving CoQ10 have been conflicting. While one study by Shults et al. reported a dose-dependent reduction in functional decline, another study by Muller et al. observed only mild symptomatic benefit (Shults et al. 2002; Muller et al. 2003). Other nutraceuticals that are reported to be neuroprotective due to their role in preserving mitochondrial complex 1 activity include curcuminoids from turmeric (Jagatha et al. 2008) and the earlier-mentioned Mucuna plant (Manyam et al. 2004). Yet another key player in the maintenance of ATP levels is phosphocreatine, an energy reserve in skeletal muscles and brain. Notably, treatment with creatine appears to rescue parkinsonian phenotypes in both human subjects and animal models. Specifically, diet supplement of creatine was found to improve the mood and reduce the dosages required for dopamine (DA) replacement therapy in PD patients (Bender et al. 2006), as well as reduce dopaminergic neuronal loss in SNpc of MPTP-treated mice (Matthews et al. 1999). It certainly seems that mitochondrial homoeostasis is a common targeted pathway for nutraceutical therapy notwithstanding the controversy surrounding CoQ10.
Epigallocatechin-3-gallate (EGCG), a main green tea-derived catechin, is a nutraceutical that is frequently featured in PD, perhaps due to its numerous putative neuroprotective mechanisms that is not limited to mitochondrial homoeostasis (Pan et al. 2003). These include anti-oxidation, iron chelation, ROS scavenging and anti-apoptotic properties. Moreover, EGCG crosses the blood–brain barrier easily, making it an attractive compound for therapy. Besides the myriad of properties, EGCG has been reported to be an AMPK activator (Spasic et al. 2009; Hwang et al. 2009). It increases cytosolic Ca2+ levels, thereby influencing the activity of Ca2+-/calmodulin-dependent protein kinase kinase (CaMKKβ), an upstream kinase of AMPK (Kim et al. 2014). The activation of AMPK in the presence of EGCG is therefore likely to be mediated by CaMKKβ. As discussed below, AMPK activation by EGCG has been demonstrated to be neuroprotective.

AMPK Activation and Neuroprotection

AMPK is a central energy sensor and regulator that is normally activated in response to diminishing energy supply, e.g. ATP depletion or glucose starvation (Li et al. 2012). Given the critical role of AMPK in energy homoeostasis, it is perhaps not surprising to note that AMPK has profound influence on mitochondrial homoeostasis amidst a plethora of metabolic events that it governs. It is well documented that AMPK works through peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) to promote mitochondrial biogenesis (Lee et al. 2012). Although the mechanism by which AMPK upregulates PGC-1α activity remains unclear, studies have suggested that it could directly phosphorylate PGC-1α (Ng et al. 2012b) or indirectly activate the transcriptional coactivator by promoting its deacetylation through the NAD+-dependent deacetylase SIRT1 (Ng et al. 2012b). Interestingly, a recently identified AMPK target is UNC-51-like kinase 1 (ULK1), a mammalian ortholog of the yeast Atg1 kinase that acts as a key initiator of the autophagy cascade (Carroll et al. 2014; Martin et al. 2014). The activation of ULK1 by AMPK promotes autophagy, including mitophagy. Accordingly, when ULK1 function is impaired, it results in the accumulation of abnormal mitochondria with reduced potential (Martin et al. 2014). Similarly, when the known AMPK-mediated phosphorylation sites on ULK1 are abolished, autophagy is also impaired (Martin et al. 2014), suggesting that the clearance of damaged mitochondria is dependent on the AMPK–ULK1–autophagy pathway. More recently, a study by Toyama et al. reported that AMPK is required for rotenone-induced mitochondrial fission (Toyama et al. 2016), an essential process to isolate damaged mitochondria and promote mitophagy (Twig et al. 2008). Importantly, they identified a novel substrate of AMPK, mitochondrial fission factor (MFF), and found that the presence of non-phosphorylatable MFF resulted in defective mitochondrial fission, further emphasizing the importance of AMPK in regulating mitophagy.
Notwithstanding earlier discussion that AMPK activation helps to maintain mitochondrial quality control and should theoretically promote cellular survival, the role of AMPK activation in neuroprotection remains controversial. Similarly, AMPK activation is also a double-edge sword in the case of PD, promoting neurodegeneration under some circumstances yet aggravating in others. For instance, a study by Kim et al. contradicts a neuroprotective role of AMPK in PD and found that AMPK mediates dopaminergic neuronal atrophy in 6-OHDA-lesioned mice. Moreover, metformin-induced AMPK activation accelerates rather than retards 6-OHDA-induced neuronal loss in these mice (Kim et al. 2013). Subsequently, Xu et al. also observed in a related study similar detrimental effects of AMPK activation in primary neurons treated with 6-OHDA, MPTP or rotenone (Xu et al. 2014). Nonetheless, there are also several reports supporting a neuroprotective role of AMPK in PD. In a recent study by Patil et al., MPTP-treated mice on chronic metformin regimen demonstrated enhanced antioxidant activity and brain-derived neurotrophic factor (BDNF) levels, thereby rendering protection against dopaminergic neuronal loss induced by MPP+ (Patil et al. 2015). In a related study, AMPK is activated upon MPTP treatment, and when AMPK activity is downregulated by compound C, neurotoxicity is enhanced (Choi et al. 2010). Supporting this, a recent study demonstrated similar findings albeit in cultured cells exposed to rotenone (Wu et al. 2011). Given that both MPP + and rotenone are complex I inhibitors, the rescue of the in vivo and in vitro PD models by AMPK activation is consistent with its role in the maintenance of mitochondrial homoeostasis. Importantly, it is also noteworthy to mention that a recent cohort-based study involving 800,000 subjects in a Taiwanese population revealed that metformin-inclusive sulfonylurea therapy significantly reduces PD risk in individuals with type 2 diabetes (Wahlqvist et al. 2012), suggesting the neuroprotective effects of AMPK activation. Collectively, these findings suggest that AMPK activation may be beneficial for the disease.
On a related note, we have recently found that EGCG facilitates neuroprotection in PD by mediating mitochondrial regulation via AMPK activation. Using Drosophila as a model, we found that EGCG administration ameliorates the pathological phenotypes of parkin null PD flies, including prominent mitochondrial abnormalities and progressive loss of selected dopaminergic neuronal clusters that are accompanied by an age-dependent decline in locomotor ability (Ng et al. 2012a). These are disease phenotypes that bear resemblance to that of human PD (Green and Kroemer 2004; Whitworth et al. 2005). Importantly, the EGCG-mediated protective effects require AMPK as genetic inactivation of AMPK abolishes the neuroprotective effects while subsequent genetic restoration of AMPK and pharmacological activation of AMPK with potent AMPK activators (metformin or AICAR) reproduce these beneficial effects (Ng et al. 2012a). In contrast, treatment of parkin null flies with another compound, i.e. Baicalein—an established antioxidant (Shieh et al. 2000), failed to ameliorate the observed parkinsonian phenotypes (unpublished observation). Accordingly, we speculated that AMPK activation rather than anti-oxidation may be involved in EGCG-mediated protective effects. In a similar fashion, Drosophila LRRK2 mutants could be rid of its pathological phenotypes via pharmacological treatment with EGCG, metformin or AICAR or the co-expression of a constitutively active AMPK mutant (Ng et al. 2012a), suggesting that this approach may be relevant to different forms of PD. Consistent with our results, Ferretta et al. demonstrated similar benefits using resveratrol (Ferretta et al. 2014), another nutraceutical found in the skin of grapes and berries that is known to be a relatively strong AMPK activator (Dasgupta and Milbrandt 2007). In patient’s fibroblasts harbouring parkin mutations, they found that resveratrol increased mitochondrial biogenesis and improved oxidative phosphorylation (Ferretta et al. 2014).While AMPK activation brings about a virtually complete rescue of PD pathological phenotypes in flies, we are currently on the endeavour to dissect precisely how it happens. Nevertheless, existing knowledge of AMPK has shed light on the possible mechanistic pathways via which AMPK-mediated neuroprotection may occur. As mentioned earlier, AMPK is capable of positively regulating mitochondrial biogenesis via PGC-1α and also mitophagy. This is further supported by the resveratrol-based study by Ferretta et al. that also revealed the ability of AMPK to enhance autophagy flux in parkin-mutant fibroblasts (Ferretta et al. 2014). Hence, it is likely that enhanced mitochondrial biogenesis and/or mitophagy could help in the maintenance of a viable pool of bioenergetically competent mitochondria necessary for dopaminergic neuronal survival. Accordingly, approaches towards promoting these processes may be of therapeutic value for PD.

Conclusion

As with many other neurodegenerative diseases, PD is a debilitating disorder that gradually robs an individual of his/her fundamental bodily functions. Although much effort has been put into advancing therapeutic strategies for this disease, many conventional and existing treatment options are unfortunately accompanied by several undesirable effects despite their ability to provide symptomatic relief. Fortunately, with the advent of nutraceuticals, an alternative avenue to tackle this seemingly evasive biological problem has been provided. Nutraceuticals, by virtue of their origin from naturally available food or food products, appear to be a favourable treatment option since harnessing therapeutic strategies from natural resources can potentially avoid side effects. As a matter of fact, many of the nutraceuticals discussed in this review have been shown to be not only preventive but also therapeutic for PD. Significantly, we have highlighted in this paper how we and others have demonstrated the ability of green tea-derived catechin EGCG to rescue PD pathological outcomes, possibly through enhancing mitochondrial homoeostasis. However, despite many promising reports about the role of nutraceuticals in neuroprotection for PD, we acknowledged that it is early days yet as several mechanistic gaps remain unanswered. Notwithstanding this, the recognition that nutraceuticals might be of therapeutic benefits offers countless opportunities to explore other natural compounds that have not been looked at in terms of their potential neuroprotective roles in PD. For example, ergothioneine (EGT) is a naturally occurring amino acid found in mushrooms that protects mitochondria from oxidative stress (Cheah and Halliwell 2012) and was found to accumulate at significantly lower levels in PD patients compared to healthy controls (Hatano et al. 2015), thus suggesting a therapeutic potential of EGT for the disease. In addition, future research could also direct efforts towards better understanding the effects of nutraceuticals in combination with existing drug therapies for PD patients, in order to derive improved outcomes for the PD patient. The delivery of nutraceuticals could also be optimized in order to maximize their neuroprotective effects. As a parting note, it is hopeful to envisage that one day we would be able to simply modify our diet to prevent or mitigate the progression of this debilitating disease.

Acknowledgments

This work was supported by grants from the National Medical Research Council-Translational Clinical Research Program in Parkinson’s disease and National Medical Research Council-Collaborative Basic Research Grant (LKL). Ms. Hang LT is supported by a graduate scholarship from the National University of Singapore Graduate School for Integrative Sciences and Engineering.

Compliance with Ethical Standards

Conflict of interest

The authors (Hang LT, Basil AH, Lim KL) declare that they have no conflict of interest.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Literatur
Zurück zum Zitat Ahmad, M., Saleem, S., Ahmad, A. S., Yousuf, S., Ansari, M. A., Khan, M. B., et al. (2005). Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: Neurobehavioural, neurochemical and immunohistochemical evidences. Journal of Neurochemistry, 93(1), 94–104. doi:10.1111/j.1471-4159.2005.03000.x.PubMedCrossRef Ahmad, M., Saleem, S., Ahmad, A. S., Yousuf, S., Ansari, M. A., Khan, M. B., et al. (2005). Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: Neurobehavioural, neurochemical and immunohistochemical evidences. Journal of Neurochemistry, 93(1), 94–104. doi:10.​1111/​j.​1471-4159.​2005.​03000.​x.PubMedCrossRef
Zurück zum Zitat Albani, D., Polito, L., Batelli, S., De Mauro, S., Fracasso, C., Martelli, G., et al. (2009). The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1–42) peptide. Journal of Neurochemistry, 110(5), 1445–1456. doi:10.1111/j.1471-4159.2009.06228.x.PubMedCrossRef Albani, D., Polito, L., Batelli, S., De Mauro, S., Fracasso, C., Martelli, G., et al. (2009). The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1–42) peptide. Journal of Neurochemistry, 110(5), 1445–1456. doi:10.​1111/​j.​1471-4159.​2009.​06228.​x.PubMedCrossRef
Zurück zum Zitat Baluchnejadmojarad, T., Roghani, M., Nadoushan, M. R., & Bagheri, M. (2009). Neuroprotective effect of genistein in 6-hydroxydopamine hemi-parkinsonian rat model. Phytotherapy Research, 23(1), 132–135. doi:10.1002/ptr.2564.PubMedCrossRef Baluchnejadmojarad, T., Roghani, M., Nadoushan, M. R., & Bagheri, M. (2009). Neuroprotective effect of genistein in 6-hydroxydopamine hemi-parkinsonian rat model. Phytotherapy Research, 23(1), 132–135. doi:10.​1002/​ptr.​2564.PubMedCrossRef
Zurück zum Zitat Beal, M. F., Matthews, R. T., Tieleman, A., & Shults, C. W. (1998). Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3, tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Research, 783(1), 109–114.PubMedCrossRef Beal, M. F., Matthews, R. T., Tieleman, A., & Shults, C. W. (1998). Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3, tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Research, 783(1), 109–114.PubMedCrossRef
Zurück zum Zitat Bournival, J., Quessy, P., & Martinoli, M. G. (2009). Protective effects of resveratrol and quercetin against MPP+-induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cellular and Molecular Neurobiology, 29(8), 1169–1180. doi:10.1007/s10571-009-9411-5.PubMedCrossRef Bournival, J., Quessy, P., & Martinoli, M. G. (2009). Protective effects of resveratrol and quercetin against MPP+-induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cellular and Molecular Neurobiology, 29(8), 1169–1180. doi:10.​1007/​s10571-009-9411-5.PubMedCrossRef
Zurück zum Zitat Bousquet, M., Saint-Pierre, M., Julien, C., Salem, N, Jr, Cicchetti, F., & Calon, F. (2008). Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. The FASEB Journal, 22(4), 1213–1225. doi:10.1096/fj.07-9677com.PubMedCrossRef Bousquet, M., Saint-Pierre, M., Julien, C., Salem, N, Jr, Cicchetti, F., & Calon, F. (2008). Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. The FASEB Journal, 22(4), 1213–1225. doi:10.​1096/​fj.​07-9677com.PubMedCrossRef
Zurück zum Zitat Bureau, G., Longpre, F., & Martinoli, M. G. (2008). Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. Journal of Neuroscience Research, 86(2), 403–410. doi:10.1002/jnr.21503.PubMedCrossRef Bureau, G., Longpre, F., & Martinoli, M. G. (2008). Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. Journal of Neuroscience Research, 86(2), 403–410. doi:10.​1002/​jnr.​21503.PubMedCrossRef
Zurück zum Zitat Carroll, R. G., Hollville, E., & Martin, S. J. (2014). Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. [Research Support, Non-U.S. Gov’t]. Cell Reports, 9(4), 1538–1553. doi:10.1016/j.celrep.2014.10.046.PubMedCrossRef Carroll, R. G., Hollville, E., & Martin, S. J. (2014). Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. [Research Support, Non-U.S. Gov’t]. Cell Reports, 9(4), 1538–1553. doi:10.​1016/​j.​celrep.​2014.​10.​046.PubMedCrossRef
Zurück zum Zitat Chen, H., Zhang, S. M., Hernán, M. A., Willett, W. C., & Ascherio, A. (2003). Dietary intakes of fat and risk of Parkinson’s disease. American Journal of Epidemiology, 157(11), 1007–1014. doi:10.1093/aje/kwg073.PubMedCrossRef Chen, H., Zhang, S. M., Hernán, M. A., Willett, W. C., & Ascherio, A. (2003). Dietary intakes of fat and risk of Parkinson’s disease. American Journal of Epidemiology, 157(11), 1007–1014. doi:10.​1093/​aje/​kwg073.PubMedCrossRef
Zurück zum Zitat Chen, J., Tang, X. Q., Zhi, J. L., Cui, Y., Yu, H. M., Tang, E. H., et al. (2006). Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis, 11(6), 943–953. doi:10.1007/s10495-006-6715-5.PubMedCrossRef Chen, J., Tang, X. Q., Zhi, J. L., Cui, Y., Yu, H. M., Tang, E. H., et al. (2006). Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis, 11(6), 943–953. doi:10.​1007/​s10495-006-6715-5.PubMedCrossRef
Zurück zum Zitat Chen, S. F., Hsu, C. W., Huang, W. H., & Wang, J. Y. (2008). Post-injury baicalein improves histological and functional outcomes and reduces inflammatory cytokines after experimental traumatic brain injury. British Journal of Pharmacology, 155(8), 1279–1296. doi:10.1038/bjp.2008.345.PubMedPubMedCentralCrossRef Chen, S. F., Hsu, C. W., Huang, W. H., & Wang, J. Y. (2008). Post-injury baicalein improves histological and functional outcomes and reduces inflammatory cytokines after experimental traumatic brain injury. British Journal of Pharmacology, 155(8), 1279–1296. doi:10.​1038/​bjp.​2008.​345.PubMedPubMedCentralCrossRef
Zurück zum Zitat Choi, J. S., Park, C., & Jeong, J. W. (2010). AMP-activated protein kinase is activated in Parkinson’s disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochemical and Biophysical Research Communications, 391(1), 147–151. doi:10.1016/j.bbrc.2009.11.022.PubMedCrossRef Choi, J. S., Park, C., & Jeong, J. W. (2010). AMP-activated protein kinase is activated in Parkinson’s disease models mediated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Biochemical and Biophysical Research Communications, 391(1), 147–151. doi:10.​1016/​j.​bbrc.​2009.​11.​022.PubMedCrossRef
Zurück zum Zitat Dasgupta, B., & Milbrandt, J. (2007). Resveratrol stimulates AMP kinase activity in neurons. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 104(17), 7217–7222. doi:10.1073/pnas.0610068104.PubMedPubMedCentralCrossRef Dasgupta, B., & Milbrandt, J. (2007). Resveratrol stimulates AMP kinase activity in neurons. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 104(17), 7217–7222. doi:10.​1073/​pnas.​0610068104.PubMedPubMedCentralCrossRef
Zurück zum Zitat Denny Joseph, K. M., & Muralidhara, (2015). Combined oral supplementation of fish oil and quercetin enhances neuroprotection in a chronic rotenone rat model: Relevance to Parkinson’s disease. Neurochemical Research, 40(5), 894–905. doi:10.1007/s11064-015-1542-0.PubMedCrossRef Denny Joseph, K. M., & Muralidhara, (2015). Combined oral supplementation of fish oil and quercetin enhances neuroprotection in a chronic rotenone rat model: Relevance to Parkinson’s disease. Neurochemical Research, 40(5), 894–905. doi:10.​1007/​s11064-015-1542-0.PubMedCrossRef
Zurück zum Zitat Fahn, S. (1991). An open trial of high-dosage antioxidants in early Parkinson’s disease. American Journal of Clinical Nutrition, 53(1 Suppl), 380s–382s.PubMed Fahn, S. (1991). An open trial of high-dosage antioxidants in early Parkinson’s disease. American Journal of Clinical Nutrition, 53(1 Suppl), 380s–382s.PubMed
Zurück zum Zitat Fang, S. C., Hsu, C. L., & Yen, G. C. (2008). Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus. Journal of Agriculture and Food Chemistry, 56(12), 4463–4468. doi:10.1021/jf800444g.CrossRef Fang, S. C., Hsu, C. L., & Yen, G. C. (2008). Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus. Journal of Agriculture and Food Chemistry, 56(12), 4463–4468. doi:10.​1021/​jf800444g.CrossRef
Zurück zum Zitat Ferretta, A., Gaballo, A., Tanzarella, P., Piccoli, C., Capitanio, N., Nico, B., et al. (2014). Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson’s disease. [Research Support, Non-U.S. Gov’t]. Biochimica et Biophysica Acta, 1842(7), 902–915. doi:10.1016/j.bbadis.2014.02.010.PubMedCrossRef Ferretta, A., Gaballo, A., Tanzarella, P., Piccoli, C., Capitanio, N., Nico, B., et al. (2014). Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson’s disease. [Research Support, Non-U.S. Gov’t]. Biochimica et Biophysica Acta, 1842(7), 902–915. doi:10.​1016/​j.​bbadis.​2014.​02.​010.PubMedCrossRef
Zurück zum Zitat Garcia-Arencibia, M., Garcia, C., & Fernandez-Ruiz, J. (2009). Cannabinoids and Parkinson’s disease. CNS & Neurological Disorders: Drug Targets, 8(6), 432–439.CrossRef Garcia-Arencibia, M., Garcia, C., & Fernandez-Ruiz, J. (2009). Cannabinoids and Parkinson’s disease. CNS & Neurological Disorders: Drug Targets, 8(6), 432–439.CrossRef
Zurück zum Zitat Garcion, E., Wion-Barbot, N., Montero-Menei, C. N., Berger, F., & Wion, D. (2002). New clues about vitamin D functions in the nervous system. Trends in Endocrinology and Metabolism, 13(3), 100–105.PubMedCrossRef Garcion, E., Wion-Barbot, N., Montero-Menei, C. N., Berger, F., & Wion, D. (2002). New clues about vitamin D functions in the nervous system. Trends in Endocrinology and Metabolism, 13(3), 100–105.PubMedCrossRef
Zurück zum Zitat Giridharan, V. V., Thandavarayan, R. A., & Konishi, T. (2011). Effect of Shengmai-san on cognitive performance and cerebral oxidative damage in BALB/c mice. Journal of Medicinal Food, 14(6), 601–609. doi:10.1089/jmf.2010.1362.PubMedCrossRef Giridharan, V. V., Thandavarayan, R. A., & Konishi, T. (2011). Effect of Shengmai-san on cognitive performance and cerebral oxidative damage in BALB/c mice. Journal of Medicinal Food, 14(6), 601–609. doi:10.​1089/​jmf.​2010.​1362.PubMedCrossRef
Zurück zum Zitat Gongora-Alfaro, J. L. (2010). Caffeine as a preventive drug for Parkinson’s disease: Epidemiologic evidence and experimental support. Revista de Neurologia, 50(4), 221–229.PubMed Gongora-Alfaro, J. L. (2010). Caffeine as a preventive drug for Parkinson’s disease: Epidemiologic evidence and experimental support. Revista de Neurologia, 50(4), 221–229.PubMed
Zurück zum Zitat Guo, S., Yan, J., Yang, T., Yang, X., Bezard, E., & Zhao, B. (2007). Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biological Psychiatry, 62(12), 1353–1362. doi:10.1016/j.biopsych.2007.04.020.PubMedCrossRef Guo, S., Yan, J., Yang, T., Yang, X., Bezard, E., & Zhao, B. (2007). Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biological Psychiatry, 62(12), 1353–1362. doi:10.​1016/​j.​biopsych.​2007.​04.​020.PubMedCrossRef
Zurück zum Zitat Hatano, T., Saiki, S., Okuzumi, A., Mohney, R. P., & Hattori, N. (2015). Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. Journal of Neurology, Neurosurgery and Psychiatry,. doi:10.1136/jnnp-2014-309676.PubMed Hatano, T., Saiki, S., Okuzumi, A., Mohney, R. P., & Hattori, N. (2015). Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. Journal of Neurology, Neurosurgery and Psychiatry,. doi:10.​1136/​jnnp-2014-309676.PubMed
Zurück zum Zitat HP-200 in Parkinson’s Disease Study Group. (1995). An alternative medicine treatment for Parkinson’s disease: Results of a multicenter clinical trial. Journal of Alternative and Complementary Medicine, 1(3), 249–255.CrossRef HP-200 in Parkinson’s Disease Study Group. (1995). An alternative medicine treatment for Parkinson’s disease: Results of a multicenter clinical trial. Journal of Alternative and Complementary Medicine, 1(3), 249–255.CrossRef
Zurück zum Zitat Jagatha, B., Mythri, R. B., Vali, S., & Bharath, M. M. (2008). Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: Therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radical Biology and Medicine, 44(5), 907–917. doi:10.1016/j.freeradbiomed.2007.11.011.PubMedCrossRef Jagatha, B., Mythri, R. B., Vali, S., & Bharath, M. M. (2008). Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: Therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radical Biology and Medicine, 44(5), 907–917. doi:10.​1016/​j.​freeradbiomed.​2007.​11.​011.PubMedCrossRef
Zurück zum Zitat Jenner, P. (1998). Oxidative mechanisms in nigral cell death in Parkinson’s disease. Movement Disorders, 13(Suppl 1), 24–34.PubMed Jenner, P. (1998). Oxidative mechanisms in nigral cell death in Parkinson’s disease. Movement Disorders, 13(Suppl 1), 24–34.PubMed
Zurück zum Zitat Katzenschlager, R., Evans, A., Manson, A., Patsalos, P. N., Ratnaraj, N., Watt, H., et al. (2004). Mucuna pruriens in Parkinson’s disease: A double blind clinical and pharmacological study. Journal of Neurology, Neurosurgery and Psychiatry, 75(12), 1672–1677. doi:10.1136/jnnp.2003.028761.PubMedPubMedCentralCrossRef Katzenschlager, R., Evans, A., Manson, A., Patsalos, P. N., Ratnaraj, N., Watt, H., et al. (2004). Mucuna pruriens in Parkinson’s disease: A double blind clinical and pharmacological study. Journal of Neurology, Neurosurgery and Psychiatry, 75(12), 1672–1677. doi:10.​1136/​jnnp.​2003.​028761.PubMedPubMedCentralCrossRef
Zurück zum Zitat Kaul, S., Anantharam, V., Yang, Y., Choi, C. J., Kanthasamy, A., & Kanthasamy, A. G. (2005). Tyrosine phosphorylation regulates the proteolytic activation of protein kinase Cδ in dopaminergic neuronal cells. Journal of Biological Chemistry, 280(31), 28721–28730. doi:10.1074/jbc.M501092200.PubMedCrossRef Kaul, S., Anantharam, V., Yang, Y., Choi, C. J., Kanthasamy, A., & Kanthasamy, A. G. (2005). Tyrosine phosphorylation regulates the proteolytic activation of protein kinase Cδ in dopaminergic neuronal cells. Journal of Biological Chemistry, 280(31), 28721–28730. doi:10.​1074/​jbc.​M501092200.PubMedCrossRef
Zurück zum Zitat Khan, M. M., Ahmad, A., Ishrat, T., Khan, M. B., Hoda, M. N., Khuwaja, G., et al. (2010). Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Research, 1328, 139–151. doi:10.1016/j.brainres.2010.02.031.PubMedCrossRef Khan, M. M., Ahmad, A., Ishrat, T., Khan, M. B., Hoda, M. N., Khuwaja, G., et al. (2010). Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Research, 1328, 139–151. doi:10.​1016/​j.​brainres.​2010.​02.​031.PubMedCrossRef
Zurück zum Zitat Kim, M. S., Lee, J. I., Lee, W. Y., & Kim, S. E. (2004). Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson’s disease. Phytotherapy Research, 18(8), 663–666. doi:10.1002/ptr.1486.PubMedCrossRef Kim, M. S., Lee, J. I., Lee, W. Y., & Kim, S. E. (2004). Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson’s disease. Phytotherapy Research, 18(8), 663–666. doi:10.​1002/​ptr.​1486.PubMedCrossRef
Zurück zum Zitat Kirik, D., Georgievska, B., Rosenblad, C., & Bjorklund, A. (2001). Delayed infusion of GDNF promotes recovery of motor function in the partial lesion model of Parkinson’s disease. European Journal of Neuroscience, 13(8), 1589–1599.PubMedCrossRef Kirik, D., Georgievska, B., Rosenblad, C., & Bjorklund, A. (2001). Delayed infusion of GDNF promotes recovery of motor function in the partial lesion model of Parkinson’s disease. European Journal of Neuroscience, 13(8), 1589–1599.PubMedCrossRef
Zurück zum Zitat Kiriyama, K., Ohtaki, H., Kobayashi, N., Murai, N., Matsumoto, M., Sasaki, S., et al. (2015). A nucleoprotein-enriched diet suppresses dopaminergic neuronal cell loss and motor deficit in mice with MPTP-induced Parkinson’s disease. Journal of Molecular Neuroscience, 55(3), 803–811. doi:10.1007/s12031-014-0432-2.PubMedCrossRef Kiriyama, K., Ohtaki, H., Kobayashi, N., Murai, N., Matsumoto, M., Sasaki, S., et al. (2015). A nucleoprotein-enriched diet suppresses dopaminergic neuronal cell loss and motor deficit in mice with MPTP-induced Parkinson’s disease. Journal of Molecular Neuroscience, 55(3), 803–811. doi:10.​1007/​s12031-014-0432-2.PubMedCrossRef
Zurück zum Zitat Krishnaveni, R., Rathod, V., Thakur, M. S., & Neelgund, Y. F. (2009). Transformation of l-tyrosine to l-dopa by a novel fungus, Acremonium rutilum, under submerged fermentation. Current Microbiology, 58(2), 122–128. doi:10.1007/s00284-008-9287-5.PubMedCrossRef Krishnaveni, R., Rathod, V., Thakur, M. S., & Neelgund, Y. F. (2009). Transformation of l-tyrosine to l-dopa by a novel fungus, Acremonium rutilum, under submerged fermentation. Current Microbiology, 58(2), 122–128. doi:10.​1007/​s00284-008-9287-5.PubMedCrossRef
Zurück zum Zitat Lamberti, P., Zoccolella, S., Armenise, E., Lamberti, S. V., Fraddosio, A., de Mari, M., et al. (2005). Hyperhomocysteinemia in l-dopa treated Parkinson’s disease patients: Effect of cobalamin and folate administration. European Journal of Neurology, 12(5), 365–368. doi:10.1111/j.1468-1331.2004.00973.x.PubMedCrossRef Lamberti, P., Zoccolella, S., Armenise, E., Lamberti, S. V., Fraddosio, A., de Mari, M., et al. (2005). Hyperhomocysteinemia in l-dopa treated Parkinson’s disease patients: Effect of cobalamin and folate administration. European Journal of Neurology, 12(5), 365–368. doi:10.​1111/​j.​1468-1331.​2004.​00973.​x.PubMedCrossRef
Zurück zum Zitat Lee, M. K., Kang, S. J., Poncz, M., Song, K. J., & Park, K. S. (2007). Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Experimental & Molecular Medicine, 39(3), 376–384. doi:10.1038/emm.2007.42.CrossRef Lee, M. K., Kang, S. J., Poncz, M., Song, K. J., & Park, K. S. (2007). Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Experimental & Molecular Medicine, 39(3), 376–384. doi:10.​1038/​emm.​2007.​42.CrossRef
Zurück zum Zitat Levites, Y., Weinreb, O., Maor, G., Youdim, M. B., & Mandel, S. (2001). Green tea polyphenol (−)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. Journal of Neurochemistry, 78(5), 1073–1082.PubMedCrossRef Levites, Y., Weinreb, O., Maor, G., Youdim, M. B., & Mandel, S. (2001). Green tea polyphenol (−)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. Journal of Neurochemistry, 78(5), 1073–1082.PubMedCrossRef
Zurück zum Zitat Lin, J. Y., Chung, S. Y., Lin, M. C., & Cheng, F. C. (2002). Effects of magnesium sulfate on energy metabolites and glutamate in the cortex during focal cerebral ischemia and reperfusion in the gerbil monitored by a dual-probe microdialysis technique. Life Sciences, 71(7), 803–811.PubMedCrossRef Lin, J. Y., Chung, S. Y., Lin, M. C., & Cheng, F. C. (2002). Effects of magnesium sulfate on energy metabolites and glutamate in the cortex during focal cerebral ischemia and reperfusion in the gerbil monitored by a dual-probe microdialysis technique. Life Sciences, 71(7), 803–811.PubMedCrossRef
Zurück zum Zitat Liu, T. J., Yeh, Y. C., Ting, C. T., Lee, W. L., Wang, L. C., Lee, H. W., et al. (2008). Ginkgo biloba extract 761 reduces doxorubicin-induced apoptotic damage in rat hearts and neonatal cardiomyocytes. Cardiovascular Research, 80(2), 227–235. doi:10.1093/cvr/cvn192.PubMedCrossRef Liu, T. J., Yeh, Y. C., Ting, C. T., Lee, W. L., Wang, L. C., Lee, H. W., et al. (2008). Ginkgo biloba extract 761 reduces doxorubicin-induced apoptotic damage in rat hearts and neonatal cardiomyocytes. Cardiovascular Research, 80(2), 227–235. doi:10.​1093/​cvr/​cvn192.PubMedCrossRef
Zurück zum Zitat Liu, L.-F., Song, J.-X., Lu, J.-H., Huang, Y.-Y., Zeng, Y., Chen, L.-L., et al. (2015). Tianma Gouteng Yin, a Traditional Chinese Medicine decoction, exerts neuroprotective effects in animal and cellular models of Parkinson’s disease. Scientific Reports, 5, 16862. doi:10.1038/srep16862.PubMedPubMedCentralCrossRef Liu, L.-F., Song, J.-X., Lu, J.-H., Huang, Y.-Y., Zeng, Y., Chen, L.-L., et al. (2015). Tianma Gouteng Yin, a Traditional Chinese Medicine decoction, exerts neuroprotective effects in animal and cellular models of Parkinson’s disease. Scientific Reports, 5, 16862. doi:10.​1038/​srep16862.PubMedPubMedCentralCrossRef
Zurück zum Zitat Lu, K. T., Ko, M. C., Chen, B. Y., Huang, J. C., Hsieh, C. W., Lee, M. C., et al. (2008). Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. Journal of Agriculture and Food Chemistry, 56(16), 6910–6913. doi:10.1021/jf8007212.CrossRef Lu, K. T., Ko, M. C., Chen, B. Y., Huang, J. C., Hsieh, C. W., Lee, M. C., et al. (2008). Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. Journal of Agriculture and Food Chemistry, 56(16), 6910–6913. doi:10.​1021/​jf8007212.CrossRef
Zurück zum Zitat Mandel, S., Weinreb, O., Amit, T., & Youdim, M. B. (2004). Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (−)-epigallocatechin-3-gallate: Implications for neurodegenerative diseases. Journal of Neurochemistry, 88(6), 1555–1569.PubMedCrossRef Mandel, S., Weinreb, O., Amit, T., & Youdim, M. B. (2004). Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (−)-epigallocatechin-3-gallate: Implications for neurodegenerative diseases. Journal of Neurochemistry, 88(6), 1555–1569.PubMedCrossRef
Zurück zum Zitat Mandel, S., Weinreb, O., Reznichenko, L., Kalfon, L., & Amit, T. (2006). Green tea catechins as brain-permeable, non toxic iron chelators to “iron out iron” from the brain. Journal of Neural Transmission, 71(Suppl), 249–257.CrossRefPubMed Mandel, S., Weinreb, O., Reznichenko, L., Kalfon, L., & Amit, T. (2006). Green tea catechins as brain-permeable, non toxic iron chelators to “iron out iron” from the brain. Journal of Neural Transmission, 71(Suppl), 249–257.CrossRefPubMed
Zurück zum Zitat Martin, A., Youdim, K., Szprengiel, A., Shukitt-Hale, B., & Joseph, J. (2002). Roles of vitamins E and C on neurodegenerative diseases and cognitive performance. Nutrition Reviews, 60(10 Pt 1), 308–326.PubMedCrossRef Martin, A., Youdim, K., Szprengiel, A., Shukitt-Hale, B., & Joseph, J. (2002). Roles of vitamins E and C on neurodegenerative diseases and cognitive performance. Nutrition Reviews, 60(10 Pt 1), 308–326.PubMedCrossRef
Zurück zum Zitat Martin, I., Kim, J. W., Dawson, V. L., & Dawson, T. M. (2014). LRRK2 pathobiology in Parkinson’s disease. [Research Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov’tReview]. Journal of Neurochemistry, 131(5), 554–565. doi:10.1111/jnc.12949.PubMedPubMedCentralCrossRef Martin, I., Kim, J. W., Dawson, V. L., & Dawson, T. M. (2014). LRRK2 pathobiology in Parkinson’s disease. [Research Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov’tReview]. Journal of Neurochemistry, 131(5), 554–565. doi:10.​1111/​jnc.​12949.PubMedPubMedCentralCrossRef
Zurück zum Zitat Matthews, R. T., Ferrante, R. J., Klivenyi, P., Yang, L., Klein, A. M., Mueller, G., et al. (1999). Creatine and cyclocreatine attenuate MPTP neurotoxicity. Experimental Neurology, 157(1), 142–149. doi:10.1006/exnr.1999.7049.PubMedCrossRef Matthews, R. T., Ferrante, R. J., Klivenyi, P., Yang, L., Klein, A. M., Mueller, G., et al. (1999). Creatine and cyclocreatine attenuate MPTP neurotoxicity. Experimental Neurology, 157(1), 142–149. doi:10.​1006/​exnr.​1999.​7049.PubMedCrossRef
Zurück zum Zitat Miller, J. W., Selhub, J., Nadeau, M. R., Thomas, C. A., Feldman, R. G., & Wolf, P. A. (2003). Effect of l-dopa on plasma homocysteine in PD patients: Relationship to B-vitamin status. Neurology, 60(7), 1125–1129.PubMedCrossRef Miller, J. W., Selhub, J., Nadeau, M. R., Thomas, C. A., Feldman, R. G., & Wolf, P. A. (2003). Effect of l-dopa on plasma homocysteine in PD patients: Relationship to B-vitamin status. Neurology, 60(7), 1125–1129.PubMedCrossRef
Zurück zum Zitat Mu, X., He, G., Cheng, Y., Li, X., Xu, B., & Du, G. (2009). Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacology, Biochemistry and Behavior, 92(4), 642–648. doi:10.1016/j.pbb.2009.03.008.PubMedCrossRef Mu, X., He, G., Cheng, Y., Li, X., Xu, B., & Du, G. (2009). Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacology, Biochemistry and Behavior, 92(4), 642–648. doi:10.​1016/​j.​pbb.​2009.​03.​008.PubMedCrossRef
Zurück zum Zitat Mukherjee, S. K., Klaidman, L. K., Yasharel, R., & Adams, J. D, Jr. (1997). Increased brain NAD prevents neuronal apoptosis in vivo. European Journal of Pharmacology, 330(1), 27–34.PubMedCrossRef Mukherjee, S. K., Klaidman, L. K., Yasharel, R., & Adams, J. D, Jr. (1997). Increased brain NAD prevents neuronal apoptosis in vivo. European Journal of Pharmacology, 330(1), 27–34.PubMedCrossRef
Zurück zum Zitat Muller, T., Buttner, T., Gholipour, A. F., & Kuhn, W. (2003). Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson’s disease. Neuroscience Letters, 341(3), 201–204.PubMedCrossRef Muller, T., Buttner, T., Gholipour, A. F., & Kuhn, W. (2003). Coenzyme Q10 supplementation provides mild symptomatic benefit in patients with Parkinson’s disease. Neuroscience Letters, 341(3), 201–204.PubMedCrossRef
Zurück zum Zitat Nagashayana, N., Sankarankutty, P., Nampoothiri, M. R., Mohan, P. K., & Mohanakumar, K. P. (2000). Association of l-DOPA with recovery following Ayurveda medication in Parkinson’s disease. Journal of the Neurological Sciences, 176(2), 124–127.PubMedCrossRef Nagashayana, N., Sankarankutty, P., Nampoothiri, M. R., Mohan, P. K., & Mohanakumar, K. P. (2000). Association of l-DOPA with recovery following Ayurveda medication in Parkinson’s disease. Journal of the Neurological Sciences, 176(2), 124–127.PubMedCrossRef
Zurück zum Zitat Nevado, J., Sanz, R., Sanchez-Rodriguez, C., Garcia-Berrocal, J. R., Martin-Sanz, E., Gonzalez-Garcia, J. A., et al. (2010). Ginkgo biloba extract (EGb761) protects against aging-related caspase-mediated apoptosis in rat cochlea. Acta Oto-Laryngologica, 130(10), 1101–1112. doi:10.3109/00016481003713657.PubMedCrossRef Nevado, J., Sanz, R., Sanchez-Rodriguez, C., Garcia-Berrocal, J. R., Martin-Sanz, E., Gonzalez-Garcia, J. A., et al. (2010). Ginkgo biloba extract (EGb761) protects against aging-related caspase-mediated apoptosis in rat cochlea. Acta Oto-Laryngologica, 130(10), 1101–1112. doi:10.​3109/​0001648100371365​7.PubMedCrossRef
Zurück zum Zitat Ng, C. H., Guan, M. S., Koh, C., Ouyang, X., Yu, F., Tan, E. K., et al. (2012a). AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. Journal of Neuroscience, 32(41), 14311–14317. doi:10.1523/jneurosci.0499-12.2012.PubMedCrossRef Ng, C. H., Guan, M. S., Koh, C., Ouyang, X., Yu, F., Tan, E. K., et al. (2012a). AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. Journal of Neuroscience, 32(41), 14311–14317. doi:10.​1523/​jneurosci.​0499-12.​2012.PubMedCrossRef
Zurück zum Zitat Ng, T. L., Leprivier, G., Robertson, M. D., Chow, C., Martin, M. J., Laderoute, K. R., et al. (2012b). The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis. Cell Death and Differentiation, 19(3), 501–510. doi:10.1038/cdd.2011.119.PubMedCrossRef Ng, T. L., Leprivier, G., Robertson, M. D., Chow, C., Martin, M. J., Laderoute, K. R., et al. (2012b). The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis. Cell Death and Differentiation, 19(3), 501–510. doi:10.​1038/​cdd.​2011.​119.PubMedCrossRef
Zurück zum Zitat Olanow, C. W. (2003). Dietary vitamin E and Parkinson’s disease: Something to chew on. Lancet Neurology, 2(2), 74.PubMedCrossRef Olanow, C. W. (2003). Dietary vitamin E and Parkinson’s disease: Something to chew on. Lancet Neurology, 2(2), 74.PubMedCrossRef
Zurück zum Zitat Pallas, M., Verdaguer, E., Tajes, M., Gutierrez-Cuesta, J., & Camins, A. (2008). Modulation of sirtuins: New targets for antiageing. Recent Patents on CNS Drug Discovery, 3(1), 61–69.PubMedCrossRef Pallas, M., Verdaguer, E., Tajes, M., Gutierrez-Cuesta, J., & Camins, A. (2008). Modulation of sirtuins: New targets for antiageing. Recent Patents on CNS Drug Discovery, 3(1), 61–69.PubMedCrossRef
Zurück zum Zitat Pallas, M., Casadesus, G., Smith, M. A., Coto-Montes, A., Pelegri, C., Vilaplana, J., et al. (2009). Resveratrol and neurodegenerative diseases: Activation of SIRT1 as the potential pathway towards neuroprotection. Current Neurovascular Research, 6(1), 70–81.PubMedCrossRef Pallas, M., Casadesus, G., Smith, M. A., Coto-Montes, A., Pelegri, C., Vilaplana, J., et al. (2009). Resveratrol and neurodegenerative diseases: Activation of SIRT1 as the potential pathway towards neuroprotection. Current Neurovascular Research, 6(1), 70–81.PubMedCrossRef
Zurück zum Zitat Pan, T., Jankovic, J., & Le, W. (2003). Potential therapeutic properties of green tea polyphenols in Parkinson’s disease. Drugs and Aging, 20(10), 711–721.PubMedCrossRef Pan, T., Jankovic, J., & Le, W. (2003). Potential therapeutic properties of green tea polyphenols in Parkinson’s disease. Drugs and Aging, 20(10), 711–721.PubMedCrossRef
Zurück zum Zitat Patil, R. R., Gholave, A. R., Jadhav, J. P., Yadav, S. R., & Bapat, V. A. (2015). Mucuna sanjappae Aitawade et Yadav: A new species of Mucuna with promising yield of anti-Parkinson’s drug l-DOPA. Genetic Resources and Crop Evolution, 62(1), 155–162. doi:10.1007/s10722-014-0164-8.CrossRef Patil, R. R., Gholave, A. R., Jadhav, J. P., Yadav, S. R., & Bapat, V. A. (2015). Mucuna sanjappae Aitawade et Yadav: A new species of Mucuna with promising yield of anti-Parkinson’s drug l-DOPA. Genetic Resources and Crop Evolution, 62(1), 155–162. doi:10.​1007/​s10722-014-0164-8.CrossRef
Zurück zum Zitat Philippu, A., Matthaei, H., & Lentzen, H. (1975). Uptake of dopamine into fractions of pig caudate nucleus homogenates. Naunyn-Schmiedeberg’s Archives of Pharmacology, 287(2), 181–190.PubMedCrossRef Philippu, A., Matthaei, H., & Lentzen, H. (1975). Uptake of dopamine into fractions of pig caudate nucleus homogenates. Naunyn-Schmiedeberg’s Archives of Pharmacology, 287(2), 181–190.PubMedCrossRef
Zurück zum Zitat Rajeswari, A., & Sabesan, M. (2008). Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology, 16(2), 96–99. doi:10.1007/s10787-007-1614-0.PubMedCrossRef Rajeswari, A., & Sabesan, M. (2008). Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology, 16(2), 96–99. doi:10.​1007/​s10787-007-1614-0.PubMedCrossRef
Zurück zum Zitat Rojas, P., Montes, P., Rojas, C., Serrano-García, N., & Rojas-Castañeda, J. C. (2012). Effect of a phytopharmaceutical medicine, Ginko biloba extract 761, in an animal model of Parkinson’s disease: Therapeutic perspectives. Nutrition, 28(11–12), 1081–1088. doi:10.1016/j.nut.2012.03.007.CrossRefPubMed Rojas, P., Montes, P., Rojas, C., Serrano-García, N., & Rojas-Castañeda, J. C. (2012). Effect of a phytopharmaceutical medicine, Ginko biloba extract 761, in an animal model of Parkinson’s disease: Therapeutic perspectives. Nutrition, 28(11–12), 1081–1088. doi:10.​1016/​j.​nut.​2012.​03.​007.CrossRefPubMed
Zurück zum Zitat Shieh, D. E., Liu, L. T., & Lin, C. C. (2000). Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Research, 20(5A), 2861–2865.PubMed Shieh, D. E., Liu, L. T., & Lin, C. C. (2000). Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Research, 20(5A), 2861–2865.PubMed
Zurück zum Zitat Shults, C. W., Oakes, D., Kieburtz, K., Beal, M. F., Haas, R., Plumb, S., et al. (2002). Effects of coenzyme Q10 in early Parkinson disease: Evidence of slowing of the functional decline. Archives of Neurology, 59(10), 1541–1550.PubMedCrossRef Shults, C. W., Oakes, D., Kieburtz, K., Beal, M. F., Haas, R., Plumb, S., et al. (2002). Effects of coenzyme Q10 in early Parkinson disease: Evidence of slowing of the functional decline. Archives of Neurology, 59(10), 1541–1550.PubMedCrossRef
Zurück zum Zitat Siddique, Y. H., Ara, G., Jyoti, S., & Afzal, M. (2012). The dietary supplementation of nordihydroguaiaretic acid (NDGA) delayed the loss of climbing ability in Drosophila model of Parkinson’s disease. Journal of Dietary Supplements, 9(1), 1–8. doi:10.3109/19390211.2011.630716.PubMedCrossRef Siddique, Y. H., Ara, G., Jyoti, S., & Afzal, M. (2012). The dietary supplementation of nordihydroguaiaretic acid (NDGA) delayed the loss of climbing ability in Drosophila model of Parkinson’s disease. Journal of Dietary Supplements, 9(1), 1–8. doi:10.​3109/​19390211.​2011.​630716.PubMedCrossRef
Zurück zum Zitat Siddique, Y. H., Mujtaba, S. F., Jyoti, S., & Naz, F. (2013). GC–MS analysis of Eucalyptus citriodora leaf extract and its role on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Food and Chemical Toxicology, 55, 29–35. doi:10.1016/j.fct.2012.12.028.PubMedCrossRef Siddique, Y. H., Mujtaba, S. F., Jyoti, S., & Naz, F. (2013). GC–MS analysis of Eucalyptus citriodora leaf extract and its role on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Food and Chemical Toxicology, 55, 29–35. doi:10.​1016/​j.​fct.​2012.​12.​028.PubMedCrossRef
Zurück zum Zitat Siddique, Y. H., Faisal, M., Naz, F., Jyoti, S., & Rahul, (2014). Role of Ocimum sanctum leaf extract on dietary supplementation in the transgenic Drosophila model of Parkinson’s disease. Chinese Journal of Natural, 12(10), 777–781. doi:10.1016/s1875-5364(14)60118-7.CrossRef Siddique, Y. H., Faisal, M., Naz, F., Jyoti, S., & Rahul, (2014). Role of Ocimum sanctum leaf extract on dietary supplementation in the transgenic Drosophila model of Parkinson’s disease. Chinese Journal of Natural, 12(10), 777–781. doi:10.​1016/​s1875-5364(14)60118-7.CrossRef
Zurück zum Zitat Sikander, A., & Ikram ul, H. (2006). Innovative effect of illite on improved microbiological conversion of l-tyrosine to 3,4 dihydroxy phenyl l-alanine (l-DOPA) by Aspergillus oryzae ME2 under acidic reaction conditions. Current Microbiology, 53(5), 351–357. doi:10.1007/s00284-005-0220-x.PubMedCrossRef Sikander, A., & Ikram ul, H. (2006). Innovative effect of illite on improved microbiological conversion of l-tyrosine to 3,4 dihydroxy phenyl l-alanine (l-DOPA) by Aspergillus oryzae ME2 under acidic reaction conditions. Current Microbiology, 53(5), 351–357. doi:10.​1007/​s00284-005-0220-x.PubMedCrossRef
Zurück zum Zitat Singh, K., Singh, S., Singhal, N. K., Sharma, A., Parmar, D., & Singh, M. P. (2010). Nicotine- and caffeine-mediated changes in gene expression patterns of MPTP-lesioned mouse striatum: Implications in neuroprotection mechanism. Chemico-Biological Interactions, 185(2), 81–93. doi:10.1016/j.cbi.2010.03.015.PubMedCrossRef Singh, K., Singh, S., Singhal, N. K., Sharma, A., Parmar, D., & Singh, M. P. (2010). Nicotine- and caffeine-mediated changes in gene expression patterns of MPTP-lesioned mouse striatum: Implications in neuroprotection mechanism. Chemico-Biological Interactions, 185(2), 81–93. doi:10.​1016/​j.​cbi.​2010.​03.​015.PubMedCrossRef
Zurück zum Zitat Spencer, J. P., Jenner, A., Aruoma, O. I., Evans, P. J., Kaur, H., Dexter, D. T., et al. (1994). Intense oxidative DNA damage promoted by l-dopa and its metabolites. Implications for neurodegenerative disease. FEBS Letters, 353(3), 246–250.PubMedCrossRef Spencer, J. P., Jenner, A., Aruoma, O. I., Evans, P. J., Kaur, H., Dexter, D. T., et al. (1994). Intense oxidative DNA damage promoted by l-dopa and its metabolites. Implications for neurodegenerative disease. FEBS Letters, 353(3), 246–250.PubMedCrossRef
Zurück zum Zitat Su, B. N., Cuendet, M., Hawthorne, M. E., Kardono, L. B., Riswan, S., Fong, H. H., et al. (2002). Constituents of the bark and twigs of Artocarpus dadah with cyclooxygenase inhibitory activity. Journal of Natural Products, 65(2), 163–169.PubMedCrossRef Su, B. N., Cuendet, M., Hawthorne, M. E., Kardono, L. B., Riswan, S., Fong, H. H., et al. (2002). Constituents of the bark and twigs of Artocarpus dadah with cyclooxygenase inhibitory activity. Journal of Natural Products, 65(2), 163–169.PubMedCrossRef
Zurück zum Zitat Tan, L. C., Koh, W. P., Yuan, J. M., Wang, R., Au, W. L., Tan, J. H., et al. (2008). Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. American Journal of Epidemiology, 167(5), 553–560. doi:10.1093/aje/kwm338.PubMedCrossRef Tan, L. C., Koh, W. P., Yuan, J. M., Wang, R., Au, W. L., Tan, J. H., et al. (2008). Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. American Journal of Epidemiology, 167(5), 553–560. doi:10.​1093/​aje/​kwm338.PubMedCrossRef
Zurück zum Zitat Tharakan, B., Dhanasekaran, M., Mize-Berge, J., & Manyam, B. V. (2007). Anti-parkinson botanical Mucuna pruriens prevents levodopa induced plasmid and genomic DNA damage. Phytotherapy Research, 21(12), 1124–1126. doi:10.1002/ptr.2219.PubMedCrossRef Tharakan, B., Dhanasekaran, M., Mize-Berge, J., & Manyam, B. V. (2007). Anti-parkinson botanical Mucuna pruriens prevents levodopa induced plasmid and genomic DNA damage. Phytotherapy Research, 21(12), 1124–1126. doi:10.​1002/​ptr.​2219.PubMedCrossRef
Zurück zum Zitat Vaidya, A. B., Rajagopalan, T. G., Mankodi, N. A., Antarkar, D. S., Tathed, P. S., Purohit, A. V., et al. (1978). Treatment of Parkinson’s disease with the cowhage plant-Mucuna pruriens Bak. Neurology India, 26(4), 171–176.PubMed Vaidya, A. B., Rajagopalan, T. G., Mankodi, N. A., Antarkar, D. S., Tathed, P. S., Purohit, A. V., et al. (1978). Treatment of Parkinson’s disease with the cowhage plant-Mucuna pruriens Bak. Neurology India, 26(4), 171–176.PubMed
Zurück zum Zitat Wahlqvist, M. L., Lee, M. S., Hsu, C. C., Chuang, S. Y., Lee, J. T., & Tsai, H. N. (2012). Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson’s disease occurring with Type 2 diabetes in a Taiwanese population cohort. Parkinsonism & Related Disorders. doi:10.1016/j.parkreldis.2012.03.010. Wahlqvist, M. L., Lee, M. S., Hsu, C. C., Chuang, S. Y., Lee, J. T., & Tsai, H. N. (2012). Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson’s disease occurring with Type 2 diabetes in a Taiwanese population cohort. Parkinsonism & Related Disorders. doi:10.​1016/​j.​parkreldis.​2012.​03.​010.
Zurück zum Zitat Wang, J. Y., Wu, J. N., Cherng, T. L., Hoffer, B. J., Chen, H. H., Borlongan, C. V., et al. (2001). Vitamin D(3) attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Research, 904(1), 67–75.PubMedCrossRef Wang, J. Y., Wu, J. N., Cherng, T. L., Hoffer, B. J., Chen, H. H., Borlongan, C. V., et al. (2001). Vitamin D(3) attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Research, 904(1), 67–75.PubMedCrossRef
Zurück zum Zitat Wang, J., Du, X. X., Jiang, H., & Xie, J. X. (2009a). Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. Biochemical Pharmacology, 78(2), 178–183. doi:10.1016/j.bcp.2009.03.031.PubMedCrossRef Wang, J., Du, X. X., Jiang, H., & Xie, J. X. (2009a). Curcumin attenuates 6-hydroxydopamine-induced cytotoxicity by anti-oxidation and nuclear factor-kappa B modulation in MES23.5 cells. Biochemical Pharmacology, 78(2), 178–183. doi:10.​1016/​j.​bcp.​2009.​03.​031.PubMedCrossRef
Zurück zum Zitat Whitworth, A. J., Theodore, D. A., Greene, J. C., Benes, H., Wes, P. D., & Pallanck, L. J. (2005). Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. [Comparative StudyResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov’tResearch Support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 102(22), 8024–8029. doi:10.1073/pnas.0501078102.PubMedPubMedCentralCrossRef Whitworth, A. J., Theodore, D. A., Greene, J. C., Benes, H., Wes, P. D., & Pallanck, L. J. (2005). Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. [Comparative StudyResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov’tResearch Support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 102(22), 8024–8029. doi:10.​1073/​pnas.​0501078102.PubMedPubMedCentralCrossRef
Zurück zum Zitat Yang, S.-F., Wu, Q., Sun, A., Huang, X., & Shi, J. (2001). Protective effect and mechanism of Ginkgo biloba leaf extracts for Parkinson disease induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Acta Pharmacologica Sinica, 22(12), 1089–1093.PubMed Yang, S.-F., Wu, Q., Sun, A., Huang, X., & Shi, J. (2001). Protective effect and mechanism of Ginkgo biloba leaf extracts for Parkinson disease induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Acta Pharmacologica Sinica, 22(12), 1089–1093.PubMed
Zurück zum Zitat Yang, S., Zhang, D., Yang, Z., Hu, X., Qian, S., Liu, J., et al. (2008). Curcumin protects dopaminergic neuron against LPS induced neurotoxicity in primary rat neuron/glia culture. Neurochemical Research, 33(10), 2044–2053. doi:10.1007/s11064-008-9675-z.PubMedCrossRef Yang, S., Zhang, D., Yang, Z., Hu, X., Qian, S., Liu, J., et al. (2008). Curcumin protects dopaminergic neuron against LPS induced neurotoxicity in primary rat neuron/glia culture. Neurochemical Research, 33(10), 2044–2053. doi:10.​1007/​s11064-008-9675-z.PubMedCrossRef
Zurück zum Zitat Yokoyama, H., Kuroiwa, H., Tsukada, T., Uchida, H., Kato, H., & Araki, T. (2010). Poly(ADP-ribose)polymerase inhibitor can attenuate the neuronal death after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. Journal of Neuroscience Research, 88(7), 1522–1536. doi:10.1002/jnr.22310.PubMed Yokoyama, H., Kuroiwa, H., Tsukada, T., Uchida, H., Kato, H., & Araki, T. (2010). Poly(ADP-ribose)polymerase inhibitor can attenuate the neuronal death after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. Journal of Neuroscience Research, 88(7), 1522–1536. doi:10.​1002/​jnr.​22310.PubMed
Zurück zum Zitat Yu, S., Zheng, W., Xin, N., Chi, Z. H., Wang, N. Q., Nie, Y. X., et al. (2010). Curcumin prevents dopaminergic neuronal death through inhibition of the c-Jun N-terminal kinase pathway. Rejuvenation Research, 13(1), 55–64. doi:10.1089/rej.2009.0908.PubMedCrossRef Yu, S., Zheng, W., Xin, N., Chi, Z. H., Wang, N. Q., Nie, Y. X., et al. (2010). Curcumin prevents dopaminergic neuronal death through inhibition of the c-Jun N-terminal kinase pathway. Rejuvenation Research, 13(1), 55–64. doi:10.​1089/​rej.​2009.​0908.PubMedCrossRef
Zurück zum Zitat Zbarsky, V., Datla, K. P., Parkar, S., Rai, D. K., Aruoma, O. I., & Dexter, D. T. (2005). Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radical Research, 39(10), 1119–1125. doi:10.1080/10715760500233113.PubMedCrossRef Zbarsky, V., Datla, K. P., Parkar, S., Rai, D. K., Aruoma, O. I., & Dexter, D. T. (2005). Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radical Research, 39(10), 1119–1125. doi:10.​1080/​1071576050023311​3.PubMedCrossRef
Zurück zum Zitat Zecca, L., Youdim, M. B. H., Riederer, P., Connor, J. R., & Crichton, R. R. (2004). Iron, brain ageing and neurodegenerative disorders. Nature Reviews Neuroscience, 5(11), 863–873. doi:10.1038/nrn1537.PubMedCrossRef Zecca, L., Youdim, M. B. H., Riederer, P., Connor, J. R., & Crichton, R. R. (2004). Iron, brain ageing and neurodegenerative disorders. Nature Reviews Neuroscience, 5(11), 863–873. doi:10.​1038/​nrn1537.PubMedCrossRef
Zurück zum Zitat Zhang, S. M., Hernan, M. A., Chen, H., Spiegelman, D., Willett, W. C., & Ascherio, A. (2002). Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology, 59(8), 1161–1169.PubMedCrossRef Zhang, S. M., Hernan, M. A., Chen, H., Spiegelman, D., Willett, W. C., & Ascherio, A. (2002). Intakes of vitamins E and C, carotenoids, vitamin supplements, and PD risk. Neurology, 59(8), 1161–1169.PubMedCrossRef
Metadaten
Titel
Nutraceuticals in Parkinson’s Disease
verfasst von
Liting Hang
Adeline Henry Basil
Kah-Leong Lim
Publikationsdatum
04.05.2016
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 3/2016
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-016-8398-6

Weitere Artikel der Ausgabe 3/2016

NeuroMolecular Medicine 3/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.