Skip to main content
Erschienen in: Endocrine 1/2011

01.02.2011 | Original Article

GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase

verfasst von: Xiao-Bing Cheng, Jun-Ping Wen, Jun Yang, Ying Yang, Guang Ning, Xiao-Ying Li

Erschienen in: Endocrine | Ausgabe 1/2011

Einloggen, um Zugang zu erhalten

Abstract

Adipokines produced from adipose tissues participate in regulation of reproduction, energy homeostasis, food intake, and neuroendocrine function in the hypothalamus. We have previously reported that adiponectin significantly reduced GnRH secretion from GT1-7 hypothalamic GnRH neuron cells. In this study, we further investigated the inhibition of GnRH secretion by adiponectin in vivo and found that extracellular signal-regulated kinase (ERK) was inhibited and AMPK activated. Furthermore, we found that activated AMPK by adiponectin reduced ERK phosphorylation, which possibly impaired GnRH secretion in GT1-7 cells.
Literatur
1.
Zurück zum Zitat R.S. Ahima, J.S. Flier, Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11, 327–332 (2000)CrossRefPubMed R.S. Ahima, J.S. Flier, Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11, 327–332 (2000)CrossRefPubMed
2.
Zurück zum Zitat T.S. Tsao, H.F. Lodish, J. Fruebis, ACRP30 a new hormone controlling fat and glucose metabolism. Eur. J. Pharmacol. 440, 213–221 (2002)CrossRefPubMed T.S. Tsao, H.F. Lodish, J. Fruebis, ACRP30 a new hormone controlling fat and glucose metabolism. Eur. J. Pharmacol. 440, 213–221 (2002)CrossRefPubMed
3.
Zurück zum Zitat N. Kubota, W. Yano, T. Kubota, T. Yamauchi, S. Itoh, H. Kumagai, H. Kozono, I. Takamoto, S. Okamoto, T. Shiuchi, R. Suzuki, H. Satoh, A. Tsuchida, M. Moroi, K. Sugi, T. Noda, H. Ebinuma, Y. Ueta, T. Kondo, E. Araki, O. Ezaki, R. Nagai, K. Tobe, Y. Terauchi, K. Ueki, Y. Minokoshi, T. Kadowaki, Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 6, 55–68 (2007)CrossRefPubMed N. Kubota, W. Yano, T. Kubota, T. Yamauchi, S. Itoh, H. Kumagai, H. Kozono, I. Takamoto, S. Okamoto, T. Shiuchi, R. Suzuki, H. Satoh, A. Tsuchida, M. Moroi, K. Sugi, T. Noda, H. Ebinuma, Y. Ueta, T. Kondo, E. Araki, O. Ezaki, R. Nagai, K. Tobe, Y. Terauchi, K. Ueki, Y. Minokoshi, T. Kadowaki, Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 6, 55–68 (2007)CrossRefPubMed
4.
Zurück zum Zitat T. Kadowaki, T. Yamauchi, Adiponectin and adiponectin receptors. Endocr. Rev. 26, 439–451 (2005)CrossRefPubMed T. Kadowaki, T. Yamauchi, Adiponectin and adiponectin receptors. Endocr. Rev. 26, 439–451 (2005)CrossRefPubMed
5.
Zurück zum Zitat U.B. Pajvani, X. Du, T.P. Combs, A.H. Berg, M.W. Rajala, T. Schulthess, J. Engel, M. Brownlee, P.E. Scherer, Structure–function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073–9085 (2003)CrossRefPubMed U.B. Pajvani, X. Du, T.P. Combs, A.H. Berg, M.W. Rajala, T. Schulthess, J. Engel, M. Brownlee, P.E. Scherer, Structure–function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073–9085 (2003)CrossRefPubMed
6.
Zurück zum Zitat T. Yamauchi, J. Kamon, Y. Ito, A. Tsuchida, T. Yokomizo, S. Kita, T. Sugiyama, M. Miyagishi, K. Hara, M. Tsunoda, K. Murakami, T. Ohteki, S. Uchida, S. Takekawa, H. Waki, N.H. Tsuno, Y. Shibata, Y. Terauchi, P. Froguel, K. Tobe, S. Koyasu, K. Taira, T. Kitamura, T. Shimizu, R. Nagai, T. Kadowaki, Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003)CrossRefPubMed T. Yamauchi, J. Kamon, Y. Ito, A. Tsuchida, T. Yokomizo, S. Kita, T. Sugiyama, M. Miyagishi, K. Hara, M. Tsunoda, K. Murakami, T. Ohteki, S. Uchida, S. Takekawa, H. Waki, N.H. Tsuno, Y. Shibata, Y. Terauchi, P. Froguel, K. Tobe, S. Koyasu, K. Taira, T. Kitamura, T. Shimizu, R. Nagai, T. Kadowaki, Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003)CrossRefPubMed
7.
Zurück zum Zitat K. Kos, A.L. Harte, N.F. da Silva, A. Tonchev, G. Chaldakov, S. James, D.R. Snead, B. Hoggart, J.P. O’Hare, P.G. McTernan, S. Kumar, Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. J. Clin. Endocrinol. Metab. 92, 1129–1136 (2007)CrossRefPubMed K. Kos, A.L. Harte, N.F. da Silva, A. Tonchev, G. Chaldakov, S. James, D.R. Snead, B. Hoggart, J.P. O’Hare, P.G. McTernan, S. Kumar, Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. J. Clin. Endocrinol. Metab. 92, 1129–1136 (2007)CrossRefPubMed
8.
Zurück zum Zitat M. Fry, P.M. Smith, T.D. Hoyda, M. Duncan, R.S. Ahima, K.A. Sharkey, A.V. Ferguson, Area postrema neurons are modulated by the adipocyte hormone adiponectin. J. Neurosci. 26, 9695–9702 (2006)CrossRefPubMed M. Fry, P.M. Smith, T.D. Hoyda, M. Duncan, R.S. Ahima, K.A. Sharkey, A.V. Ferguson, Area postrema neurons are modulated by the adipocyte hormone adiponectin. J. Neurosci. 26, 9695–9702 (2006)CrossRefPubMed
9.
Zurück zum Zitat F. Rodriguez-Pacheco, A.J. Martinez-Fuentes, S. Tovar, L. Pinilla, M. Tena-Sempere, C. Dieguez, J.P. Castano, M.M. Malagon, Regulation of pituitary cell function by adiponectin. Endocrinology 148, 401–410 (2007)CrossRefPubMed F. Rodriguez-Pacheco, A.J. Martinez-Fuentes, S. Tovar, L. Pinilla, M. Tena-Sempere, C. Dieguez, J.P. Castano, M.M. Malagon, Regulation of pituitary cell function by adiponectin. Endocrinology 148, 401–410 (2007)CrossRefPubMed
10.
Zurück zum Zitat J.P. Wen, W.S. Lv, J. Yang, A.F. Nie, X.B. Cheng, Y. Yang, Y. Ge, X.Y. Li, G. Ning, Globular adiponectin inhibits GnRH secretion from GT1-7 hypothalamic GnRH neurons by induction of hyperpolarization of membrane potential. Biochem. Biophys. Res. Commun. 371, 756–761 (2008)CrossRefPubMed J.P. Wen, W.S. Lv, J. Yang, A.F. Nie, X.B. Cheng, Y. Yang, Y. Ge, X.Y. Li, G. Ning, Globular adiponectin inhibits GnRH secretion from GT1-7 hypothalamic GnRH neurons by induction of hyperpolarization of membrane potential. Biochem. Biophys. Res. Commun. 371, 756–761 (2008)CrossRefPubMed
11.
Zurück zum Zitat E. Guillod-Maximin, A.F. Roy, C.M. Vacher, A. Aubourg, V. Bailleux, A. Lorsignol, L. Penicaud, M. Parquet, M. Taouis, Adiponectin receptors are expressed in hypothalamus and colocalized with proopiomelanocortin and neuropeptide Y in rodent arcuate neurons. J. Endocrinol. 200(1), 93–105 (2009)CrossRefPubMed E. Guillod-Maximin, A.F. Roy, C.M. Vacher, A. Aubourg, V. Bailleux, A. Lorsignol, L. Penicaud, M. Parquet, M. Taouis, Adiponectin receptors are expressed in hypothalamus and colocalized with proopiomelanocortin and neuropeptide Y in rodent arcuate neurons. J. Endocrinol. 200(1), 93–105 (2009)CrossRefPubMed
12.
Zurück zum Zitat Y. Qi, N. Takahashi, S.M. Hileman, H.R. Patel, A.H. Berg, U.B. Pajvani, P.E. Scherer, R.S. Ahima, Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524–529 (2004)CrossRefPubMed Y. Qi, N. Takahashi, S.M. Hileman, H.R. Patel, A.H. Berg, U.B. Pajvani, P.E. Scherer, R.S. Ahima, Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524–529 (2004)CrossRefPubMed
13.
Zurück zum Zitat M. Lu, Q. Tang, J.M. Olefsky, P.L. Mellon, N.J. Webster, Adiponectin activates AMPK and decreases luteinizing hormone secretion in L{beta}T2 gonadotropes. Mol. Endocrinol. 22, 760–771 (2008)CrossRefPubMed M. Lu, Q. Tang, J.M. Olefsky, P.L. Mellon, N.J. Webster, Adiponectin activates AMPK and decreases luteinizing hormone secretion in L{beta}T2 gonadotropes. Mol. Endocrinol. 22, 760–771 (2008)CrossRefPubMed
14.
Zurück zum Zitat A. Bottner, J. Kratzsch, G. Muller, T.M. Kapellen, S. Bluher, E. Keller, M. Bluher, W. Kiess, Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J. Clin. Endocrinol. Metab. 89, 4053–4061 (2004)CrossRefPubMed A. Bottner, J. Kratzsch, G. Muller, T.M. Kapellen, S. Bluher, E. Keller, M. Bluher, W. Kiess, Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. J. Clin. Endocrinol. Metab. 89, 4053–4061 (2004)CrossRefPubMed
15.
Zurück zum Zitat F. Lanfranco, M. Zitzmann, M. Simoni, E. Nieschlag, Serum adiponectin levels in hypogonadal males: influence of testosterone replacement therapy. Clin. Endocrinol. (Oxf.) 60, 500–507 (2004)CrossRef F. Lanfranco, M. Zitzmann, M. Simoni, E. Nieschlag, Serum adiponectin levels in hypogonadal males: influence of testosterone replacement therapy. Clin. Endocrinol. (Oxf.) 60, 500–507 (2004)CrossRef
16.
Zurück zum Zitat D. Modan-Moses, D. Stein, C. Pariente, A. Yaroslavsky, A. Ram, M. Faigin, R. Loewenthal, E. Yissachar, R. Hemi, H. Kanety, Modulation of adiponectin and leptin during refeeding of female anorexia nervosa patients. J. Clin. Endocrinol. Metab. 92, 1843–1847 (2007)CrossRefPubMed D. Modan-Moses, D. Stein, C. Pariente, A. Yaroslavsky, A. Ram, M. Faigin, R. Loewenthal, E. Yissachar, R. Hemi, H. Kanety, Modulation of adiponectin and leptin during refeeding of female anorexia nervosa patients. J. Clin. Endocrinol. Metab. 92, 1843–1847 (2007)CrossRefPubMed
17.
Zurück zum Zitat C.A. Stackpole, I.J. Clarke, K.M. Breen, A.I. Turner, F.J. Karsch, A.J. Tilbrook, Sex difference in the suppressive effect of cortisol on pulsatile secretion of luteinizing hormone in sheep. Endocrinology 147, 5921–5931 (2006)CrossRefPubMed C.A. Stackpole, I.J. Clarke, K.M. Breen, A.I. Turner, F.J. Karsch, A.J. Tilbrook, Sex difference in the suppressive effect of cortisol on pulsatile secretion of luteinizing hormone in sheep. Endocrinology 147, 5921–5931 (2006)CrossRefPubMed
18.
Zurück zum Zitat F.J. Karsch, J.T. Cummins, G.B. Thomas, I.J. Clarke, Steroid feedback inhibition of pulsatile secretion of gonadotropin-releasing hormone in the ewe. Biol. Reprod. 36, 1207–1218 (1987)CrossRefPubMed F.J. Karsch, J.T. Cummins, G.B. Thomas, I.J. Clarke, Steroid feedback inhibition of pulsatile secretion of gonadotropin-releasing hormone in the ewe. Biol. Reprod. 36, 1207–1218 (1987)CrossRefPubMed
19.
Zurück zum Zitat A.C. Gore, G. Yeung, J.H. Morrison, T. Oung, Neuroendocrine aging in the female rat: the changing relationship of hypothalamic gonadotropin-releasing hormone neurons and N-methyl-D-aspartate receptors. Endocrinology 141, 4757–4767 (2000)CrossRefPubMed A.C. Gore, G. Yeung, J.H. Morrison, T. Oung, Neuroendocrine aging in the female rat: the changing relationship of hypothalamic gonadotropin-releasing hormone neurons and N-methyl-D-aspartate receptors. Endocrinology 141, 4757–4767 (2000)CrossRefPubMed
20.
Zurück zum Zitat I. Merchenthaler, T. Gorcs, G. Setalo, P. Petrusz, B. Flerko, Gonadotropin-releasing hormone (GnRH) neurons and pathways in the rat brain. Cell Tissue Res. 237, 15–29 (1984)CrossRefPubMed I. Merchenthaler, T. Gorcs, G. Setalo, P. Petrusz, B. Flerko, Gonadotropin-releasing hormone (GnRH) neurons and pathways in the rat brain. Cell Tissue Res. 237, 15–29 (1984)CrossRefPubMed
21.
Zurück zum Zitat H. Ebinuma, T. Miida, T. Yamauchi, Y. Hada, K. Hara, N. Kubota, T. Kadowaki, Improved ELISA for selective measurement of adiponectin multimers and identification of adiponectin in human cerebrospinal fluid. Clin. Chem. 53, 1541–1544 (2007)CrossRefPubMed H. Ebinuma, T. Miida, T. Yamauchi, Y. Hada, K. Hara, N. Kubota, T. Kadowaki, Improved ELISA for selective measurement of adiponectin multimers and identification of adiponectin in human cerebrospinal fluid. Clin. Chem. 53, 1541–1544 (2007)CrossRefPubMed
22.
Zurück zum Zitat P.L. Mellon, J.J. Windle, P.C. Goldsmith, C.A. Padula, J.L. Roberts, R.I. Weiner, Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5, 1–10 (1990)CrossRefPubMed P.L. Mellon, J.J. Windle, P.C. Goldsmith, C.A. Padula, J.L. Roberts, R.I. Weiner, Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5, 1–10 (1990)CrossRefPubMed
23.
Zurück zum Zitat Y. Yang, L.B. Zhou, S.Q. Liu, J.F. Tang, F.Y. Li, R.Y. Li, H.D. Song, M.D. Chen, Expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in control of GnRH secretion. Acta Pharmacol. Sin. 26, 976–981 (2005)CrossRefPubMed Y. Yang, L.B. Zhou, S.Q. Liu, J.F. Tang, F.Y. Li, R.Y. Li, H.D. Song, M.D. Chen, Expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in control of GnRH secretion. Acta Pharmacol. Sin. 26, 976–981 (2005)CrossRefPubMed
24.
Zurück zum Zitat B. Kola, M. Boscaro, G.A. Rutter, A.B. Grossman, M. Korbonits, Expanding role of AMPK in endocrinology. Trends Endocrinol. Metab. 17, 205–215 (2006)CrossRefPubMed B. Kola, M. Boscaro, G.A. Rutter, A.B. Grossman, M. Korbonits, Expanding role of AMPK in endocrinology. Trends Endocrinol. Metab. 17, 205–215 (2006)CrossRefPubMed
25.
Zurück zum Zitat R.B. Ceddia, R. Somwar, A. Maida, X. Fang, G. Bikopoulos, G. Sweeney, Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48, 132–139 (2005)CrossRefPubMed R.B. Ceddia, R. Somwar, A. Maida, X. Fang, G. Bikopoulos, G. Sweeney, Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48, 132–139 (2005)CrossRefPubMed
26.
Zurück zum Zitat X. Wu, H. Motoshima, K. Mahadev, T.J. Stalker, R. Scalia, B.J. Goldstein, Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52, 1355–1363 (2003)CrossRefPubMed X. Wu, H. Motoshima, K. Mahadev, T.J. Stalker, R. Scalia, B.J. Goldstein, Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52, 1355–1363 (2003)CrossRefPubMed
27.
Zurück zum Zitat T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, T. Kadowaki, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002)CrossRefPubMed T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, T. Kadowaki, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002)CrossRefPubMed
28.
Zurück zum Zitat S. Coyral-Castel, L. Tosca, G. Ferreira, E. Jeanpierre, C. Rame, D. Lomet, A. Caraty, P. Monget, C. Chabrolle, J. Dupont, The effect of AMPK activation on GnRH secretion in GT1-7 cells and its potential role in hypothalamic regulation of the oestrous cyclicity in rats. J. Neuroendocrinol. 20(3), 335–346 (2008)CrossRefPubMed S. Coyral-Castel, L. Tosca, G. Ferreira, E. Jeanpierre, C. Rame, D. Lomet, A. Caraty, P. Monget, C. Chabrolle, J. Dupont, The effect of AMPK activation on GnRH secretion in GT1-7 cells and its potential role in hypothalamic regulation of the oestrous cyclicity in rats. J. Neuroendocrinol. 20(3), 335–346 (2008)CrossRefPubMed
29.
Zurück zum Zitat J. Kim, M.Y. Yoon, S.L. Choi, I. Kang, S.S. Kim, Y.S. Kim, Y.K. Choi, J. Ha, Effects of stimulation of AMP-activated protein kinase on insulin-like growth factor 1- and epidermal growth factor-dependent extracellular signal-regulated kinase pathway. J. Biol. Chem. 276, 19102–19110 (2001)CrossRefPubMed J. Kim, M.Y. Yoon, S.L. Choi, I. Kang, S.S. Kim, Y.S. Kim, Y.K. Choi, J. Ha, Effects of stimulation of AMP-activated protein kinase on insulin-like growth factor 1- and epidermal growth factor-dependent extracellular signal-regulated kinase pathway. J. Biol. Chem. 276, 19102–19110 (2001)CrossRefPubMed
30.
Zurück zum Zitat R. Shibata, N. Ouchi, M. Ito, S. Kihara, I. Shiojima, D.R. Pimentel, M. Kumada, K. Sato, S. Schiekofer, K. Ohashi, T. Funahashi, W.S. Colucci, K. Walsh, Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat. Med. 10, 1384–1389 (2004)CrossRefPubMed R. Shibata, N. Ouchi, M. Ito, S. Kihara, I. Shiojima, D.R. Pimentel, M. Kumada, K. Sato, S. Schiekofer, K. Ohashi, T. Funahashi, W.S. Colucci, K. Walsh, Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat. Med. 10, 1384–1389 (2004)CrossRefPubMed
31.
Zurück zum Zitat H.J. Schaeffer, M.J. Weber, Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19, 2435–2444 (1999)PubMed H.J. Schaeffer, M.J. Weber, Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19, 2435–2444 (1999)PubMed
32.
Zurück zum Zitat R. Sasson, R.K. Dearth, R.S. White, P.E. Chappell, P.L. Mellon, Orexin A induces GnRH gene expression and secretion from GT1-7 hypothalamic GnRH neurons. Neuroendocrinology 84, 353–363 (2006)CrossRefPubMed R. Sasson, R.K. Dearth, R.S. White, P.E. Chappell, P.L. Mellon, Orexin A induces GnRH gene expression and secretion from GT1-7 hypothalamic GnRH neurons. Neuroendocrinology 84, 353–363 (2006)CrossRefPubMed
33.
Zurück zum Zitat A.B. Sprenkle, S.P. Davies, D. Carling, D.G. Hardie, T.W. Sturgill, Identification of Raf-1 Ser621 kinase activity from NIH 3T3 cells as AMP-activated protein kinase. FEBS Lett. 403, 254–258 (1997)CrossRefPubMed A.B. Sprenkle, S.P. Davies, D. Carling, D.G. Hardie, T.W. Sturgill, Identification of Raf-1 Ser621 kinase activity from NIH 3T3 cells as AMP-activated protein kinase. FEBS Lett. 403, 254–258 (1997)CrossRefPubMed
Metadaten
Titel
GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase
verfasst von
Xiao-Bing Cheng
Jun-Ping Wen
Jun Yang
Ying Yang
Guang Ning
Xiao-Ying Li
Publikationsdatum
01.02.2011
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 1/2011
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-010-9375-8

Weitere Artikel der Ausgabe 1/2011

Endocrine 1/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.