Skip to main content
Erschienen in: Neuroinformatics 4/2015

01.10.2015 | Original Article

Edge-Centered DTI Connectivity Analysis: Application to Schizophrenia

verfasst von: Edward H. Herskovits, L. Elliot Hong, Peter Kochunov, Hemalatha Sampath, Rong Chen

Erschienen in: Neuroinformatics | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Abstract

Diffusion tensor imaging (DTI) provides connectivity information that helps illuminate the processes underlying normal development as well as brain disorders such as autism and schizophrenia. Researchers have widely adopted graph representations to model DTI connectivity among brain structures; however, most measures of connectivity have been centered on nodes, rather than edges, in these graphs. We present an edge-based algorithm for assessing anatomic connectivity; this approach provides information about connections among brain structures, rather than information about structures themselves. This perspective allows us to formulate multivariate graph-based models of altered connectivity that distinguish among experimental groups. We demonstrate the utility of this approach by analyzing data from an ongoing study of schizophrenia.
Literatur
Zurück zum Zitat Ayling, E., Aghajani, M., Fouche, J. P., & van der Wee, N. (2012). Diffusion tensor imaging in anxiety disorders. Current Psychiatry Reports, 14, 197–202.CrossRefPubMed Ayling, E., Aghajani, M., Fouche, J. P., & van der Wee, N. (2012). Diffusion tensor imaging in anxiety disorders. Current Psychiatry Reports, 14, 197–202.CrossRefPubMed
Zurück zum Zitat Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage, 34, 144–155.CrossRefPubMed Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage, 34, 144–155.CrossRefPubMed
Zurück zum Zitat Buchanan, C. R., Pernet, C. R., Gorgolewski, K. J., Storkey, A. J., & Bastin, M. E. (2014). Test-retest reliability of structural brain networks from diffusion MRI. NeuroImage, 86, 231–243.CrossRefPubMed Buchanan, C. R., Pernet, C. R., Gorgolewski, K. J., Storkey, A. J., & Bastin, M. E. (2014). Test-retest reliability of structural brain networks from diffusion MRI. NeuroImage, 86, 231–243.CrossRefPubMed
Zurück zum Zitat Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186–198.CrossRefPubMed Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186–198.CrossRefPubMed
Zurück zum Zitat Cascio, C. J., Gerig, G., & Piven, J. (2007). Diffusion tensor imaging: application to the study of the developing brain. Journal of the American Academy of Child and Adolescent Psychiatry, 46, 213–223.CrossRefPubMed Cascio, C. J., Gerig, G., & Piven, J. (2007). Diffusion tensor imaging: application to the study of the developing brain. Journal of the American Academy of Child and Adolescent Psychiatry, 46, 213–223.CrossRefPubMed
Zurück zum Zitat Crofts, J. J., & Higham, D. J. (2009). A weighted communicability measure applied to complex brain networks. Journal of The Royal Society Interface, 6, 411–414.PubMedCentralCrossRef Crofts, J. J., & Higham, D. J. (2009). A weighted communicability measure applied to complex brain networks. Journal of The Royal Society Interface, 6, 411–414.PubMedCentralCrossRef
Zurück zum Zitat Crossley, N. A., Mechelli, A., Fusar‐Poli, P., Broome, M. R., Matthiasson, P., Johns, L. C., et al. (2009). Superior temporal lobe dysfunction and frontotemporal dysconnectivity in subjects at risk of psychosis and in first‐episode psychosis. Human brain mapping, 30, 4129–4137.CrossRefPubMed Crossley, N. A., Mechelli, A., Fusar‐Poli, P., Broome, M. R., Matthiasson, P., Johns, L. C., et al. (2009). Superior temporal lobe dysfunction and frontotemporal dysconnectivity in subjects at risk of psychosis and in first‐episode psychosis. Human brain mapping, 30, 4129–4137.CrossRefPubMed
Zurück zum Zitat Dickinson, D., Ramsey, M. E., & Gold, J. M. (2007). Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 64, 532–542.CrossRefPubMed Dickinson, D., Ramsey, M. E., & Gold, J. M. (2007). Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 64, 532–542.CrossRefPubMed
Zurück zum Zitat Dubois, J., Hertz-Pannier, L., Dehaene-Lambertz, G., Cointepas, Y., & Le Bihan, D. (2006). Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. NeuroImage, 30, 1121–1132.CrossRefPubMed Dubois, J., Hertz-Pannier, L., Dehaene-Lambertz, G., Cointepas, Y., & Le Bihan, D. (2006). Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. NeuroImage, 30, 1121–1132.CrossRefPubMed
Zurück zum Zitat Eluvathingal, T. J., Hasan, K. M., Kramer, L., Fletcher, J. M., & Ewing-Cobbs, L. (2007). Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents. Cerebral Cortex, 17, 2760–2768.PubMedCentralCrossRefPubMed Eluvathingal, T. J., Hasan, K. M., Kramer, L., Fletcher, J. M., & Ewing-Cobbs, L. (2007). Quantitative diffusion tensor tractography of association and projection fibers in normally developing children and adolescents. Cerebral Cortex, 17, 2760–2768.PubMedCentralCrossRefPubMed
Zurück zum Zitat Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.CrossRefPubMed Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.CrossRefPubMed
Zurück zum Zitat Fletcher, P., McKenna, P. J., Friston, K. J., Frith, C. D., & Dolan, R. J. (1999). Abnormal cingulate modulation of fronto-temporal connectivity in schizophrenia. NeuroImage, 9, 337–342.CrossRefPubMed Fletcher, P., McKenna, P. J., Friston, K. J., Frith, C. D., & Dolan, R. J. (1999). Abnormal cingulate modulation of fronto-temporal connectivity in schizophrenia. NeuroImage, 9, 337–342.CrossRefPubMed
Zurück zum Zitat Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62, 2296–2314.CrossRefPubMed Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62, 2296–2314.CrossRefPubMed
Zurück zum Zitat Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V. J., et al. (2010). White matter maturation reshapes structural connectivity in the late developing human brain. Proceedings of the National Academy of Sciences of the United States of America, 107, 19067–10972.PubMedCentralCrossRefPubMed Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V. J., et al. (2010). White matter maturation reshapes structural connectivity in the late developing human brain. Proceedings of the National Academy of Sciences of the United States of America, 107, 19067–10972.PubMedCentralCrossRefPubMed
Zurück zum Zitat He, Y., & Evans, A. (2010). Graph theoretical modeling of brain connectivity. Current Opinion in Neurology, 23, 341–350.PubMed He, Y., & Evans, A. (2010). Graph theoretical modeling of brain connectivity. Current Opinion in Neurology, 23, 341–350.PubMed
Zurück zum Zitat Heckerman, D., Geiger, D., & Chickering, D. (1995). Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20, 197–243. Heckerman, D., Geiger, D., & Chickering, D. (1995). Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20, 197–243.
Zurück zum Zitat Huang, C., & Darwiche, A. (1996). Inference in belief networks: a procedural guide. International Journal of Approximate Reasoning, 15(3), 225–263.CrossRef Huang, C., & Darwiche, A. (1996). Inference in belief networks: a procedural guide. International Journal of Approximate Reasoning, 15(3), 225–263.CrossRef
Zurück zum Zitat Hüppi, P. S., & Dubois, J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal and Neonatal Medicine, 11, 489–497.CrossRefPubMed Hüppi, P. S., & Dubois, J. (2006). Diffusion tensor imaging of brain development. Seminars in Fetal and Neonatal Medicine, 11, 489–497.CrossRefPubMed
Zurück zum Zitat Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62, 782–790.CrossRefPubMed Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62, 782–790.CrossRefPubMed
Zurück zum Zitat Kasprian, G., Brugger, P. C., Weber, M., Krssak, M., Krampl, E., Herold, C., & Prayer, D. (2008). In utero tractography of fetal white matter development. NeuroImage, 43, 213–224.CrossRefPubMed Kasprian, G., Brugger, P. C., Weber, M., Krssak, M., Krampl, E., Herold, C., & Prayer, D. (2008). In utero tractography of fetal white matter development. NeuroImage, 43, 213–224.CrossRefPubMed
Zurück zum Zitat Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.CrossRef Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.CrossRef
Zurück zum Zitat Keefe, R. S., Goldberg, T. E., Harvey, P. D., Gold, J. M., Poe, M. P., & Coughenour, L. (2004). The brief assessment of cognition in schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophrenia Research, 68, 283–297.CrossRefPubMed Keefe, R. S., Goldberg, T. E., Harvey, P. D., Gold, J. M., Poe, M. P., & Coughenour, L. (2004). The brief assessment of cognition in schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophrenia Research, 68, 283–297.CrossRefPubMed
Zurück zum Zitat Knowles, E. E., David, A. S., & Reichenberg, A. (2010). Processing speed deficits in schizophrenia: reexamining the evidence. American Journal of Psychiatry, 167, 828–835.CrossRefPubMed Knowles, E. E., David, A. S., & Reichenberg, A. (2010). Processing speed deficits in schizophrenia: reexamining the evidence. American Journal of Psychiatry, 167, 828–835.CrossRefPubMed
Zurück zum Zitat Konrad, A., & Winterer, G. (2008). Disturbed structural connectivity in schizophrenia—primary factor in pathology or epiphenomenon? Schizophrenia Bulletin, 34, 72–92.PubMedCentralCrossRefPubMed Konrad, A., & Winterer, G. (2008). Disturbed structural connectivity in schizophrenia—primary factor in pathology or epiphenomenon? Schizophrenia Bulletin, 34, 72–92.PubMedCentralCrossRefPubMed
Zurück zum Zitat Korgaonkar, M. S., Cooper, N. J., Williams, L. M., & Grieve, S. M. (2012). Mapping inter-regional connectivity of the entire cortex to characterize major depressive disorder: a whole-brain diffusion tensor imaging tractography study. Neuroreport, 23, 566–571.CrossRefPubMed Korgaonkar, M. S., Cooper, N. J., Williams, L. M., & Grieve, S. M. (2012). Mapping inter-regional connectivity of the entire cortex to characterize major depressive disorder: a whole-brain diffusion tensor imaging tractography study. Neuroreport, 23, 566–571.CrossRefPubMed
Zurück zum Zitat Liao, W., Zhang, Z., Pan, Z., Mantini, D., Ding, J., Duan, X., et al. (2011). Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI. Human Brain Mapping, 32, 883–895.CrossRefPubMed Liao, W., Zhang, Z., Pan, Z., Mantini, D., Ding, J., Duan, X., et al. (2011). Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI. Human Brain Mapping, 32, 883–895.CrossRefPubMed
Zurück zum Zitat Makris, N., Papadimitriou, G. M., van der Kouwe, A., Kennedy, D. N., Hodge, S. M., Dale, A. M., et al. (2007). Frontal connections and cognitive changes in normal aging rhesus monkeys: A DTI study. Neurobiology of Aging, 28, 1556–1567.CrossRefPubMed Makris, N., Papadimitriou, G. M., van der Kouwe, A., Kennedy, D. N., Hodge, S. M., Dale, A. M., et al. (2007). Frontal connections and cognitive changes in normal aging rhesus monkeys: A DTI study. Neurobiology of Aging, 28, 1556–1567.CrossRefPubMed
Zurück zum Zitat Meyer-Lindenberg, A., Poline, J.-B., Kohn, P. D., Holt, J. L., Egan, M. F., Weinberger, D. R., & Berman, K. F. (2001). Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. American Journal of Psychiatry, 158, 1809–1817.CrossRefPubMed Meyer-Lindenberg, A., Poline, J.-B., Kohn, P. D., Holt, J. L., Egan, M. F., Weinberger, D. R., & Berman, K. F. (2001). Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. American Journal of Psychiatry, 158, 1809–1817.CrossRefPubMed
Zurück zum Zitat Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping, 15, 1–25.CrossRefPubMed Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping, 15, 1–25.CrossRefPubMed
Zurück zum Zitat Overall, J. E., & Gorham, D. R. (1962). The brief psychiatric rating scale. Psychological Reports, 10, 799–812.CrossRef Overall, J. E., & Gorham, D. R. (1962). The brief psychiatric rating scale. Psychological Reports, 10, 799–812.CrossRef
Zurück zum Zitat Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.
Zurück zum Zitat Scutari, M. (2009). Learning Bayesian networks with the bnlearn R package. arXiv preprint arXiv:0908.3817. Scutari, M. (2009). Learning Bayesian networks with the bnlearn R package. arXiv preprint arXiv:0908.3817.
Zurück zum Zitat Sexton, C. E., Mackay, C. E., & Ebmeier, K. P. (2009). A systematic review of diffusion tensor imaging studies in affective disorders. Biological Psychiatry, 66, 814–823.CrossRefPubMed Sexton, C. E., Mackay, C. E., & Ebmeier, K. P. (2009). A systematic review of diffusion tensor imaging studies in affective disorders. Biological Psychiatry, 66, 814–823.CrossRefPubMed
Zurück zum Zitat Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.CrossRefPubMed Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.CrossRefPubMed
Zurück zum Zitat Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31, 1487–1505.CrossRefPubMed Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31, 1487–1505.CrossRefPubMed
Zurück zum Zitat Sporns, O. (2011). Networks of the brain. Cambridge: MIT Press. Sporns, O. (2011). Networks of the brain. Cambridge: MIT Press.
Zurück zum Zitat Testaverde, L., Caporali, L., Venditti, E., Grillea, G., & Colonnese, C. (2012). Diffusion tensor imaging applications in multiple sclerosis patients using 3T magnetic resonance: a preliminary study. European Radiology, 22, 990–997.CrossRefPubMed Testaverde, L., Caporali, L., Venditti, E., Grillea, G., & Colonnese, C. (2012). Diffusion tensor imaging applications in multiple sclerosis patients using 3T magnetic resonance: a preliminary study. European Radiology, 22, 990–997.CrossRefPubMed
Zurück zum Zitat Travers, B. G., Adluru, N., Ennis, C., Tromp, D. P. M., Destiche, D., Doran, S., et al. (2012). Diffusion tensor imaging in autism spectrum disorder: a review. Autism Research, 5, 289–313. Travers, B. G., Adluru, N., Ennis, C., Tromp, D. P. M., Destiche, D., Doran, S., et al. (2012). Diffusion tensor imaging in autism spectrum disorder: a review. Autism Research, 5, 289–313.
Zurück zum Zitat Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.CrossRefPubMed Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15, 273–289.CrossRefPubMed
Zurück zum Zitat Wang, Q., Su, T.-P., Zhou, Y., Chou, K.-H., Chen, I. Y., Jiang, T., & Lin, C.-P. (2012). Anatomical insights into disrupted small-world networks in schizophrenia. NeuroImage, 59, 1085–1093.CrossRefPubMed Wang, Q., Su, T.-P., Zhou, Y., Chou, K.-H., Chen, I. Y., Jiang, T., & Lin, C.-P. (2012). Anatomical insights into disrupted small-world networks in schizophrenia. NeuroImage, 59, 1085–1093.CrossRefPubMed
Zurück zum Zitat Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440–442.CrossRefPubMed Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440–442.CrossRefPubMed
Zurück zum Zitat Wechsler, D. (1997). Manual for the Wechsler adult intelligence scale—third edition (WAIS III). San Antonio, Texas: The Psychological Corporation. Wechsler, D. (1997). Manual for the Wechsler adult intelligence scale—third edition (WAIS III). San Antonio, Texas: The Psychological Corporation.
Zurück zum Zitat Wheeler, A. L., Chakravarty, M. M., Lerch, J. P., Pipitone, J., Daskalakis, Z. J., Rajji, T. K., et al. (2014). Disrupted prefrontal interhemispheric structural coupling in schizophrenia related to working memory performance. Schizophrenia Bulletin, 40(4), 914–924.PubMedCentralCrossRefPubMed Wheeler, A. L., Chakravarty, M. M., Lerch, J. P., Pipitone, J., Daskalakis, Z. J., Rajji, T. K., et al. (2014). Disrupted prefrontal interhemispheric structural coupling in schizophrenia related to working memory performance. Schizophrenia Bulletin, 40(4), 914–924.PubMedCentralCrossRefPubMed
Zurück zum Zitat White, T., Nelson, M., & Lim, K. O. (2008). Diffusion tensor imaging in psychiatric disorders. Topics in Magnetic Resonance Imaging, 19, 97–109.CrossRefPubMed White, T., Nelson, M., & Lim, K. O. (2008). Diffusion tensor imaging in psychiatric disorders. Topics in Magnetic Resonance Imaging, 19, 97–109.CrossRefPubMed
Zurück zum Zitat Ystad, M., Hodneland, E., Adolfsdottir, S., Haasz, J., Lundervold, A. J., Eichele, T., & Lundervold, A. (2011). Cortico-striatal connectivity and cognition in normal aging: a combined DTI and resting state fMRI study. NeuroImage, 55, 24–31.CrossRefPubMed Ystad, M., Hodneland, E., Adolfsdottir, S., Haasz, J., Lundervold, A. J., Eichele, T., & Lundervold, A. (2011). Cortico-striatal connectivity and cognition in normal aging: a combined DTI and resting state fMRI study. NeuroImage, 55, 24–31.CrossRefPubMed
Zurück zum Zitat Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying differences in brain networks. NeuroImage, 53(4), 1197–1207.CrossRefPubMed Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying differences in brain networks. NeuroImage, 53(4), 1197–1207.CrossRefPubMed
Metadaten
Titel
Edge-Centered DTI Connectivity Analysis: Application to Schizophrenia
verfasst von
Edward H. Herskovits
L. Elliot Hong
Peter Kochunov
Hemalatha Sampath
Rong Chen
Publikationsdatum
01.10.2015
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 4/2015
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-015-9273-6

Weitere Artikel der Ausgabe 4/2015

Neuroinformatics 4/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.