Skip to main content
Erschienen in: Immunologic Research 1/2015

01.05.2015

Involvement of ATF3 in the negative regulation of iNOS expression and NO production in activated macrophages

verfasst von: Da Hye Jung, Kyung-Ho Kim, Hye Eun Byeon, Hye Jin Park, Bongkyun Park, Dong-Kwon Rhee, Sung Hee Um, Suhkneung Pyo

Erschienen in: Immunologic Research | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Macrophage-associated nitric oxide (NO) production plays a crucial role in the pathogenesis of tissue damage. However, negative factors that regulate NO production remains poorly understood despite its significance of NO homeostasis. Here, we show that activating transcription factor 3 (ATF3), a transcriptional regulator of cellular stress responses, was strongly induced in activated macrophages and its depletion resulted in pronounced enhancement of inducible nitric oxide synthase (iNOS) gene expression and subsequently the induction of high levels of NO production. In response to lipopolysaccharide (LPS) and IFN-γ, ATF3 inhibited transcriptional activity of NF-κB by interacting with the N-terminal (1–200 amino acids) of p65 and was bound to the NF-κB promoter, leading to suppression of iNOS gene expression. In addition, inhibitory effects of ATF3 on iNOS and NO secretion were suppressed by inhibitor of casein kinase II (CK2) activity or its knockdown. Moreover, the levels of ATF3 were highly elevated in established cecal ligation and puncture or LPS-injected mice, a model of endotoxemia. ATF3 is also elevated in peritoneal macrophages. Collectively, our findings suggest that ATF3 regulates NO homeostasis by associating with NF-κB component, leading to the repression of its transcriptional activity upon inflammatory signals and points to its potential relevance for the control of cell injuries mediated by NO during macrophage activation.
Literatur
1.
Zurück zum Zitat MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–50.CrossRefPubMed MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–50.CrossRefPubMed
2.
Zurück zum Zitat Fang FC. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest. 1997;99(12):2818–25.CrossRefPubMedCentralPubMed Fang FC. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest. 1997;99(12):2818–25.CrossRefPubMedCentralPubMed
4.
Zurück zum Zitat Elks PM, Brizee S, van der Vaart M, Walmsley SR, van Eeden FJ, Renshaw SA, et al. Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism. PLoS Pathog. 2013;9(12):e1003789.CrossRefPubMedCentralPubMed Elks PM, Brizee S, van der Vaart M, Walmsley SR, van Eeden FJ, Renshaw SA, et al. Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism. PLoS Pathog. 2013;9(12):e1003789.CrossRefPubMedCentralPubMed
5.
Zurück zum Zitat Qidwai T, Jamal F. Inducible nitric oxide synthase (iNOS) gene polymorphism and disease prevalence. Scand J Immunol. 2010;72(5):375–87.CrossRefPubMed Qidwai T, Jamal F. Inducible nitric oxide synthase (iNOS) gene polymorphism and disease prevalence. Scand J Immunol. 2010;72(5):375–87.CrossRefPubMed
6.
Zurück zum Zitat Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev. 2005;57(2):217–52.CrossRefPubMed Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev. 2005;57(2):217–52.CrossRefPubMed
7.
Zurück zum Zitat Sass G, Koerber K, Bang R, Guehring H, Tiegs G. Inducible nitric oxide synthase is critical for immune-mediated liver injury in mice. J Clin Invest. 2001;107(4):439–47.CrossRefPubMedCentralPubMed Sass G, Koerber K, Bang R, Guehring H, Tiegs G. Inducible nitric oxide synthase is critical for immune-mediated liver injury in mice. J Clin Invest. 2001;107(4):439–47.CrossRefPubMedCentralPubMed
8.
Zurück zum Zitat Song BJ, Abdelmegeed MA, Henderson LE, Yoo SH, Wan J, Purohit V, et al. Increased nitroxidative stress promotes mitochondrial dysfunction in alcoholic and nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2013;2013:781050.CrossRefPubMedCentralPubMed Song BJ, Abdelmegeed MA, Henderson LE, Yoo SH, Wan J, Purohit V, et al. Increased nitroxidative stress promotes mitochondrial dysfunction in alcoholic and nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2013;2013:781050.CrossRefPubMedCentralPubMed
9.
Zurück zum Zitat Chavarria C, Souza JM. Oxidation and nitration of alpha-synuclein and their implications in neurodegenerative diseases. Arch Biochem Biophys. 2013;533(1–2):25–32.CrossRefPubMed Chavarria C, Souza JM. Oxidation and nitration of alpha-synuclein and their implications in neurodegenerative diseases. Arch Biochem Biophys. 2013;533(1–2):25–32.CrossRefPubMed
10.
Zurück zum Zitat Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev. 2004;84(3):731–65.CrossRefPubMed Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev. 2004;84(3):731–65.CrossRefPubMed
11.
Zurück zum Zitat Kleinert H, Schwarz PM, Forstermann U. Regulation of the expression of inducible nitric oxide synthase. Biol Chem. 2003;384(10–11):1343–64.PubMed Kleinert H, Schwarz PM, Forstermann U. Regulation of the expression of inducible nitric oxide synthase. Biol Chem. 2003;384(10–11):1343–64.PubMed
12.
Zurück zum Zitat Rao KM. Molecular mechanisms regulating iNOS expression in various cell types. J Toxicol Environ Health B Crit Rev. 2000;3(1):27–58.CrossRefPubMed Rao KM. Molecular mechanisms regulating iNOS expression in various cell types. J Toxicol Environ Health B Crit Rev. 2000;3(1):27–58.CrossRefPubMed
13.
Zurück zum Zitat Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004;75(6):639–53.CrossRefPubMed Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci. 2004;75(6):639–53.CrossRefPubMed
14.
Zurück zum Zitat Thompson MR, Xu D, Williams BR. ATF3 transcription factor and its emerging roles in immunity and cancer. J Mol Med (Berl). 2009;87(11):1053–60.CrossRef Thompson MR, Xu D, Williams BR. ATF3 transcription factor and its emerging roles in immunity and cancer. J Mol Med (Berl). 2009;87(11):1053–60.CrossRef
15.
Zurück zum Zitat Wolford CC, McConoughey SJ, Jalgaonkar SP, Leon M, Merchant AS, Dominick JL, et al. Transcription factor ATF3 links host adaptive response to breast cancer metastasis. J Clin Invest. 2013;123(7):2893–906.CrossRefPubMedCentralPubMed Wolford CC, McConoughey SJ, Jalgaonkar SP, Leon M, Merchant AS, Dominick JL, et al. Transcription factor ATF3 links host adaptive response to breast cancer metastasis. J Clin Invest. 2013;123(7):2893–906.CrossRefPubMedCentralPubMed
17.
Zurück zum Zitat Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature. 2006;441(7090):173–8.CrossRefPubMed Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature. 2006;441(7090):173–8.CrossRefPubMed
18.
Zurück zum Zitat Hai T, Wolford CC, Chang YS. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr. 2010;15(1):1–11.CrossRefPubMed Hai T, Wolford CC, Chang YS. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr. 2010;15(1):1–11.CrossRefPubMed
19.
Zurück zum Zitat Lee S, Kwak JH, Park D, Pyo S. Protective effect of kobophenol A on nitric oxide-induced cell apoptosis in human osteoblast-like MG-63 cells: involvement of JNK, NF-κB and AP-1 pathways. Int Immunopharmacol. 2011;11:1251–9.CrossRefPubMed Lee S, Kwak JH, Park D, Pyo S. Protective effect of kobophenol A on nitric oxide-induced cell apoptosis in human osteoblast-like MG-63 cells: involvement of JNK, NF-κB and AP-1 pathways. Int Immunopharmacol. 2011;11:1251–9.CrossRefPubMed
20.
Zurück zum Zitat Kaji H, Tai A, Matsushita K, Kanzaki H, Yamamoto I. Activation of murine peritoneal macrophages by water-soluble extracts of bursaphelenchus xylophilus, a pine wood nematode. Biosci Biotechnol Biochem. 2006;70:203–10.CrossRefPubMed Kaji H, Tai A, Matsushita K, Kanzaki H, Yamamoto I. Activation of murine peritoneal macrophages by water-soluble extracts of bursaphelenchus xylophilus, a pine wood nematode. Biosci Biotechnol Biochem. 2006;70:203–10.CrossRefPubMed
21.
Zurück zum Zitat Kim K, Pyo S, Um SH. S6 kinase 2 deficiency enhances ketone body production and increases peroxisome proliferator-activated receptor alpha activity in the liver. Hepatology. 2012;55(6):1727–37.CrossRefPubMed Kim K, Pyo S, Um SH. S6 kinase 2 deficiency enhances ketone body production and increases peroxisome proliferator-activated receptor alpha activity in the liver. Hepatology. 2012;55(6):1727–37.CrossRefPubMed
22.
23.
Zurück zum Zitat Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18(49):6853–66.CrossRefPubMed Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18(49):6853–66.CrossRefPubMed
24.
Zurück zum Zitat Tomohisa KJ, Mireille D, Alexander H, Michael K. CK2 Is a C-Terminal IkappaB Kinase Responsible for NF-kappaB Activation during the UV Response. Mol Cell. 2003;12(4):829–39.CrossRef Tomohisa KJ, Mireille D, Alexander H, Michael K. CK2 Is a C-Terminal IkappaB Kinase Responsible for NF-kappaB Activation during the UV Response. Mol Cell. 2003;12(4):829–39.CrossRef
25.
Zurück zum Zitat Lai P, Cheng C, Lin H, Tseng T, Chen H, Chen S. ATF3 protects against LPS-induced inflammation in mice via inhibiting HMGB1 expression. Evid Based Complement Alternat Med. 2013;2013:716481.PubMedCentralPubMed Lai P, Cheng C, Lin H, Tseng T, Chen H, Chen S. ATF3 protects against LPS-induced inflammation in mice via inhibiting HMGB1 expression. Evid Based Complement Alternat Med. 2013;2013:716481.PubMedCentralPubMed
26.
Zurück zum Zitat Kim EY, Shin HY, Kim JY, Kim DG, Choi YM, Kwon HK, et al. ATF3 plays a key role in Kdo2-lipid A-induced TLR4-dependent gene expression via NF-kappaB activation. PLoS One. 2010;5(12):e14181.CrossRefPubMedCentralPubMed Kim EY, Shin HY, Kim JY, Kim DG, Choi YM, Kwon HK, et al. ATF3 plays a key role in Kdo2-lipid A-induced TLR4-dependent gene expression via NF-kappaB activation. PLoS One. 2010;5(12):e14181.CrossRefPubMedCentralPubMed
27.
Zurück zum Zitat Hoetzenecker W, Echtenacher B, Guenova E, Hoetzenecker K, Woelbing F, Brück J, et al. ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat Med. 2011;18(1):128–34.CrossRefPubMedCentralPubMed Hoetzenecker W, Echtenacher B, Guenova E, Hoetzenecker K, Woelbing F, Brück J, et al. ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat Med. 2011;18(1):128–34.CrossRefPubMedCentralPubMed
28.
Zurück zum Zitat Khuu CH, Barrozo RM, Hai T, Weinstein SL. Activating transcription factor 3 (ATF3) represses the expression of CCL4 in murine macrophages. Mol Immunol. 2007;44(7):1598–605.CrossRefPubMed Khuu CH, Barrozo RM, Hai T, Weinstein SL. Activating transcription factor 3 (ATF3) represses the expression of CCL4 in murine macrophages. Mol Immunol. 2007;44(7):1598–605.CrossRefPubMed
29.
Zurück zum Zitat Takii R, Inouye S, Fujimoto M, Nakamura T, Shinkawa T, Prakasam R, et al. Heat shock transcription factor 1 inhibits expression of IL-6 through activating transcription factor 3. J Immunol. 2010;184(2):1041–8.CrossRefPubMed Takii R, Inouye S, Fujimoto M, Nakamura T, Shinkawa T, Prakasam R, et al. Heat shock transcription factor 1 inhibits expression of IL-6 through activating transcription factor 3. J Immunol. 2010;184(2):1041–8.CrossRefPubMed
30.
Zurück zum Zitat Martinez-Ruiz A, Cadenas S, Lamas S. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med. 2011;51(1):17–29.CrossRefPubMed Martinez-Ruiz A, Cadenas S, Lamas S. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med. 2011;51(1):17–29.CrossRefPubMed
31.
Zurück zum Zitat Hamdi M, Popeijus HE, Carlotti F, Janssen JM, van der Burgt C, Cornelissen-Steijger P, et al. ATF3 and Fra1 have opposite functions in JNK- and ERK-dependent DNA damage responses. DNA Repair (Amst). 2008;7(3):487–96.CrossRef Hamdi M, Popeijus HE, Carlotti F, Janssen JM, van der Burgt C, Cornelissen-Steijger P, et al. ATF3 and Fra1 have opposite functions in JNK- and ERK-dependent DNA damage responses. DNA Repair (Amst). 2008;7(3):487–96.CrossRef
32.
Zurück zum Zitat Kim JY, Song EH, Lee S, Lim JH, Choi JS, Koh IU, Song J, Kim WH. The induction of STAT1 gene by activating transcription factor 3 contributes to pancreatic beta-cell apoptosis and its dysfunction in streptozotocin-treated mice. Cell Signal. 2010;22(11):1669–80.CrossRefPubMed Kim JY, Song EH, Lee S, Lim JH, Choi JS, Koh IU, Song J, Kim WH. The induction of STAT1 gene by activating transcription factor 3 contributes to pancreatic beta-cell apoptosis and its dysfunction in streptozotocin-treated mice. Cell Signal. 2010;22(11):1669–80.CrossRefPubMed
33.
Zurück zum Zitat Nishiya T, Uehara T, Edamatsu H, Kaziro Y, Itoh H, Nomura Y. Activation of Stat1 and subsequent transcription of inducible nitric oxide synthase gene in C6 glioma cells is independent of interferon-gamma-induced MAPK activation that is mediated by p21ras. FEBS Lett. 1997;408(1):33–8.CrossRefPubMed Nishiya T, Uehara T, Edamatsu H, Kaziro Y, Itoh H, Nomura Y. Activation of Stat1 and subsequent transcription of inducible nitric oxide synthase gene in C6 glioma cells is independent of interferon-gamma-induced MAPK activation that is mediated by p21ras. FEBS Lett. 1997;408(1):33–8.CrossRefPubMed
34.
Zurück zum Zitat Cho SJ, Huh JE, Song J, Rhee DK, Pyo S. Ikaros negatively regulates inducible nitric oxide synthase expression in macrophages: involvement of Ikaros phosphorylation by casein kinase 2. Cell Mol Life Sci. 2008;65(20):3290–303.CrossRefPubMed Cho SJ, Huh JE, Song J, Rhee DK, Pyo S. Ikaros negatively regulates inducible nitric oxide synthase expression in macrophages: involvement of Ikaros phosphorylation by casein kinase 2. Cell Mol Life Sci. 2008;65(20):3290–303.CrossRefPubMed
Metadaten
Titel
Involvement of ATF3 in the negative regulation of iNOS expression and NO production in activated macrophages
verfasst von
Da Hye Jung
Kyung-Ho Kim
Hye Eun Byeon
Hye Jin Park
Bongkyun Park
Dong-Kwon Rhee
Sung Hee Um
Suhkneung Pyo
Publikationsdatum
01.05.2015
Verlag
Springer US
Erschienen in
Immunologic Research / Ausgabe 1/2015
Print ISSN: 0257-277X
Elektronische ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-015-8633-5

Weitere Artikel der Ausgabe 1/2015

Immunologic Research 1/2015 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.