Skip to main content
Erschienen in: The Cerebellum 2/2012

01.06.2012 | Review

Consensus Paper: Roles of the Cerebellum in Motor Control—The Diversity of Ideas on Cerebellar Involvement in Movement

verfasst von: Mario Manto, James M. Bower, Adriana Bastos Conforto, José M. Delgado-García, Suzete Nascimento Farias da Guarda, Marcus Gerwig, Christophe Habas, Nobuhiro Hagura, Richard B. Ivry, Peter Mariën, Marco Molinari, Eiichi Naito, Dennis A. Nowak, Nordeyn Oulad Ben Taib, Denis Pelisson, Claudia D. Tesche, Caroline Tilikete, Dagmar Timmann

Erschienen in: The Cerebellum | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

Considerable progress has been made in developing models of cerebellar function in sensorimotor control, as well as in identifying key problems that are the focus of current investigation. In this consensus paper, we discuss the literature on the role of the cerebellar circuitry in motor control, bringing together a range of different viewpoints. The following topics are covered: oculomotor control, classical conditioning (evidence in animals and in humans), cerebellar control of motor speech, control of grip forces, control of voluntary limb movements, timing, sensorimotor synchronization, control of corticomotor excitability, control of movement-related sensory data acquisition, cerebro-cerebellar interaction in visuokinesthetic perception of hand movement, functional neuroimaging studies, and magnetoencephalographic mapping of cortico-cerebellar dynamics. While the field has yet to reach a consensus on the precise role played by the cerebellum in movement control, the literature has witnessed the emergence of broad proposals that address cerebellar function at multiple levels of analysis. This paper highlights the diversity of current opinion, providing a framework for debate and discussion on the role of this quintessential vertebrate structure.
Literatur
1.
Zurück zum Zitat Baier B, Stoeter P, Dieterich M. Anatomical correlates of ocular motor deficits in cerebellar lesions. Brain. 2009;132:2114–24.PubMedCrossRef Baier B, Stoeter P, Dieterich M. Anatomical correlates of ocular motor deficits in cerebellar lesions. Brain. 2009;132:2114–24.PubMedCrossRef
2.
Zurück zum Zitat Ohki M, Kitazawa H, Hiramatsu T, Kaga K, Kitamura T, Yamada J, Nagao S. Role of primate cerebellar hemisphere in voluntary eye movement control revealed by lesion effects. J Neurophysiol. 2009;101(2):934–47.PubMed Ohki M, Kitazawa H, Hiramatsu T, Kaga K, Kitamura T, Yamada J, Nagao S. Role of primate cerebellar hemisphere in voluntary eye movement control revealed by lesion effects. J Neurophysiol. 2009;101(2):934–47.PubMed
3.
Zurück zum Zitat Hiramatsu T, Ohki M, Kitazawa H, Xiong G, Kitamura T, Yamada J, Nagao S. Role of primate cerebellar lobulus petrosus of paraflocculus in smooth pursuit eye movement control revealed by chemical lesion. Neurosci Res. 2008;60(3):250–8.PubMedCrossRef Hiramatsu T, Ohki M, Kitazawa H, Xiong G, Kitamura T, Yamada J, Nagao S. Role of primate cerebellar lobulus petrosus of paraflocculus in smooth pursuit eye movement control revealed by chemical lesion. Neurosci Res. 2008;60(3):250–8.PubMedCrossRef
4.
Zurück zum Zitat Zee DS, Leigh RJ, Mathieu-Millaire F. Cerebellar control of ocular gaze stability. Ann Neurol. 1980;7:37–40.PubMedCrossRef Zee DS, Leigh RJ, Mathieu-Millaire F. Cerebellar control of ocular gaze stability. Ann Neurol. 1980;7:37–40.PubMedCrossRef
5.
Zurück zum Zitat Zee DS, Yamazaki A, Butler PH, Gücer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol. 1981;46:878–99.PubMed Zee DS, Yamazaki A, Butler PH, Gücer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol. 1981;46:878–99.PubMed
6.
Zurück zum Zitat Baier B, Dieterich M. Incidence and anatomy of gaze-evoked nystagmus in patients with cerebellar lesions. Neurology. 2011;76:361–5.PubMedCrossRef Baier B, Dieterich M. Incidence and anatomy of gaze-evoked nystagmus in patients with cerebellar lesions. Neurology. 2011;76:361–5.PubMedCrossRef
7.
Zurück zum Zitat Waespe W, Cohen B, Raphan T. Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science. 1985;228:199–202.PubMedCrossRef Waespe W, Cohen B, Raphan T. Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science. 1985;228:199–202.PubMedCrossRef
8.
Zurück zum Zitat Jeong HS, Oh JY, Kim JS, Kim J, Lee AY, Oh SY. Periodic alternating nystagmus in isolated nodular infarction. Neurology. 2007;68:956–7.PubMedCrossRef Jeong HS, Oh JY, Kim JS, Kim J, Lee AY, Oh SY. Periodic alternating nystagmus in isolated nodular infarction. Neurology. 2007;68:956–7.PubMedCrossRef
9.
Zurück zum Zitat Leigh RJ, Robinson DA, Zee DS. A hypothetical explanation for periodic alternating nystagmus: instability in the optokinetic–vestibular system. Ann NY Acad Sci. 1981;374:619–35.PubMedCrossRef Leigh RJ, Robinson DA, Zee DS. A hypothetical explanation for periodic alternating nystagmus: instability in the optokinetic–vestibular system. Ann NY Acad Sci. 1981;374:619–35.PubMedCrossRef
10.
Zurück zum Zitat Solomon D, Cohen B. Stimulation of the nodulus and uvula discharges velocity storage in the vestibulo-ocular reflex. Exp Brain Res. 1994;102:57–68.PubMedCrossRef Solomon D, Cohen B. Stimulation of the nodulus and uvula discharges velocity storage in the vestibulo-ocular reflex. Exp Brain Res. 1994;102:57–68.PubMedCrossRef
11.
Zurück zum Zitat Cohen B, Helwig D, Raphan T. Baclofen and velocity storage: a model of the effects of the drug on the vestibulo-ocular reflex in the rhesus monkey. J Physiol. 1987;393:703–25.PubMed Cohen B, Helwig D, Raphan T. Baclofen and velocity storage: a model of the effects of the drug on the vestibulo-ocular reflex in the rhesus monkey. J Physiol. 1987;393:703–25.PubMed
12.
Zurück zum Zitat Halmagyi GM, Rudge P, Gresty MA, Leigh RJ, Zee DS. Treatment of periodic alternating nystagmus. Ann Neurol. 1980;8:609–11.PubMedCrossRef Halmagyi GM, Rudge P, Gresty MA, Leigh RJ, Zee DS. Treatment of periodic alternating nystagmus. Ann Neurol. 1980;8:609–11.PubMedCrossRef
13.
Zurück zum Zitat Tilikete C, Vighetto A, Trouillas P, Honnorat J. Anti-GAD antibodies and periodic alternating nystagmus. Arch Neurol. 2005;62:1300–3.PubMedCrossRef Tilikete C, Vighetto A, Trouillas P, Honnorat J. Anti-GAD antibodies and periodic alternating nystagmus. Arch Neurol. 2005;62:1300–3.PubMedCrossRef
14.
Zurück zum Zitat Leigh RJ, Zee DS. The neurology of eye movements. Oxford: Oxford University Press; 2006. Leigh RJ, Zee DS. The neurology of eye movements. Oxford: Oxford University Press; 2006.
15.
Zurück zum Zitat Serra A, Liao K, Martinez-Conde S, Optican LM, Leigh RJ. Suppression of saccadic intrusions in hereditary ataxia by memantine. Neurology. 2008;70:810–2.PubMedCrossRef Serra A, Liao K, Martinez-Conde S, Optican LM, Leigh RJ. Suppression of saccadic intrusions in hereditary ataxia by memantine. Neurology. 2008;70:810–2.PubMedCrossRef
16.
Zurück zum Zitat Shaikh AG, Marti S, Tarnutzer AA, et al. Gaze fixation deficits and their implication in ataxia-telangiectasia. J Neurol Neurosurg Psychiatry. 2009;80:858–64.PubMedCrossRef Shaikh AG, Marti S, Tarnutzer AA, et al. Gaze fixation deficits and their implication in ataxia-telangiectasia. J Neurol Neurosurg Psychiatry. 2009;80:858–64.PubMedCrossRef
17.
Zurück zum Zitat Dean P, Porrill J. Adaptive-filter models of the cerebellum: computational analysis. Cerebellum. 2008;7:567–71.PubMedCrossRef Dean P, Porrill J. Adaptive-filter models of the cerebellum: computational analysis. Cerebellum. 2008;7:567–71.PubMedCrossRef
18.
Zurück zum Zitat Xu-Wilson M, Chen-Harris H, Zee DS, Shadmehr R. Cerebellar contributions to adaptive control of saccades in humans. J Neurosci. 2009;29:12930–9.PubMedCrossRef Xu-Wilson M, Chen-Harris H, Zee DS, Shadmehr R. Cerebellar contributions to adaptive control of saccades in humans. J Neurosci. 2009;29:12930–9.PubMedCrossRef
19.
Zurück zum Zitat Alahyane N, Fonteille V, Urquizar C, Salemme R, Nighoghossian N, Pélisson D, Tilikete C. Separate neural substrates in the human cerebellum for sensory-motor adaptation of reactive and of scanning voluntary saccades. Cerebellum. 2008;7:595–601.PubMedCrossRef Alahyane N, Fonteille V, Urquizar C, Salemme R, Nighoghossian N, Pélisson D, Tilikete C. Separate neural substrates in the human cerebellum for sensory-motor adaptation of reactive and of scanning voluntary saccades. Cerebellum. 2008;7:595–601.PubMedCrossRef
20.
Zurück zum Zitat Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19:10931–9.PubMed Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19:10931–9.PubMed
21.
Zurück zum Zitat Straube A, Deubel H, Ditterich J, Eggert T. Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology. 2001;57:2105–8.PubMedCrossRef Straube A, Deubel H, Ditterich J, Eggert T. Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology. 2001;57:2105–8.PubMedCrossRef
22.
Zurück zum Zitat Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol. 1998;80:1911–31.PubMed Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol. 1998;80:1911–31.PubMed
23.
Zurück zum Zitat Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG. Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol. 2002;87:912–24.PubMed Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG. Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol. 2002;87:912–24.PubMed
24.
Zurück zum Zitat Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor cerebellar vermis on eye movements in primate: smooth pursuit. J Neurophysiol. 2000;83:2047–62.PubMed Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor cerebellar vermis on eye movements in primate: smooth pursuit. J Neurophysiol. 2000;83:2047–62.PubMed
25.
Zurück zum Zitat Catz N, Dicke PW, Thier P. Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning. Curr Biol. 2005;15:2179–89.PubMedCrossRef Catz N, Dicke PW, Thier P. Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning. Curr Biol. 2005;15:2179–89.PubMedCrossRef
26.
Zurück zum Zitat Pelisson D, Alahyane N, Panouilleres M, Tilikete C. Sensorimotor adaptation of saccadic eye movements. Neurosci Biobehav Rev. 2010;34:1103–20.PubMedCrossRef Pelisson D, Alahyane N, Panouilleres M, Tilikete C. Sensorimotor adaptation of saccadic eye movements. Neurosci Biobehav Rev. 2010;34:1103–20.PubMedCrossRef
27.
Zurück zum Zitat Soetedjo R, Kojima Y, Fuchs AF. Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning? J Neurophysiol. 2008;100:1949–66.PubMedCrossRef Soetedjo R, Kojima Y, Fuchs AF. Complex spike activity in the oculomotor vermis of the cerebellum: a vectorial error signal for saccade motor learning? J Neurophysiol. 2008;100:1949–66.PubMedCrossRef
28.
Zurück zum Zitat Shelhamer M, Tiliket C, Roberts D, Kramer PD, Zee DS. Short-term vestibulo-ocular reflex adaptation in humans. II. Error signals. Exp Brain Res. 1994;100:328–36.PubMedCrossRef Shelhamer M, Tiliket C, Roberts D, Kramer PD, Zee DS. Short-term vestibulo-ocular reflex adaptation in humans. II. Error signals. Exp Brain Res. 1994;100:328–36.PubMedCrossRef
29.
Zurück zum Zitat Porrill J, Dean P. Cerebellar motor learning: when is cortical plasticity not enough? PLoS Comput Biol. 2007;3:1935–50.PubMedCrossRef Porrill J, Dean P. Cerebellar motor learning: when is cortical plasticity not enough? PLoS Comput Biol. 2007;3:1935–50.PubMedCrossRef
30.
Zurück zum Zitat Dash S, Catz N, Dicke PW, Thier P. Specific vermal complex spike responses build up during the course of smooth-pursuit adaptation, paralleling the decrease of performance error. Exp Brain Res. 2010;205:41–55.PubMedCrossRef Dash S, Catz N, Dicke PW, Thier P. Specific vermal complex spike responses build up during the course of smooth-pursuit adaptation, paralleling the decrease of performance error. Exp Brain Res. 2010;205:41–55.PubMedCrossRef
31.
Zurück zum Zitat Wolpert DM, Miall RC. Forward models for physiological motor control. Neural Netw. 1996;9:1265–79.PubMedCrossRef Wolpert DM, Miall RC. Forward models for physiological motor control. Neural Netw. 1996;9:1265–79.PubMedCrossRef
32.
33.
Zurück zum Zitat Bernstein AL. Temporal factors in the formation of conditioned eyelid reactions in human subjects. J Gen Psychol. 1934;10:173–97.CrossRef Bernstein AL. Temporal factors in the formation of conditioned eyelid reactions in human subjects. J Gen Psychol. 1934;10:173–97.CrossRef
34.
Zurück zum Zitat Marquis DG, Porter JM. Differential characteristics of conditioned eyelid responses established by reflex and voluntary reinforcement. J Exp Psychol. 1939;24:347–65.CrossRef Marquis DG, Porter JM. Differential characteristics of conditioned eyelid responses established by reflex and voluntary reinforcement. J Exp Psychol. 1939;24:347–65.CrossRef
35.
Zurück zum Zitat Grant DA, Adams JK. ‘Alpha’ conditioning in the eyelid. J Exp Psychol. 1944;34:136–42.CrossRef Grant DA, Adams JK. ‘Alpha’ conditioning in the eyelid. J Exp Psychol. 1944;34:136–42.CrossRef
36.
Zurück zum Zitat Hilgard ER, Marquis DG. Conditioning and learning. 2nd ed. New York: Appleton-Century-Crofts; 1968. Hilgard ER, Marquis DG. Conditioning and learning. 2nd ed. New York: Appleton-Century-Crofts; 1968.
37.
Zurück zum Zitat Gormezano I, Kehoe EJ, Marshall BS. Twenty years of classical conditioning research with the rabbit. Prog Psychobiol Physiol Psychol. 1983;10:197–275. Gormezano I, Kehoe EJ, Marshall BS. Twenty years of classical conditioning research with the rabbit. Prog Psychobiol Physiol Psychol. 1983;10:197–275.
38.
Zurück zum Zitat Schneiderman N, Fuentes I, Gormezano I. Acquisition and extinction of the classically conditioned eyelid response in the albino rabbit. Science. 1962;136:650–2.PubMedCrossRef Schneiderman N, Fuentes I, Gormezano I. Acquisition and extinction of the classically conditioned eyelid response in the albino rabbit. Science. 1962;136:650–2.PubMedCrossRef
39.
Zurück zum Zitat Trigo JA, Gruart A, Delgado-García JM. Discharge profiles of abducens, accessory abducens, and orbicularis oculi motoneurons during reflex and conditioned blinks in alert cats. J Neurophysiol. 1999;81:1666–84.PubMed Trigo JA, Gruart A, Delgado-García JM. Discharge profiles of abducens, accessory abducens, and orbicularis oculi motoneurons during reflex and conditioned blinks in alert cats. J Neurophysiol. 1999;81:1666–84.PubMed
40.
Zurück zum Zitat Evinger C, Manning KA, Sibony PA. Eyelid movements. Mechanisms and normal data. Invest Ophthalmol Vis Sci. 1991;32:387–400.PubMed Evinger C, Manning KA, Sibony PA. Eyelid movements. Mechanisms and normal data. Invest Ophthalmol Vis Sci. 1991;32:387–400.PubMed
41.
Zurück zum Zitat Gruart A, Blázquez P, Delgado-García JM. Kinematics of spontaneous, reflex, and conditioned eyelid movements in the alert cat. J Neurophysiol. 1995;74:226–48.PubMed Gruart A, Blázquez P, Delgado-García JM. Kinematics of spontaneous, reflex, and conditioned eyelid movements in the alert cat. J Neurophysiol. 1995;74:226–48.PubMed
42.
Zurück zum Zitat Gruart A, Schreurs BG, del Toro ED, Delgado-García JM. Kinetic and frequency-domain properties of reflex and conditioned eyelid responses in the rabbit. J Neurophysiol. 2000;83:836–52.PubMed Gruart A, Schreurs BG, del Toro ED, Delgado-García JM. Kinetic and frequency-domain properties of reflex and conditioned eyelid responses in the rabbit. J Neurophysiol. 2000;83:836–52.PubMed
43.
Zurück zum Zitat Koekkoek SK, Den Ouden WL, Perry G, Highstein SM, De Zeeuw CI. Monitoring kinetic and frequency-domain properties of eyelid responses in mice with magnetic distance measurement technique. J Neurophysiol. 2002;88:2124–33.PubMed Koekkoek SK, Den Ouden WL, Perry G, Highstein SM, De Zeeuw CI. Monitoring kinetic and frequency-domain properties of eyelid responses in mice with magnetic distance measurement technique. J Neurophysiol. 2002;88:2124–33.PubMed
44.
Zurück zum Zitat Delgado-García JM, Gruart A. Building new motor responses: eyelid conditioning revisited. Trends Neurosci. 2006;29:330–8.PubMedCrossRef Delgado-García JM, Gruart A. Building new motor responses: eyelid conditioning revisited. Trends Neurosci. 2006;29:330–8.PubMedCrossRef
45.
Zurück zum Zitat Morcuende S, Delgado-Garcia JM, Ugolini G. Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat. J Neurosci. 2002;22:8808–18.PubMed Morcuende S, Delgado-Garcia JM, Ugolini G. Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat. J Neurosci. 2002;22:8808–18.PubMed
47.
Zurück zum Zitat Woody CD. Understanding the cellular basis of memory and learning. Annu Rev Psychol. 1986;37:433–93.PubMedCrossRef Woody CD. Understanding the cellular basis of memory and learning. Annu Rev Psychol. 1986;37:433–93.PubMedCrossRef
48.
Zurück zum Zitat Yeo CH, Hardiman M. J. Cerebellar cortex and eyeblink conditioning: a reexamination. Exp Brain Res. 1992;88:623–38.PubMedCrossRef Yeo CH, Hardiman M. J. Cerebellar cortex and eyeblink conditioning: a reexamination. Exp Brain Res. 1992;88:623–38.PubMedCrossRef
50.
Zurück zum Zitat Gruart A, Guillazo-Blanch G, Fernández-Mas R, Jiménez-Díaz L, Delgado-García JM. Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J Neurophysiol. 2000;84:2680–90.PubMed Gruart A, Guillazo-Blanch G, Fernández-Mas R, Jiménez-Díaz L, Delgado-García JM. Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J Neurophysiol. 2000;84:2680–90.PubMed
51.
Zurück zum Zitat Jiménez-Díaz L, Navarro-López Jde D, Gruart A, Delgado-García JM. Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J Neurosci. 2004;24:9138–45.PubMedCrossRef Jiménez-Díaz L, Navarro-López Jde D, Gruart A, Delgado-García JM. Role of cerebellar interpositus nucleus in the genesis and control of reflex and conditioned eyelid responses. J Neurosci. 2004;24:9138–45.PubMedCrossRef
52.
Zurück zum Zitat Welsh JP, Harvey JA. Pavlovian conditioning in the rabbit during inactivation of the interpositus nucleus. J Physiol (Lond). 1991;444:459–80. Welsh JP, Harvey JA. Pavlovian conditioning in the rabbit during inactivation of the interpositus nucleus. J Physiol (Lond). 1991;444:459–80.
53.
Zurück zum Zitat Welsh JP. Changes in the motor pattern of learned and unlearned responses following cerebellar lesions: a kinematic analysis of the nictitating membrane reflex. Neuroscience. 1992;47:1–19.PubMedCrossRef Welsh JP. Changes in the motor pattern of learned and unlearned responses following cerebellar lesions: a kinematic analysis of the nictitating membrane reflex. Neuroscience. 1992;47:1–19.PubMedCrossRef
54.
Zurück zum Zitat Bracha V, Zbarska S, Parker K, Carrel A, Zenitsky G, Bloedel JR. The cerebellum and eye-blink conditioning: learning versus network performance hypotheses. Neuroscience. 2009;162:787–96.PubMedCrossRef Bracha V, Zbarska S, Parker K, Carrel A, Zenitsky G, Bloedel JR. The cerebellum and eye-blink conditioning: learning versus network performance hypotheses. Neuroscience. 2009;162:787–96.PubMedCrossRef
55.
Zurück zum Zitat Sánchez-Campusano R, Gruart A, Delgado-García JM. Dynamic associations in the cerebellar–motoneuron network during motor learning. J Neurosci. 2009;29:10750–63.PubMedCrossRef Sánchez-Campusano R, Gruart A, Delgado-García JM. Dynamic associations in the cerebellar–motoneuron network during motor learning. J Neurosci. 2009;29:10750–63.PubMedCrossRef
56.
Zurück zum Zitat Boele HJ, Koekkoek SKE, De Zeeuw CI. Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Front Cell Neurosci. 2009;3:19.CrossRef Boele HJ, Koekkoek SKE, De Zeeuw CI. Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Front Cell Neurosci. 2009;3:19.CrossRef
57.
Zurück zum Zitat Aou S, Woody CD, Birt D. Changes in the activity of units of the cat motor cortex with rapid conditioning and extinction of a compound eye blink movement. J Neurosci. 1992;12:549–59.PubMed Aou S, Woody CD, Birt D. Changes in the activity of units of the cat motor cortex with rapid conditioning and extinction of a compound eye blink movement. J Neurosci. 1992;12:549–59.PubMed
58.
Zurück zum Zitat Woodruff-Pak DS, Steinmetz JE. Past, present, and future of human eyeblink classical conditioning. In: Woodruff-Pak DS, Steinmetz JE, editors. Eyeblink classical conditioning: volume I. Applications in humans. Kluwer: Norwell; 2000. p. 1–17. Woodruff-Pak DS, Steinmetz JE. Past, present, and future of human eyeblink classical conditioning. In: Woodruff-Pak DS, Steinmetz JE, editors. Eyeblink classical conditioning: volume I. Applications in humans. Kluwer: Norwell; 2000. p. 1–17.
59.
Zurück zum Zitat Gerwig M, Kolb FP, Timmann D. The involvement of the human cerebellum in eyeblink conditioning. Cerebellum. 2007;6:38–57.PubMedCrossRef Gerwig M, Kolb FP, Timmann D. The involvement of the human cerebellum in eyeblink conditioning. Cerebellum. 2007;6:38–57.PubMedCrossRef
60.
Zurück zum Zitat Daum I, Schugens MM, Ackermann H, Lutzenberger W, Dichgans J, Birbaumer N. Classical conditioning after cerebellar lesions in humans. Behav Neurosci. 1993;107:748–56.PubMedCrossRef Daum I, Schugens MM, Ackermann H, Lutzenberger W, Dichgans J, Birbaumer N. Classical conditioning after cerebellar lesions in humans. Behav Neurosci. 1993;107:748–56.PubMedCrossRef
61.
Zurück zum Zitat Topka H, Valls-Sole J, Massaquoi SG, Hallett M. Deficit in classical conditioning in patients with cerebellar degeneration. Brain. 1993;116:961–9.PubMedCrossRef Topka H, Valls-Sole J, Massaquoi SG, Hallett M. Deficit in classical conditioning in patients with cerebellar degeneration. Brain. 1993;116:961–9.PubMedCrossRef
62.
Zurück zum Zitat Woodruff-Pak DS, Papka M, Ivry RB. Cerebellar involvement in eyeblink classical conditioning in humans. Neuropsychology. 1996;10:443–58.CrossRef Woodruff-Pak DS, Papka M, Ivry RB. Cerebellar involvement in eyeblink classical conditioning in humans. Neuropsychology. 1996;10:443–58.CrossRef
63.
Zurück zum Zitat Gerwig M, Dimitrova A, Kolb FP, Maschke M, Brol B, Kunnel A, et al. Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain. 2003;126:71–94.PubMedCrossRef Gerwig M, Dimitrova A, Kolb FP, Maschke M, Brol B, Kunnel A, et al. Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain. 2003;126:71–94.PubMedCrossRef
64.
Zurück zum Zitat Bracha V, Zhao L, Wunderlich DA, Morrissy SJ, Bloedel JR. Patients with cerebellar lesions cannot acquire but are able to retain conditioned eyeblink reflexes. Brain. 1997;120:1401–13.PubMedCrossRef Bracha V, Zhao L, Wunderlich DA, Morrissy SJ, Bloedel JR. Patients with cerebellar lesions cannot acquire but are able to retain conditioned eyeblink reflexes. Brain. 1997;120:1401–13.PubMedCrossRef
65.
Zurück zum Zitat Gerwig M, Guberina H, Esser AC, Siebler M, Schoch B, Frings M, Kolb FP, Aurich V, Beck A, Forsting M, Timmann D. Evaluation of multiple-session delay eyeblink conditioning comparing patients with focal cerebellar lesions and cerebellar degeneration. Behav Brain Res. 2010;212:143–51.PubMedCrossRef Gerwig M, Guberina H, Esser AC, Siebler M, Schoch B, Frings M, Kolb FP, Aurich V, Beck A, Forsting M, Timmann D. Evaluation of multiple-session delay eyeblink conditioning comparing patients with focal cerebellar lesions and cerebellar degeneration. Behav Brain Res. 2010;212:143–51.PubMedCrossRef
66.
Zurück zum Zitat Woodruff-Pak DS, Vogel 3rd RW, Ewers M, Coffey J, Boyko OB, Lemieux SK. MRI assessed volume of cerebellum correlates with associative learning. Neurobiol Learn Mem. 2001;76:342–57.PubMedCrossRef Woodruff-Pak DS, Vogel 3rd RW, Ewers M, Coffey J, Boyko OB, Lemieux SK. MRI assessed volume of cerebellum correlates with associative learning. Neurobiol Learn Mem. 2001;76:342–57.PubMedCrossRef
67.
Zurück zum Zitat Dimitrova A, Gerwig M, Brol B, Gizewski ER, Forsting M, Beck A, Aurich V, Kolb FP, Timmann D. Correlation of cerebellar volume with eyeblink conditioning in healthy subjects and in patients with cerebellar cortical degeneration. Brain Res. 2008;1198:73–84.PubMedCrossRef Dimitrova A, Gerwig M, Brol B, Gizewski ER, Forsting M, Beck A, Aurich V, Kolb FP, Timmann D. Correlation of cerebellar volume with eyeblink conditioning in healthy subjects and in patients with cerebellar cortical degeneration. Brain Res. 2008;1198:73–84.PubMedCrossRef
68.
Zurück zum Zitat Lye RH, Boyle DJ, Ramsden RT, Schady W. Effects of a unilateral cerebellar lesion on the acquisition of eye-blink conditioning in man. J Physiol. 1988;403:58P. Lye RH, Boyle DJ, Ramsden RT, Schady W. Effects of a unilateral cerebellar lesion on the acquisition of eye-blink conditioning in man. J Physiol. 1988;403:58P.
69.
Zurück zum Zitat Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, Thilmann AF, Forsting M, Diener HC, Timmann D. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci. 2005;25:3919–31.PubMedCrossRef Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, Thilmann AF, Forsting M, Diener HC, Timmann D. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci. 2005;25:3919–31.PubMedCrossRef
70.
Zurück zum Zitat Ramnani N, Toni I, Josephs O, Ashburner J, Passingham RE. Learning and expectation related changes in the human brain during motor learning. J Neurophysiol. 2000;84:3026–35.PubMed Ramnani N, Toni I, Josephs O, Ashburner J, Passingham RE. Learning and expectation related changes in the human brain during motor learning. J Neurophysiol. 2000;84:3026–35.PubMed
71.
Zurück zum Zitat Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE. Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci USA. 2008;105:8108–13.PubMedCrossRef Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE. Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci USA. 2008;105:8108–13.PubMedCrossRef
72.
Zurück zum Zitat Yeo CH, Hardiman MJ, Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit II. Lesions of the cerebellar cortex. Exp Brain Res. 1985;60:99–113.PubMedCrossRef Yeo CH, Hardiman MJ, Glickstein M. Classical conditioning of the nictitating membrane response of the rabbit II. Lesions of the cerebellar cortex. Exp Brain Res. 1985;60:99–113.PubMedCrossRef
73.
Zurück zum Zitat Perrett SP, Ruiz BP, Mauk MD. Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci. 1993;13:1708–18.PubMed Perrett SP, Ruiz BP, Mauk MD. Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. J Neurosci. 1993;13:1708–18.PubMed
74.
Zurück zum Zitat Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem. 2003;11:427–55.CrossRef Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem. 2003;11:427–55.CrossRef
75.
Zurück zum Zitat Timmann D, Konczak J, Ilg W, Donchin O, Hermsdörfer J, Gizewski ER, Schoch B. Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience. 2009;162:836–51. Review.PubMedCrossRef Timmann D, Konczak J, Ilg W, Donchin O, Hermsdörfer J, Gizewski ER, Schoch B. Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience. 2009;162:836–51. Review.PubMedCrossRef
76.
Zurück zum Zitat Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski ER, Ladd ME, Timmann D. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage. 2011;54(3):1786–94.PubMedCrossRef Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski ER, Ladd ME, Timmann D. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage. 2011;54(3):1786–94.PubMedCrossRef
77.
Zurück zum Zitat McGlinchey-Berroth R, Fortier CB, Cermak LS, Disterhoft JF. Temporal discrimination learning in abstinent chronic alcoholics. Alcohol Clin Exp Res. 2002;26:804–11.PubMedCrossRef McGlinchey-Berroth R, Fortier CB, Cermak LS, Disterhoft JF. Temporal discrimination learning in abstinent chronic alcoholics. Alcohol Clin Exp Res. 2002;26:804–11.PubMedCrossRef
78.
Zurück zum Zitat Kronenbuerger M, Gerwig M, Brol B, Block F, Timmann D. Eyeblink conditioning is impaired in subjects with essential tremor. Brain. 2007;130:1538–51.PubMedCrossRef Kronenbuerger M, Gerwig M, Brol B, Block F, Timmann D. Eyeblink conditioning is impaired in subjects with essential tremor. Brain. 2007;130:1538–51.PubMedCrossRef
79.
Zurück zum Zitat Teo JT, van de Warrenburg BP, Schneider SA, Rothwell JC, Bhatia KP. Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia. J Neurol Neurosurg Psychiatry. 2009;80:80–3.PubMedCrossRef Teo JT, van de Warrenburg BP, Schneider SA, Rothwell JC, Bhatia KP. Neurophysiological evidence for cerebellar dysfunction in primary focal dystonia. J Neurol Neurosurg Psychiatry. 2009;80:80–3.PubMedCrossRef
80.
Zurück zum Zitat Smit AE, van der Geest JN, Vellema M, Koekkoek SK, Willemsen R, Govaerts LC, Oostra BA, De Zeeuw CI, VanderWerf F. Savings and extinction of conditioned eyeblink responses in fragile X syndrome. Genes Brain Behav. 2008;7:770–7.PubMedCrossRef Smit AE, van der Geest JN, Vellema M, Koekkoek SK, Willemsen R, Govaerts LC, Oostra BA, De Zeeuw CI, VanderWerf F. Savings and extinction of conditioned eyeblink responses in fragile X syndrome. Genes Brain Behav. 2008;7:770–7.PubMedCrossRef
81.
Zurück zum Zitat Forsyth JK, Bolbecker AR, Mehta CS, Klaunig MJ, Steinmetz JE, O'Donnell BF, Hetrick WP. Cerebellar-dependent eyeblink conditioning deficits in schizophrenia spectrum disorders. Schizophr Bull. 2011; in press. Forsyth JK, Bolbecker AR, Mehta CS, Klaunig MJ, Steinmetz JE, O'Donnell BF, Hetrick WP. Cerebellar-dependent eyeblink conditioning deficits in schizophrenia spectrum disorders. Schizophr Bull. 2011; in press.
82.
Zurück zum Zitat Frings M, Gaertner K, Buderath P, Gerwig M, Christiansen H, Schoch B, Gizewski ER, Hebebrand J, Timmann D. Timing of conditioned eyeblink responses is impaired in children with attention-deficit/hyperactivity disorder. Exp Brain Res. 2010;201:167–76.PubMedCrossRef Frings M, Gaertner K, Buderath P, Gerwig M, Christiansen H, Schoch B, Gizewski ER, Hebebrand J, Timmann D. Timing of conditioned eyeblink responses is impaired in children with attention-deficit/hyperactivity disorder. Exp Brain Res. 2010;201:167–76.PubMedCrossRef
83.
Zurück zum Zitat Lenneberg EH. Biological foundations of language. New York: Wiley; 1967. Lenneberg EH. Biological foundations of language. New York: Wiley; 1967.
84.
Zurück zum Zitat Ackermann H. Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008;31:265–72.PubMedCrossRef Ackermann H. Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci. 2008;31:265–72.PubMedCrossRef
85.
Zurück zum Zitat Riecker A, Mathiak K, Wildgruber D, Erb M, Hertrich I, Grodd W, Ackermann H. fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology. 2005;64:700–6.PubMedCrossRef Riecker A, Mathiak K, Wildgruber D, Erb M, Hertrich I, Grodd W, Ackermann H. fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology. 2005;64:700–6.PubMedCrossRef
86.
Zurück zum Zitat Jürgens U. Neural pathways underlying vocal control. Neurosci Biobehav Rev. 2002;26:232–58.CrossRef Jürgens U. Neural pathways underlying vocal control. Neurosci Biobehav Rev. 2002;26:232–58.CrossRef
87.
Zurück zum Zitat Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40:461–535.CrossRef Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40:461–535.CrossRef
88.
Zurück zum Zitat Darley FL, Aronson AE, Brown JR. Motor speech disorders. Philadelphia: WB Saunders; 1975. Darley FL, Aronson AE, Brown JR. Motor speech disorders. Philadelphia: WB Saunders; 1975.
89.
Zurück zum Zitat Holmes G. Clinical symptoms cerebellar disease and their interpretation. Lancet. 1922;2:59–65. Holmes G. Clinical symptoms cerebellar disease and their interpretation. Lancet. 1922;2:59–65.
90.
Zurück zum Zitat Lechtenberg R, Gilman S. Speech disorders in cerebellar disease. Ann Neurol. 1978;3:285–90.PubMedCrossRef Lechtenberg R, Gilman S. Speech disorders in cerebellar disease. Ann Neurol. 1978;3:285–90.PubMedCrossRef
91.
Zurück zum Zitat Ackermann H, Hertrich I. The contribution of the cerebellum to speech processing. J Neurol. 2000;13:95–116. Ackermann H, Hertrich I. The contribution of the cerebellum to speech processing. J Neurol. 2000;13:95–116.
92.
Zurück zum Zitat Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6:202–13.PubMedCrossRef Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum. 2007;6:202–13.PubMedCrossRef
93.
Zurück zum Zitat Ackermann H, Ziegler W. Acoustic analysis of vocal instability in cerebellar dysfunctions. Ann Otol Rhinol Laryngol. 1994;103:98–104.PubMed Ackermann H, Ziegler W. Acoustic analysis of vocal instability in cerebellar dysfunctions. Ann Otol Rhinol Laryngol. 1994;103:98–104.PubMed
94.
Zurück zum Zitat Kent RD, Kent JF, Rosenbek JC, Vorperian HK, Weismer G. A speaking task analysis of the dysarthria in cerebellar disease. Folia Phon Logop. 1997;49:63–82.CrossRef Kent RD, Kent JF, Rosenbek JC, Vorperian HK, Weismer G. A speaking task analysis of the dysarthria in cerebellar disease. Folia Phon Logop. 1997;49:63–82.CrossRef
95.
Zurück zum Zitat Callan DE, Tsytsarev V, Hanakawa T, Callan AM, Katsuhara M, Fukuyama H, Turner R. Song and speech: brain regions involved with perception and covert production. Neuroimage. 2006;31:1327–42.PubMedCrossRef Callan DE, Tsytsarev V, Hanakawa T, Callan AM, Katsuhara M, Fukuyama H, Turner R. Song and speech: brain regions involved with perception and covert production. Neuroimage. 2006;31:1327–42.PubMedCrossRef
96.
Zurück zum Zitat Fiez JA, Raichle ME. Linguistic processing. In: Schmahmann JD, editor. The cerebellum and cognition. International review of neurobiology, vol. 41. San Diego: Academic; 1997. p. 233–54. Fiez JA, Raichle ME. Linguistic processing. In: Schmahmann JD, editor. The cerebellum and cognition. International review of neurobiology, vol. 41. San Diego: Academic; 1997. p. 233–54.
97.
Zurück zum Zitat Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20(3):271–9.PubMedCrossRef Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20(3):271–9.PubMedCrossRef
98.
Zurück zum Zitat Mariën P, Verhoeven J, Engelborghs S, Rooker S, Pickut BA, De Deyn PP. A role for the cerebellum in motor speech planning: evidence from foreign accent syndrome. Clin Neurol Neurosurg. 2006;108:518–25.PubMedCrossRef Mariën P, Verhoeven J, Engelborghs S, Rooker S, Pickut BA, De Deyn PP. A role for the cerebellum in motor speech planning: evidence from foreign accent syndrome. Clin Neurol Neurosurg. 2006;108:518–25.PubMedCrossRef
99.
Zurück zum Zitat Mariën P, Verhoeven J. Cerebellar involvement in motor speech planning: some further evidence from foreign accent syndrome. Folia Phoniatr Logop. 2007;59:210–7.PubMedCrossRef Mariën P, Verhoeven J. Cerebellar involvement in motor speech planning: some further evidence from foreign accent syndrome. Folia Phoniatr Logop. 2007;59:210–7.PubMedCrossRef
100.
Zurück zum Zitat Cohen DA, Kurowski K, Steven MS, Blumstein SE, Pascual-Leone A. Paradoxical facilitation: the resolution of foreign accent syndrome after cerebellar stroke. Neurology. 2009;73:566–7.PubMedCrossRef Cohen DA, Kurowski K, Steven MS, Blumstein SE, Pascual-Leone A. Paradoxical facilitation: the resolution of foreign accent syndrome after cerebellar stroke. Neurology. 2009;73:566–7.PubMedCrossRef
101.
Zurück zum Zitat Mariën P, Verhoeven J, Brouns R, De Witte L, Dobbeleir A, De Deyn PP. Apraxic agraphia following a right cerebellar hemorrhage. Neurology. 2007;69:926–9.PubMedCrossRef Mariën P, Verhoeven J, Brouns R, De Witte L, Dobbeleir A, De Deyn PP. Apraxic agraphia following a right cerebellar hemorrhage. Neurology. 2007;69:926–9.PubMedCrossRef
102.
Zurück zum Zitat Mariën P, Wackenier P, De Surgeloose D, De Deyn PP, Verhoeven J. Developmental coordination disorder: disruption of the cerebello-cerebral network evidenced by SPECT. Cerebellum. 2010;9:405–10.PubMedCrossRef Mariën P, Wackenier P, De Surgeloose D, De Deyn PP, Verhoeven J. Developmental coordination disorder: disruption of the cerebello-cerebral network evidenced by SPECT. Cerebellum. 2010;9:405–10.PubMedCrossRef
103.
Zurück zum Zitat Beaton A, Mariën P. Language, cognition and the cerebellum: grappling with and enigma. Cortex. 2010;46:811–20.PubMedCrossRef Beaton A, Mariën P. Language, cognition and the cerebellum: grappling with and enigma. Cortex. 2010;46:811–20.PubMedCrossRef
104.
Zurück zum Zitat Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Mariën P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110:763–73.PubMedCrossRef Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Mariën P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110:763–73.PubMedCrossRef
105.
Zurück zum Zitat Murdoch BE. The cerebellum and language: historical perspective and review. Cortex. 2010;46:858–68.PubMedCrossRef Murdoch BE. The cerebellum and language: historical perspective and review. Cortex. 2010;46:858–68.PubMedCrossRef
106.
Zurück zum Zitat Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.PubMedCrossRef Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.PubMedCrossRef
107.
Zurück zum Zitat Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMedCrossRef Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.PubMedCrossRef
108.
Zurück zum Zitat Manto MU. Physiology of the cerebellum. In: Cerebellar disorders. A practical approach to diagnosis and management. Cambridge: Cambridge University Press; 2010. p. 23–35.CrossRef Manto MU. Physiology of the cerebellum. In: Cerebellar disorders. A practical approach to diagnosis and management. Cambridge: Cambridge University Press; 2010. p. 23–35.CrossRef
110.
Zurück zum Zitat Flanagan JR, Wing AM. Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res. 1993;95:131–43.PubMedCrossRef Flanagan JR, Wing AM. Modulation of grip force with load force during point-to-point arm movements. Exp Brain Res. 1993;95:131–43.PubMedCrossRef
111.
Zurück zum Zitat Johansson RS, Westling G. Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res. 1988;71:72–86.PubMed Johansson RS, Westling G. Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res. 1988;71:72–86.PubMed
112.
Zurück zum Zitat Nowak DA, Hermsdörfer J, Marquardt C, Fuchs HH. Grip and load force coupling during discrete vertical movements in cerebellar atrophy. Exp Brain Res. 2002;145:28–39.PubMedCrossRef Nowak DA, Hermsdörfer J, Marquardt C, Fuchs HH. Grip and load force coupling during discrete vertical movements in cerebellar atrophy. Exp Brain Res. 2002;145:28–39.PubMedCrossRef
113.
Zurück zum Zitat Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J. The role of the cerebellum for predictive control of grasping. Cerebellum. 2007;6:7–17.PubMedCrossRef Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J. The role of the cerebellum for predictive control of grasping. Cerebellum. 2007;6:7–17.PubMedCrossRef
114.
Zurück zum Zitat Rost K, Nowak DA, Timmann D, Hermsdörfer J. Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol. 2005;116:1405–14.PubMedCrossRef Rost K, Nowak DA, Timmann D, Hermsdörfer J. Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol. 2005;116:1405–14.PubMedCrossRef
115.
Zurück zum Zitat Brandauer B, Hermsdörfer J, Beck A, Aurich V, Gizewski ER, Marquardt C, Timmann D. Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol. 2008;119(11):2528–37.PubMedCrossRef Brandauer B, Hermsdörfer J, Beck A, Aurich V, Gizewski ER, Marquardt C, Timmann D. Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol. 2008;119(11):2528–37.PubMedCrossRef
116.
Zurück zum Zitat Nowak DA, Timmann D, Hermsdörfer J. Dexterity in cerebellar agenesis. Neuropsychologia. 2007;45:696–703.PubMedCrossRef Nowak DA, Timmann D, Hermsdörfer J. Dexterity in cerebellar agenesis. Neuropsychologia. 2007;45:696–703.PubMedCrossRef
117.
Zurück zum Zitat Fellows SJ, Ernst J, Schwarz M, Topper R, Noth J. Precision grip in cerebellar disorders in man. Clin Neurophysiol. 2001;112:1793–802.PubMedCrossRef Fellows SJ, Ernst J, Schwarz M, Topper R, Noth J. Precision grip in cerebellar disorders in man. Clin Neurophysiol. 2001;112:1793–802.PubMedCrossRef
118.
Zurück zum Zitat Serrien JD, Wiesendanger M. Grip-load coordination in cerebellar patients. Exp Brain Res. 1999;128:76–80.PubMedCrossRef Serrien JD, Wiesendanger M. Grip-load coordination in cerebellar patients. Exp Brain Res. 1999;128:76–80.PubMedCrossRef
119.
Zurück zum Zitat Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Ben Hamida M, Campanella G, Filla A, Schut L, Timann D, Honnorat J, Nighoghossian N, Manyam B. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145:205–11.PubMedCrossRef Trouillas P, Takayanagi T, Hallett M, Currier RD, Subramony SH, Wessel K, Bryer A, Diener HC, Massaquoi S, Gomez CM, Coutinho P, Ben Hamida M, Campanella G, Filla A, Schut L, Timann D, Honnorat J, Nighoghossian N, Manyam B. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci. 1997;145:205–11.PubMedCrossRef
120.
Zurück zum Zitat Blakemore SJ, Frith CD, Wolpert DM. The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 2001; 1879–1884. Blakemore SJ, Frith CD, Wolpert DM. The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 2001; 1879–1884.
121.
Zurück zum Zitat Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.PubMedCrossRef Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.PubMedCrossRef
122.
Zurück zum Zitat Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.PubMedCrossRef Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.PubMedCrossRef
123.
Zurück zum Zitat Boecker H, Lee A, Mühlau M, Ceballos-Baumann AO, Ritzl A, Spilker M, Marquardt C, Hermsdörfer J. Force level independent representation of predictive grip force–load force coupling: a PET activation study. Neuroimage. 2005;25(1):243–52.PubMedCrossRef Boecker H, Lee A, Mühlau M, Ceballos-Baumann AO, Ritzl A, Spilker M, Marquardt C, Hermsdörfer J. Force level independent representation of predictive grip force–load force coupling: a PET activation study. Neuroimage. 2005;25(1):243–52.PubMedCrossRef
124.
Zurück zum Zitat Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T. Internal forward models in the cerebellum: FMRI study on grip force and load force coupling. Progr Brain Res. 2003;142:171–88.CrossRef Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T. Internal forward models in the cerebellum: FMRI study on grip force and load force coupling. Progr Brain Res. 2003;142:171–88.CrossRef
125.
Zurück zum Zitat Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshiaka T, Kawato M. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403:192–5.PubMedCrossRef Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshiaka T, Kawato M. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403:192–5.PubMedCrossRef
126.
Zurück zum Zitat Goodkin HP, Keating JG, Martin TA, Thach WT. Preserved simple and impaired compound movement after infarction in the territory of the superior cerebellar artery. Can J Neurol Sci. 1993;20 Suppl 3:S93–S104.PubMed Goodkin HP, Keating JG, Martin TA, Thach WT. Preserved simple and impaired compound movement after infarction in the territory of the superior cerebellar artery. Can J Neurol Sci. 1993;20 Suppl 3:S93–S104.PubMed
127.
Zurück zum Zitat Bares M, Lungu OV, Husárová I, Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease. Cerebellum. 2010;9(1):124–35.PubMedCrossRef Bares M, Lungu OV, Husárová I, Gescheidt T. Predictive motor timing performance dissociates between early diseases of the cerebellum and Parkinson's disease. Cerebellum. 2010;9(1):124–35.PubMedCrossRef
128.
Zurück zum Zitat Gilman S. The mechanism of cerebellar hypotonia. An experimental study in the monkey. Brain. 1969;92(3):621–38.PubMedCrossRef Gilman S. The mechanism of cerebellar hypotonia. An experimental study in the monkey. Brain. 1969;92(3):621–38.PubMedCrossRef
129.
Zurück zum Zitat Gilman S, Bloedel JR, Lechtenberg R. Disorders of the cerebellum. Contemporary Neurology Series, vol. 21. Philadelphia: F.A. Davis; 1981. Gilman S, Bloedel JR, Lechtenberg R. Disorders of the cerebellum. Contemporary Neurology Series, vol. 21. Philadelphia: F.A. Davis; 1981.
130.
Zurück zum Zitat Hallett M, Shahani BT, Young RR. EMG analysis in patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1975;38:1163–9.PubMedCrossRef Hallett M, Shahani BT, Young RR. EMG analysis in patients with cerebellar deficits. J Neurol Neurosurg Psychiatry. 1975;38:1163–9.PubMedCrossRef
131.
Zurück zum Zitat Flament D, Hore J. Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol. 1986;55(6):1221–33.PubMed Flament D, Hore J. Movement and electromyographic disorders associated with cerebellar dysmetria. J Neurophysiol. 1986;55(6):1221–33.PubMed
132.
Zurück zum Zitat Manto M, Godaux E, Jacquy J, Hildebrand J. Cerebellar hypermetria associated with a selective decrease in the rate of rise of the antagonist electromyographic activity. Ann Neurol. 1996;39:271–4.PubMedCrossRef Manto M, Godaux E, Jacquy J, Hildebrand J. Cerebellar hypermetria associated with a selective decrease in the rate of rise of the antagonist electromyographic activity. Ann Neurol. 1996;39:271–4.PubMedCrossRef
133.
Zurück zum Zitat Manto M, Van Den Braber N, Grimaldi G, Lammertse P. A new myohaptic instrument to assess wrist motion dynamically. Sensors. 2010;10:3180–94.PubMedCrossRef Manto M, Van Den Braber N, Grimaldi G, Lammertse P. A new myohaptic instrument to assess wrist motion dynamically. Sensors. 2010;10:3180–94.PubMedCrossRef
134.
Zurück zum Zitat Topka H, Konczak J, Schneider K, Boose A, Dichgans J. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics. Exp Brain Res. 1998;119(4):493–503.PubMedCrossRef Topka H, Konczak J, Schneider K, Boose A, Dichgans J. Multijoint arm movements in cerebellar ataxia: abnormal control of movement dynamics. Exp Brain Res. 1998;119(4):493–503.PubMedCrossRef
135.
Zurück zum Zitat Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. J Neurophysiol. 1999;82(1):103–14.PubMed Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. J Neurophysiol. 1999;82(1):103–14.PubMed
136.
Zurück zum Zitat Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119(Pt 4):1183–98.PubMedCrossRef Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119(Pt 4):1183–98.PubMedCrossRef
137.
Zurück zum Zitat Timmann D, Brandauer B, Hermsdörfer J, Ilg W, Konczak J, Gerwig M, Gizewski ER, Schoch B. Lesion-symptom mapping of the human cerebellum. Cerebellum. 2008;7(4):602–6.PubMedCrossRef Timmann D, Brandauer B, Hermsdörfer J, Ilg W, Konczak J, Gerwig M, Gizewski ER, Schoch B. Lesion-symptom mapping of the human cerebellum. Cerebellum. 2008;7(4):602–6.PubMedCrossRef
138.
Zurück zum Zitat Grodd W, Hülsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13(2):55–73.PubMedCrossRef Grodd W, Hülsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13(2):55–73.PubMedCrossRef
139.
Zurück zum Zitat Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30(1):36–51.PubMedCrossRef Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage. 2006;30(1):36–51.PubMedCrossRef
140.
Zurück zum Zitat Berardelli A, Hallett M, Rothwell JC, Agostino R, Manfredi M, Thompson PD, Marsden CD. Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain. 1996;119(Pt 2):661–74.PubMedCrossRef Berardelli A, Hallett M, Rothwell JC, Agostino R, Manfredi M, Thompson PD, Marsden CD. Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain. 1996;119(Pt 2):661–74.PubMedCrossRef
141.
Zurück zum Zitat Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76(1):492–509.PubMed Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76(1):492–509.PubMed
143.
Zurück zum Zitat Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain. 2004;127(Pt 3):561–74.PubMed Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT. Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain. 2004;127(Pt 3):561–74.PubMed
144.
Zurück zum Zitat Kent RD, Netsell R, Abbs JH. Acoustic characteristics of dysarthria associated with cerebellar disease. J Speech Hear Res. 1979;22(3):627–48.PubMed Kent RD, Netsell R, Abbs JH. Acoustic characteristics of dysarthria associated with cerebellar disease. J Speech Hear Res. 1979;22(3):627–48.PubMed
145.
Zurück zum Zitat Ackermann H, Gräber S, Hertrich I, Daum I. Categorical speech perception in cerebellar disorders. Brain Lang. 1997;60(2):323–31.PubMedCrossRef Ackermann H, Gräber S, Hertrich I, Daum I. Categorical speech perception in cerebellar disorders. Brain Lang. 1997;60(2):323–31.PubMedCrossRef
146.
Zurück zum Zitat Grube M, Cooper FE, Chinnery PF, Griffiths TD. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci USA. 2010;107(25):11597–601.PubMedCrossRef Grube M, Cooper FE, Chinnery PF, Griffiths TD. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci USA. 2010;107(25):11597–601.PubMedCrossRef
147.
Zurück zum Zitat Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13(2):250–5.PubMedCrossRef Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13(2):250–5.PubMedCrossRef
148.
Zurück zum Zitat Moberget T, Karns CM, Deouell LY, Lindgren M, Knight RT, Ivry RB. Detecting violations of sensory expectancies following cerebellar degeneration: a mismatch negativity study. Neuropsychologia. 2008;46(10):2569–79.PubMedCrossRef Moberget T, Karns CM, Deouell LY, Lindgren M, Knight RT, Ivry RB. Detecting violations of sensory expectancies following cerebellar degeneration: a mismatch negativity study. Neuropsychologia. 2008;46(10):2569–79.PubMedCrossRef
149.
Zurück zum Zitat O'Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28(9):2252–60.PubMedCrossRef O'Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28(9):2252–60.PubMedCrossRef
150.
Zurück zum Zitat Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12(7):273–80.PubMedCrossRef Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12(7):273–80.PubMedCrossRef
151.
Zurück zum Zitat Coull J, Nobre A. Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol. 2008;18(2):137–44. Epub 2008 Aug 12.CrossRefPubMed Coull J, Nobre A. Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol. 2008;18(2):137–44. Epub 2008 Aug 12.CrossRefPubMed
152.
Zurück zum Zitat Bares M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res. 2007;180(2):355–65.PubMedCrossRef Bares M, Lungu O, Liu T, Waechter T, Gomez CM, Ashe J. Impaired predictive motor timing in patients with cerebellar disorders. Exp Brain Res. 2007;180(2):355–65.PubMedCrossRef
153.
Zurück zum Zitat Bullock D. Adaptive neural models of queuing and timing in fluent action. Trends Cogn Sci. 2004;8(9):426–33.PubMedCrossRef Bullock D. Adaptive neural models of queuing and timing in fluent action. Trends Cogn Sci. 2004;8(9):426–33.PubMedCrossRef
154.
Zurück zum Zitat Spencer RM, Zelaznik HN, Diedrichsen J, Ivry RB. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science. 2003;300(5624):1437–9.PubMedCrossRef Spencer RM, Zelaznik HN, Diedrichsen J, Ivry RB. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science. 2003;300(5624):1437–9.PubMedCrossRef
155.
Zurück zum Zitat Kalmbach BE, Ohyama T, Kreider JC, Riusech F, Mauk MD. Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learn Mem. 2009;16(1):86–95.PubMedCrossRef Kalmbach BE, Ohyama T, Kreider JC, Riusech F, Mauk MD. Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning. Learn Mem. 2009;16(1):86–95.PubMedCrossRef
156.
Zurück zum Zitat Mangels JA, Ivry RB, Shimizu N. Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Brain Res Cogn Brain Res. 1998;7(1):15–39.PubMedCrossRef Mangels JA, Ivry RB, Shimizu N. Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Brain Res Cogn Brain Res. 1998;7(1):15–39.PubMedCrossRef
157.
Zurück zum Zitat Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334–46.PubMedCrossRef Braitenberg V. Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res. 1967;25:334–46.PubMedCrossRef
158.
Zurück zum Zitat Yamazaki T, Tanaka S. Computational models of timing mechanisms in the cerebellar granular layer. Cerebellum. 2009;8(4):423–32.PubMedCrossRef Yamazaki T, Tanaka S. Computational models of timing mechanisms in the cerebellar granular layer. Cerebellum. 2009;8(4):423–32.PubMedCrossRef
159.
Zurück zum Zitat D'Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32(1):30–40.PubMedCrossRef D'Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32(1):30–40.PubMedCrossRef
160.
Zurück zum Zitat Miall RC, Christensen LO, Cain O, Stanley J. Disruption of state estimation in the human lateral cerebellum. PLoS Biol. 2007;5(11):e316.PubMedCrossRef Miall RC, Christensen LO, Cain O, Stanley J. Disruption of state estimation in the human lateral cerebellum. PLoS Biol. 2007;5(11):e316.PubMedCrossRef
161.
Zurück zum Zitat Diedrichsen J, Criscimagna-Hemminger SE, Shadmehr R. Dissociating timing and coordination as functions of the cerebellum. J Neurosci. 2007;27(23):6291–301.PubMedCrossRef Diedrichsen J, Criscimagna-Hemminger SE, Shadmehr R. Dissociating timing and coordination as functions of the cerebellum. J Neurosci. 2007;27(23):6291–301.PubMedCrossRef
162.
Zurück zum Zitat Karmarkar UR, Buonomano DV. Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007;53(3):427–38.PubMedCrossRef Karmarkar UR, Buonomano DV. Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007;53(3):427–38.PubMedCrossRef
163.
Zurück zum Zitat Pressing J. The referential dynamics of cognition and action. Psychol Rev. 1999;106:714–47.CrossRef Pressing J. The referential dynamics of cognition and action. Psychol Rev. 1999;106:714–47.CrossRef
164.
165.
Zurück zum Zitat Ivry R, Keele S. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1:136–52.CrossRef Ivry R, Keele S. Timing functions of the cerebellum. J Cogn Neurosci. 1989;1:136–52.CrossRef
166.
Zurück zum Zitat Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–9.PubMedCrossRef Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–9.PubMedCrossRef
167.
Zurück zum Zitat Braitenberg V, Heck D, Sultan F. The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav Brain Sci. 1997;20:229–77.PubMed Braitenberg V, Heck D, Sultan F. The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav Brain Sci. 1997;20:229–77.PubMed
168.
Zurück zum Zitat Doyon J, Penhune V, Ungerleider LG. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia. 2003;41:252–62.PubMedCrossRef Doyon J, Penhune V, Ungerleider LG. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia. 2003;41:252–62.PubMedCrossRef
169.
Zurück zum Zitat Pascual-Leone A, Grafman J, Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowledge [see comments]. Science. 1994;263:1287–9.PubMedCrossRef Pascual-Leone A, Grafman J, Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowledge [see comments]. Science. 1994;263:1287–9.PubMedCrossRef
170.
Zurück zum Zitat Molinari M, Leggio MG, Solida A, Ciorra R, Misciagna S, Silveri MC, Petrosini L. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain. 1997;120:1753–62.PubMedCrossRef Molinari M, Leggio MG, Solida A, Ciorra R, Misciagna S, Silveri MC, Petrosini L. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain. 1997;120:1753–62.PubMedCrossRef
171.
Zurück zum Zitat Tesche CD, Karhu JJ. Anticipatory cerebellar responses during somatosensory omission in man [see comments]. Hum Brain Mapp. 2000;9:119–42.PubMedCrossRef Tesche CD, Karhu JJ. Anticipatory cerebellar responses during somatosensory omission in man [see comments]. Hum Brain Mapp. 2000;9:119–42.PubMedCrossRef
172.
Zurück zum Zitat Molinari M, Chiricozzi F, Clausi S, Tedesco A, De Lisa M, Leggio M. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.PubMedCrossRef Molinari M, Chiricozzi F, Clausi S, Tedesco A, De Lisa M, Leggio M. Cerebellum and detection of sequences, from perception to cognition. Cerebellum. 2008;7:611–5.PubMedCrossRef
173.
Zurück zum Zitat Restuccia D, Della MG, Valeriani M, Leggio MG, Molinari M. Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. Brain. 2007;130:276–87.PubMedCrossRef Restuccia D, Della MG, Valeriani M, Leggio MG, Molinari M. Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. Brain. 2007;130:276–87.PubMedCrossRef
174.
Zurück zum Zitat Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–43.PubMedCrossRef Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–43.PubMedCrossRef
175.
Zurück zum Zitat Penn HE. Neurobiological correlates of autism: a review of recent research. Child Neuropsychol. 2006;12:57–79.PubMedCrossRef Penn HE. Neurobiological correlates of autism: a review of recent research. Child Neuropsychol. 2006;12:57–79.PubMedCrossRef
176.
Zurück zum Zitat Ho BC, Mola C, Andreasen NC. Cerebellar dysfunction in neuroleptic naive schizophrenia patients: clinical, cognitive, and neuroanatomic correlates of cerebellar neurologic signs. Biol Psychiatry. 2004;55:1146–53.PubMedCrossRef Ho BC, Mola C, Andreasen NC. Cerebellar dysfunction in neuroleptic naive schizophrenia patients: clinical, cognitive, and neuroanatomic correlates of cerebellar neurologic signs. Biol Psychiatry. 2004;55:1146–53.PubMedCrossRef
177.
Zurück zum Zitat Rumiati RI, Papeo L. Corradi-Dell'Acqua C. Higher-level motor processes. Ann NY Acad Sci. 2010;1191:219–41.PubMedCrossRef Rumiati RI, Papeo L. Corradi-Dell'Acqua C. Higher-level motor processes. Ann NY Acad Sci. 2010;1191:219–41.PubMedCrossRef
178.
Zurück zum Zitat Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47:137–44.PubMedCrossRef Leggio MG, Chiricozzi FR, Clausi S, Tedesco AM, Molinari M. The neuropsychological profile of cerebellar damage: the sequencing hypothesis. Cortex. 2011;47:137–44.PubMedCrossRef
179.
Zurück zum Zitat Molinari M, Leggio MG, Filippini V, Gioia MC, Cerasa A, Thaut MH. Sensorimotor transduction of time information is preserved in subjects with cerebellar damage. Brain Res Bull. 2005;67:448–58.PubMedCrossRef Molinari M, Leggio MG, Filippini V, Gioia MC, Cerasa A, Thaut MH. Sensorimotor transduction of time information is preserved in subjects with cerebellar damage. Brain Res Bull. 2005;67:448–58.PubMedCrossRef
180.
Zurück zum Zitat Hantman AW, Jessell TM. Clarke's column neurons as the focus of a corticospinal corollary circuit. Nat Neurosci. 2010;13:1233–9.PubMedCrossRef Hantman AW, Jessell TM. Clarke's column neurons as the focus of a corticospinal corollary circuit. Nat Neurosci. 2010;13:1233–9.PubMedCrossRef
181.
Zurück zum Zitat Manto M. Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil. 2009;13:6–10. Manto M. Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil. 2009;13:6–10.
182.
Zurück zum Zitat Holdefer RN, Miller LE, Chen LL, Houk JC. Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J Neurophysiol. 2000;84:585–90.PubMed Holdefer RN, Miller LE, Chen LL, Houk JC. Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J Neurophysiol. 2000;84:585–90.PubMed
183.
Zurück zum Zitat Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol. 2008;586:325–51.PubMedCrossRef Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, et al. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol. 2008;586:325–51.PubMedCrossRef
184.
Zurück zum Zitat Rudiak D, Marg E. Finding the depth of magnetic brain stimulation: a re-evaluation. Electroencephalogr Clin Neurophysiol. 1994;93(5):358–71.PubMedCrossRef Rudiak D, Marg E. Finding the depth of magnetic brain stimulation: a re-evaluation. Electroencephalogr Clin Neurophysiol. 1994;93(5):358–71.PubMedCrossRef
185.
Zurück zum Zitat Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.PubMedCrossRef Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.PubMedCrossRef
186.
Zurück zum Zitat Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol. 2004;557:689–700.PubMedCrossRef Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol. 2004;557:689–700.PubMedCrossRef
187.
Zurück zum Zitat Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010;3:161–9.PubMedCrossRef Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010;3:161–9.PubMedCrossRef
188.
Zurück zum Zitat Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527.3:633–9.CrossRef Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527.3:633–9.CrossRef
189.
Zurück zum Zitat Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Thetaburst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.PubMedCrossRef Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Thetaburst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.PubMedCrossRef
190.
Zurück zum Zitat Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG. Modulation of human corticomotor excitability by somatosensory input. J Physiol. 2002;540:623–33.PubMedCrossRef Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG. Modulation of human corticomotor excitability by somatosensory input. J Physiol. 2002;540:623–33.PubMedCrossRef
191.
Zurück zum Zitat Luft AR, Manto MU, Taib NOB. Modulation of motor cortex excitability by sustained peripheral stimulation: the interaction between the motor cortex and the cerebellum. Cerebellum. 2005;4:90–6.PubMedCrossRef Luft AR, Manto MU, Taib NOB. Modulation of motor cortex excitability by sustained peripheral stimulation: the interaction between the motor cortex and the cerebellum. Cerebellum. 2005;4:90–6.PubMedCrossRef
192.
Zurück zum Zitat Oulad Ben Taib N, Manto M, Laute MA, Brotchi J. The cerebellum modulates rodent cortical motor output after repetitive somatosensory stimulation. Neurosurgery. 2005;56:811–20.PubMedCrossRef Oulad Ben Taib N, Manto M, Laute MA, Brotchi J. The cerebellum modulates rodent cortical motor output after repetitive somatosensory stimulation. Neurosurgery. 2005;56:811–20.PubMedCrossRef
193.
Zurück zum Zitat Oulad Ben Taib N, Manto M, Massimo P, Brotchi J. Hemicerebellectomy blocks the enhancement of cortical motor output associated with repetitive somatosensory stimulation in the rat. J Physiol. 2005;567:293–300.CrossRef Oulad Ben Taib N, Manto M, Massimo P, Brotchi J. Hemicerebellectomy blocks the enhancement of cortical motor output associated with repetitive somatosensory stimulation in the rat. J Physiol. 2005;567:293–300.CrossRef
194.
Zurück zum Zitat Hanajima R, Wang R, Nakatani-Enomoto S, Hamada M, Terao Y, Furubayashi T, et al. Comparison of different methods for estimating motor threshold with transcranial magnetic stimulation. Clin Neurophysiol. 2007;118:2120–2.PubMedCrossRef Hanajima R, Wang R, Nakatani-Enomoto S, Hamada M, Terao Y, Furubayashi T, et al. Comparison of different methods for estimating motor threshold with transcranial magnetic stimulation. Clin Neurophysiol. 2007;118:2120–2.PubMedCrossRef
195.
Zurück zum Zitat Lee H, Gunraj C, Chen R. The effects of inhibitory and facilitatory intracortical circuits on interhemispheric inhibition in the human motor cortex. J Physiol. 2007;580.3:1021–32.CrossRef Lee H, Gunraj C, Chen R. The effects of inhibitory and facilitatory intracortical circuits on interhemispheric inhibition in the human motor cortex. J Physiol. 2007;580.3:1021–32.CrossRef
196.
Zurück zum Zitat Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticortical inhibition in human motor cortex. J Physiol (Lond). 1993;471:501–19. Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, et al. Corticortical inhibition in human motor cortex. J Physiol (Lond). 1993;471:501–19.
197.
Zurück zum Zitat Benardo LS. Recruitment of GABAergic inhibition and synchronization of inhibitory interneurons in rat neocortex. J Neurophysiol. 1997;22:3134–44. Benardo LS. Recruitment of GABAergic inhibition and synchronization of inhibitory interneurons in rat neocortex. J Neurophysiol. 1997;22:3134–44.
198.
Zurück zum Zitat Liepert J, Kucinski T, Tüscher O, Pawlas F, Bäumer T, Weiller C. Motor cortex excitability after cerebellar infarction. Stroke. 2004;35:2484–8.PubMedCrossRef Liepert J, Kucinski T, Tüscher O, Pawlas F, Bäumer T, Weiller C. Motor cortex excitability after cerebellar infarction. Stroke. 2004;35:2484–8.PubMedCrossRef
199.
Zurück zum Zitat Da Guarda SNF, Cohen LG, Pinho MC, Yamamoto FI, Marchiori PE, Scaff M, Conforto AB. Interhemispheric asymmetry of corticomotor excitability after chronic cerebellar infarcts. Cerebellum. 2010;9:398–404.CrossRef Da Guarda SNF, Cohen LG, Pinho MC, Yamamoto FI, Marchiori PE, Scaff M, Conforto AB. Interhemispheric asymmetry of corticomotor excitability after chronic cerebellar infarcts. Cerebellum. 2010;9:398–404.CrossRef
200.
Zurück zum Zitat Schwenkreis P, Tegenthoff M, Witscher K, Börnke C, Przuntek H, Malin JP, et al. Motor cortex activation by transcranial magnetic stimulation in ataxia patients depends on the genetic defect. Brain. 2002;125(2):301–9.PubMedCrossRef Schwenkreis P, Tegenthoff M, Witscher K, Börnke C, Przuntek H, Malin JP, et al. Motor cortex activation by transcranial magnetic stimulation in ataxia patients depends on the genetic defect. Brain. 2002;125(2):301–9.PubMedCrossRef
201.
Zurück zum Zitat Tamburin S, Fiaschi A, Marani S, Andreoli A, Manganotti P, Zanette G. Enhanced intracortical inhibition in cerebellar patients. J Neurol Sci. 2004;217(2):205–10.PubMedCrossRef Tamburin S, Fiaschi A, Marani S, Andreoli A, Manganotti P, Zanette G. Enhanced intracortical inhibition in cerebellar patients. J Neurol Sci. 2004;217(2):205–10.PubMedCrossRef
202.
Zurück zum Zitat Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.PubMedCrossRef Schöls L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–304.PubMedCrossRef
203.
Zurück zum Zitat Iwata NK, Ugawa Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: a review. Cerebellum. 2005;4:218–23.PubMedCrossRef Iwata NK, Ugawa Y. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: a review. Cerebellum. 2005;4:218–23.PubMedCrossRef
204.
Zurück zum Zitat Clarac F. Some historical reflections on the neural control of locomotion. Brain Res Rev. 2008;57(1):13–21.PubMedCrossRef Clarac F. Some historical reflections on the neural control of locomotion. Brain Res Rev. 2008;57(1):13–21.PubMedCrossRef
205.
Zurück zum Zitat Apps R, Garwicz M. Anatomical and physiological foundations for cerebellar information processing. Nat Rev Neurosci. 2005;6(4):297–311.PubMedCrossRef Apps R, Garwicz M. Anatomical and physiological foundations for cerebellar information processing. Nat Rev Neurosci. 2005;6(4):297–311.PubMedCrossRef
206.
Zurück zum Zitat Jueptner M, Weiller C. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain. 2010;121(8):1437–49.CrossRef Jueptner M, Weiller C. A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain. 2010;121(8):1437–49.CrossRef
207.
Zurück zum Zitat Bower JM, Kassel J. Variability in tactile projection patterns to cerebellar folia crus IIA in the Norway rat. J Comp Neurol. 1990;302:768–78.PubMedCrossRef Bower JM, Kassel J. Variability in tactile projection patterns to cerebellar folia crus IIA in the Norway rat. J Comp Neurol. 1990;302:768–78.PubMedCrossRef
208.
Zurück zum Zitat Santamaria F, Tripp P, Bower JM. Feed-forward inhibition controls the spread of granule cell induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol. 2007;97:248–63.PubMedCrossRef Santamaria F, Tripp P, Bower JM. Feed-forward inhibition controls the spread of granule cell induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol. 2007;97:248–63.PubMedCrossRef
209.
Zurück zum Zitat Bloedel JR, Courville J. Cerebellar afferent systems. In: Brookhart JM, Mountcastle VB, editors. Handbook of physiology, Sect. 1, Vol. II, Pt. 2. Bethesda: American Physiological Society; 1981. p. 735–829. Bloedel JR, Courville J. Cerebellar afferent systems. In: Brookhart JM, Mountcastle VB, editors. Handbook of physiology, Sect. 1, Vol. II, Pt. 2. Bethesda: American Physiological Society; 1981. p. 735–829.
210.
Zurück zum Zitat Keifer J, Houk JC. Motor function of the cerebellorubrospinal system. Physiol Rev. 1994;74(3):509–42.PubMed Keifer J, Houk JC. Motor function of the cerebellorubrospinal system. Physiol Rev. 1994;74(3):509–42.PubMed
211.
Zurück zum Zitat Grillner S. Supraspinal and segmental control of static and dynamic gamma-motoneurons in the cat. Acta Physiol Scand Suppl. 1969;327:1–34.PubMed Grillner S. Supraspinal and segmental control of static and dynamic gamma-motoneurons in the cat. Acta Physiol Scand Suppl. 1969;327:1–34.PubMed
212.
Zurück zum Zitat Flament D, Fortier PA, Fetz EE. Response patterns and postspike effects of peripheral afferents in dorsal-root ganglia of behaving monkeys. J Neurophysiol. 1992;67:875–89.PubMed Flament D, Fortier PA, Fetz EE. Response patterns and postspike effects of peripheral afferents in dorsal-root ganglia of behaving monkeys. J Neurophysiol. 1992;67:875–89.PubMed
213.
Zurück zum Zitat Holmes G. The cerebellum of man. The Hughlings Jackson memorial lecture. Brain. 1939;62:1–30.CrossRef Holmes G. The cerebellum of man. The Hughlings Jackson memorial lecture. Brain. 1939;62:1–30.CrossRef
214.
Zurück zum Zitat Jacobs JV, Horak FB. Cortical control of postural responses. J Neural Transm. 2007;114(10):1339–48.PubMedCrossRef Jacobs JV, Horak FB. Cortical control of postural responses. J Neural Transm. 2007;114(10):1339–48.PubMedCrossRef
215.
216.
Zurück zum Zitat Wessel K, Verleger R, Nazarenus D, Vieregge P, Kompf D. Movement-related cortical potentials preceding sequential and goal-directed finger and arm movements in patients with cerebellar atrophy. Electroencephalogr Clin Neurophysiol. 1994;92:331–41.PubMedCrossRef Wessel K, Verleger R, Nazarenus D, Vieregge P, Kompf D. Movement-related cortical potentials preceding sequential and goal-directed finger and arm movements in patients with cerebellar atrophy. Electroencephalogr Clin Neurophysiol. 1994;92:331–41.PubMedCrossRef
217.
Zurück zum Zitat Applegate LM, Louis ED. Essential tremor: mild olfactory dysfunction in a cerebellar disorder. Parkinsonism Relat Disord. 2005;11(6):399–402.PubMedCrossRef Applegate LM, Louis ED. Essential tremor: mild olfactory dysfunction in a cerebellar disorder. Parkinsonism Relat Disord. 2005;11(6):399–402.PubMedCrossRef
218.
Zurück zum Zitat Lisberger S. Visual guidance of smooth-pursuit eye movements: sensation, action, and what happens in between. Neuron. 2010;66(4):477–91.PubMedCrossRef Lisberger S. Visual guidance of smooth-pursuit eye movements: sensation, action, and what happens in between. Neuron. 2010;66(4):477–91.PubMedCrossRef
219.
Zurück zum Zitat Guerrasio L, Quinet J, Buttner U, Goffart L. Fastigial oculomotor region and the control of foveation during fixation. J Neurophysiol. 2010;103(4):1988–2001.PubMedCrossRef Guerrasio L, Quinet J, Buttner U, Goffart L. Fastigial oculomotor region and the control of foveation during fixation. J Neurophysiol. 2010;103(4):1988–2001.PubMedCrossRef
220.
Zurück zum Zitat Handel B, Their P, Haarmeier T. Visual motion perception deficits due to cerebellar lesions are paralleled by specific changes in cerebro-cortical activity. J Neurosci. 2009;29(48):15126–33.PubMedCrossRef Handel B, Their P, Haarmeier T. Visual motion perception deficits due to cerebellar lesions are paralleled by specific changes in cerebro-cortical activity. J Neurosci. 2009;29(48):15126–33.PubMedCrossRef
221.
Zurück zum Zitat Parsons LM, Petacchi A, Schmahmann JD, Bower JM. Pitch discrimination in cerebellar patients: evidence for a sensory deficit. Brain Res. 2009;1303:84–96.PubMedCrossRef Parsons LM, Petacchi A, Schmahmann JD, Bower JM. Pitch discrimination in cerebellar patients: evidence for a sensory deficit. Brain Res. 2009;1303:84–96.PubMedCrossRef
222.
Zurück zum Zitat Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMedCrossRef Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.PubMedCrossRef
223.
Zurück zum Zitat Vallbo ÅB. Afferent discharge from human muscle spindles in non-contracting muscle. Steady state impulse frequency as function of joint angle. Acta Physiol Scand. 1974;90:303–18.PubMedCrossRef Vallbo ÅB. Afferent discharge from human muscle spindles in non-contracting muscle. Steady state impulse frequency as function of joint angle. Acta Physiol Scand. 1974;90:303–18.PubMedCrossRef
224.
Zurück zum Zitat Johansson RS, Landström U, Lundström R. Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacement. Brain Res. 1982;244:17–25.PubMedCrossRef Johansson RS, Landström U, Lundström R. Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacement. Brain Res. 1982;244:17–25.PubMedCrossRef
225.
Zurück zum Zitat Burke D, Gandevia SC, Macefield G. Responses to passive movement of receptors in joint, skin, and muscle of the human hand. J Physiol. 1988;401:347–61. Burke D, Gandevia SC, Macefield G. Responses to passive movement of receptors in joint, skin, and muscle of the human hand. J Physiol. 1988;401:347–61.
226.
Zurück zum Zitat Edin BB. Finger joint movement sensitivity of non-cutaneous mechanoreceptor afferents in the human radial nerve. Exp Brain Res. 1990;82:417–22.PubMedCrossRef Edin BB. Finger joint movement sensitivity of non-cutaneous mechanoreceptor afferents in the human radial nerve. Exp Brain Res. 1990;82:417–22.PubMedCrossRef
227.
Zurück zum Zitat Edin BB. Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy skin. J Neurophysiol. 1992;67:1105–13.PubMed Edin BB. Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy skin. J Neurophysiol. 1992;67:1105–13.PubMed
228.
Zurück zum Zitat Edin BB, Abbs JH. Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of human hand. J Neurophysiol. 1991;65:657–70.PubMed Edin BB, Abbs JH. Finger movement responses of cutaneous mechanoreceptors in the dorsal skin of human hand. J Neurophysiol. 1991;65:657–70.PubMed
229.
Zurück zum Zitat Edin BB, Johansson N. Skin strain patterns provide kinaesthetic information to the human central nervous system. J Physiol. 1995;487:243–51.PubMed Edin BB, Johansson N. Skin strain patterns provide kinaesthetic information to the human central nervous system. J Physiol. 1995;487:243–51.PubMed
230.
Zurück zum Zitat Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD. Manual motor performance in a deafferented man. Brain. 1982;105:515–42.PubMedCrossRef Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD. Manual motor performance in a deafferented man. Brain. 1982;105:515–42.PubMedCrossRef
231.
Zurück zum Zitat Bard C, Fleury M, Teasdale N, Paillard J, Nougier V. Contribution of proprioception for calibrating and updating the motor space. Can J Physiol Pharmacol. 1995;73:246–54.PubMedCrossRef Bard C, Fleury M, Teasdale N, Paillard J, Nougier V. Contribution of proprioception for calibrating and updating the motor space. Can J Physiol Pharmacol. 1995;73:246–54.PubMedCrossRef
232.
Zurück zum Zitat Ghez C, Sainburg R. Proprioceptive control of interjoint coordination. Can J Physiol Pharmacol. 1995;73:273–84.PubMedCrossRef Ghez C, Sainburg R. Proprioceptive control of interjoint coordination. Can J Physiol Pharmacol. 1995;73:273–84.PubMedCrossRef
233.
Zurück zum Zitat Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal participants and patients without proprioception. J Neurophysiol. 1995;73:820–35.PubMed Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal participants and patients without proprioception. J Neurophysiol. 1995;73:820–35.PubMed
234.
Zurück zum Zitat Berlucchi G, Aglioti S. The body in the brain: neural bases of corporeal awareness. Trends Neurosci. 1997;20:560–4.PubMedCrossRef Berlucchi G, Aglioti S. The body in the brain: neural bases of corporeal awareness. Trends Neurosci. 1997;20:560–4.PubMedCrossRef
235.
Zurück zum Zitat Berti A, Bottini G, Gandola M, Pia L, Smania N, Stracciari A, et al. Shared cortical anatomy for motor awareness and motor control. Science. 2005;309:488–91.PubMedCrossRef Berti A, Bottini G, Gandola M, Pia L, Smania N, Stracciari A, et al. Shared cortical anatomy for motor awareness and motor control. Science. 2005;309:488–91.PubMedCrossRef
236.
Zurück zum Zitat Committeri G, Pitzalis S, Galati G, Patria F, Pelle G, Sabatini U, et al. Neural bases of personal and extrapersonal neglect in humans. Brain. 2007;130:431–41.PubMedCrossRef Committeri G, Pitzalis S, Galati G, Patria F, Pelle G, Sabatini U, et al. Neural bases of personal and extrapersonal neglect in humans. Brain. 2007;130:431–41.PubMedCrossRef
237.
Zurück zum Zitat Graziano MS. Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc Natl Acad Sci USA. 1999;96:10418–21.PubMedCrossRef Graziano MS. Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc Natl Acad Sci USA. 1999;96:10418–21.PubMedCrossRef
238.
Zurück zum Zitat Graziano MSA, Cooke DF, Taylor CSR. Coding the location of the arm by sight. Science. 2000;290:1782–6.PubMedCrossRef Graziano MSA, Cooke DF, Taylor CSR. Coding the location of the arm by sight. Science. 2000;290:1782–6.PubMedCrossRef
239.
Zurück zum Zitat Beppu H, Suda M, Tanaka R. Analysis of cerebellar motor disorders by visually guided elbow tracking movement. Brain. 1984;107:787–809.PubMedCrossRef Beppu H, Suda M, Tanaka R. Analysis of cerebellar motor disorders by visually guided elbow tracking movement. Brain. 1984;107:787–809.PubMedCrossRef
240.
Zurück zum Zitat Liu X, Ingram HA, Palace JA, Miall RC. Dissociation of ‘on-line’ and ‘off-line’ visuomotor control of the arm by focal lesions in the cerebellum and brainstem. Neurosci Lett. 1999;264:121–4.PubMedCrossRef Liu X, Ingram HA, Palace JA, Miall RC. Dissociation of ‘on-line’ and ‘off-line’ visuomotor control of the arm by focal lesions in the cerebellum and brainstem. Neurosci Lett. 1999;264:121–4.PubMedCrossRef
241.
Zurück zum Zitat Ungerleider LG, Desimone R, Galkin TW, Mishkin M. Subcortical projections of area MT in the macaque. J Comp Neurol. 1984;223:368–86.PubMedCrossRef Ungerleider LG, Desimone R, Galkin TW, Mishkin M. Subcortical projections of area MT in the macaque. J Comp Neurol. 1984;223:368–86.PubMedCrossRef
242.
Zurück zum Zitat Schmahmann JD, Pandya DN. Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol. 1991;308:224–48.PubMedCrossRef Schmahmann JD, Pandya DN. Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol. 1991;308:224–48.PubMedCrossRef
243.
Zurück zum Zitat Stein JF, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72:967–1017.PubMed Stein JF, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72:967–1017.PubMed
244.
Zurück zum Zitat Glickstein M. How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci. 2000;23:613–7.PubMedCrossRef Glickstein M. How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci. 2000;23:613–7.PubMedCrossRef
245.
Zurück zum Zitat Murphy JT, MacKay WA, Johnson F. Responses of cerebellar cortical neurons to dynamic proprioceptive inputs from forelimb muscles. J Neurophysiol. 1973;36:711–23.PubMed Murphy JT, MacKay WA, Johnson F. Responses of cerebellar cortical neurons to dynamic proprioceptive inputs from forelimb muscles. J Neurophysiol. 1973;36:711–23.PubMed
246.
Zurück zum Zitat Bauswein E, Kolb FP, Leimbeck B, Rubia FJ. Simple and complex spike activity of cerebellar Purkinje cells during active and passive movements in the awake monkey. J Physiol. 1983;339:379–94.PubMed Bauswein E, Kolb FP, Leimbeck B, Rubia FJ. Simple and complex spike activity of cerebellar Purkinje cells during active and passive movements in the awake monkey. J Physiol. 1983;339:379–94.PubMed
247.
Zurück zum Zitat van Kan PLE, Gibson AR, Houk JC. Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol. 1993;69:74–94.PubMed van Kan PLE, Gibson AR, Houk JC. Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol. 1993;69:74–94.PubMed
248.
Zurück zum Zitat Parsons LM, Bower JM, Gao JH, Xiong J, Li J, Fox PT. Lateral cerebellar hemispheres actively support sensory acquisition and discrimination rather than motor control. Learn Mem. 1997;4:49–62.PubMedCrossRef Parsons LM, Bower JM, Gao JH, Xiong J, Li J, Fox PT. Lateral cerebellar hemispheres actively support sensory acquisition and discrimination rather than motor control. Learn Mem. 1997;4:49–62.PubMedCrossRef
249.
Zurück zum Zitat Miall RC, Reckess GZ. The cerebellum and the timing of coordinated eye and hand tracking. Brain Cogn. 2002;48:212–26.PubMedCrossRef Miall RC, Reckess GZ. The cerebellum and the timing of coordinated eye and hand tracking. Brain Cogn. 2002;48:212–26.PubMedCrossRef
250.
Zurück zum Zitat Hagura N, Oouchida Y, Aramaki Y, Okada T, Matsumura M, Sadato N, et al. Visuokinesthetic perception of hand movement is mediated by cerebro-cerebellar interaction between the left cerebellum and right parietal cortex. Cereb Cortex. 2009;19:176–86.PubMedCrossRef Hagura N, Oouchida Y, Aramaki Y, Okada T, Matsumura M, Sadato N, et al. Visuokinesthetic perception of hand movement is mediated by cerebro-cerebellar interaction between the left cerebellum and right parietal cortex. Cereb Cortex. 2009;19:176–86.PubMedCrossRef
251.
Zurück zum Zitat Naito E, Roland PE, Grefkes C, Choi HJ, Eickhoff S, Geyer S, et al. Dominance of the right hemisphere and role of area 2 in human kinesthesia. J Neurophysiol. 2005;93:1020–34.PubMedCrossRef Naito E, Roland PE, Grefkes C, Choi HJ, Eickhoff S, Geyer S, et al. Dominance of the right hemisphere and role of area 2 in human kinesthesia. J Neurophysiol. 2005;93:1020–34.PubMedCrossRef
252.
Zurück zum Zitat Sasaki K, Oka H, Kawaguchi S, Jinnai K, Yasuda T. Mossy fibre and climbing fibre responses produced in the cerebeller cortex by stimulation of the cerebral cortex in monkeys. Exp Brain Res. 1977;29:419–28.PubMedCrossRef Sasaki K, Oka H, Kawaguchi S, Jinnai K, Yasuda T. Mossy fibre and climbing fibre responses produced in the cerebeller cortex by stimulation of the cerebral cortex in monkeys. Exp Brain Res. 1977;29:419–28.PubMedCrossRef
253.
Zurück zum Zitat Middleton FA, Strick PL. Cerebellar output: motor and cognitive channels. Trends Cogn Sci. 1998;2:348–54.PubMedCrossRef Middleton FA, Strick PL. Cerebellar output: motor and cognitive channels. Trends Cogn Sci. 1998;2:348–54.PubMedCrossRef
254.
Zurück zum Zitat Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001;21:6283–91.PubMed Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001;21:6283–91.PubMed
255.
Zurück zum Zitat Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.PubMedCrossRef Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.PubMedCrossRef
256.
Zurück zum Zitat Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.PubMedCrossRef Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.PubMedCrossRef
257.
Zurück zum Zitat Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.PubMedCrossRef Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.PubMedCrossRef
258.
Zurück zum Zitat O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2009;20:953–96.PubMedCrossRef O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2009;20:953–96.PubMedCrossRef
259.
Zurück zum Zitat Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.PubMedCrossRef Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.PubMedCrossRef
260.
Zurück zum Zitat Rijntjes A, Büchel C, Kiebel S, Weiller C. Multiple somatotopic representations in the human cerebellum. Neuroreport. 1999;10:3653–8.PubMedCrossRef Rijntjes A, Büchel C, Kiebel S, Weiller C. Multiple somatotopic representations in the human cerebellum. Neuroreport. 1999;10:3653–8.PubMedCrossRef
261.
Zurück zum Zitat Blouin JS, Bard C, Paillard J. Contribution of the cerebellum to self-initiated synchronized movements: a PET study. Exp Brain Res. 2003;115:63–8. Blouin JS, Bard C, Paillard J. Contribution of the cerebellum to self-initiated synchronized movements: a PET study. Exp Brain Res. 2003;115:63–8.
262.
Zurück zum Zitat Gowen E, Miall RC. Differentiation between external and internal cuing: a fMRI study comparing tracing and drawing. Neuroimage. 2007;36:396–410.PubMedCrossRef Gowen E, Miall RC. Differentiation between external and internal cuing: a fMRI study comparing tracing and drawing. Neuroimage. 2007;36:396–410.PubMedCrossRef
263.
Zurück zum Zitat Imamizu H, Kuroda T, Yoshioka T, Kawato M. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci. 2004;24:1173–81.PubMedCrossRef Imamizu H, Kuroda T, Yoshioka T, Kawato M. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci. 2004;24:1173–81.PubMedCrossRef
264.
Zurück zum Zitat Schlerf JE, Verstynen TD, Ivry RB, Spencer RM. Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol. 2010;103:3330–6.PubMedCrossRef Schlerf JE, Verstynen TD, Ivry RB, Spencer RM. Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol. 2010;103:3330–6.PubMedCrossRef
265.
Zurück zum Zitat Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a metaanalysis of neuroimaging studies. Neuroimage. 2008;44:489–501.PubMedCrossRef Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a metaanalysis of neuroimaging studies. Neuroimage. 2008;44:489–501.PubMedCrossRef
266.
Zurück zum Zitat Tracy JL, Faro SS, Mohammed FB, Pinus AB, Madi SM, Laskas JW. Cerebellar mediation of the complexity of bimanual compared to unimanual movements. Neurology. 2001;57:1862–9.PubMedCrossRef Tracy JL, Faro SS, Mohammed FB, Pinus AB, Madi SM, Laskas JW. Cerebellar mediation of the complexity of bimanual compared to unimanual movements. Neurology. 2001;57:1862–9.PubMedCrossRef
267.
Zurück zum Zitat Ramnami N, Toni I, Passingham RE, Haggard P. The cerebellum and parietal cortex play a specific role in coordination: a PET study. Neuroimage. 2001;14:899–911.CrossRef Ramnami N, Toni I, Passingham RE, Haggard P. The cerebellum and parietal cortex play a specific role in coordination: a PET study. Neuroimage. 2001;14:899–911.CrossRef
268.
Zurück zum Zitat Thickbroom GW, Byrnes ML, Mastaglia FL. Dual representation of the hand in the cerebellum: activation with voluntary and passive finger movement. Neuroimage. 2003;18:670–4.PubMedCrossRef Thickbroom GW, Byrnes ML, Mastaglia FL. Dual representation of the hand in the cerebellum: activation with voluntary and passive finger movement. Neuroimage. 2003;18:670–4.PubMedCrossRef
269.
Zurück zum Zitat Habas C, Axelrad CAH, Nguyen TH, Cabanis EA. Specific neocerebellar activation during out-of-phase bimanual movements. Neuroreport. 2004;15:595–9.PubMedCrossRef Habas C, Axelrad CAH, Nguyen TH, Cabanis EA. Specific neocerebellar activation during out-of-phase bimanual movements. Neuroreport. 2004;15:595–9.PubMedCrossRef
270.
Zurück zum Zitat Küper M, Dimitrova A, Thürling M, Maderwald S, Roths J, Elles HG, Gizewski ER, Ladd ME, Diedrichsen J, Timmann D. Evidence for a motor and a non-motor domain in the human dentate nucleus—an fMRI study. Neuroimage. 2011;54:2612–22.PubMedCrossRef Küper M, Dimitrova A, Thürling M, Maderwald S, Roths J, Elles HG, Gizewski ER, Ladd ME, Diedrichsen J, Timmann D. Evidence for a motor and a non-motor domain in the human dentate nucleus—an fMRI study. Neuroimage. 2011;54:2612–22.PubMedCrossRef
271.
Zurück zum Zitat Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2009;9:22–8.PubMedCrossRef Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2009;9:22–8.PubMedCrossRef
272.
Zurück zum Zitat Chan RCK, Huang J, Din X. Dexterous movement complexity and cerebellar activation: a metaanalysis. Brain Res Rev. 2009;59:316–23.PubMedCrossRef Chan RCK, Huang J, Din X. Dexterous movement complexity and cerebellar activation: a metaanalysis. Brain Res Rev. 2009;59:316–23.PubMedCrossRef
273.
Zurück zum Zitat Witt ST, Meyerand ME, Laird AR. Functional neuroimaging correlates of finger tapping task variations: an ALE meta-analysis. Neuroimage. 2008;42(1):343–56.PubMedCrossRef Witt ST, Meyerand ME, Laird AR. Functional neuroimaging correlates of finger tapping task variations: an ALE meta-analysis. Neuroimage. 2008;42(1):343–56.PubMedCrossRef
274.
Zurück zum Zitat Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage. 2004;21:1416–27.PubMedCrossRef Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage. 2004;21:1416–27.PubMedCrossRef
275.
Zurück zum Zitat Jäncke L, Specht K, Mirzazade S, Peters M. The effect of finger-movement speed of the dominant and subdominant hand on cerebellar activation: a functional magnetic resonance imaging study. Neuroimage. 1999;9:497–507.PubMedCrossRef Jäncke L, Specht K, Mirzazade S, Peters M. The effect of finger-movement speed of the dominant and subdominant hand on cerebellar activation: a functional magnetic resonance imaging study. Neuroimage. 1999;9:497–507.PubMedCrossRef
276.
Zurück zum Zitat Lehéricy S, Benali H, Van de Moortele PF, Pélégrini-Issac M, Waechter T, Ugurbil K, Doyon J. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci USA. 2005;102(35):12566–71.PubMedCrossRef Lehéricy S, Benali H, Van de Moortele PF, Pélégrini-Issac M, Waechter T, Ugurbil K, Doyon J. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci USA. 2005;102(35):12566–71.PubMedCrossRef
277.
Zurück zum Zitat Meister IG, Foltys H, Gallea C, Hallett M. How the brain handles temporally uncoupled bimanual movements. Cereb Cortex. 2011;20(12):2996–3004.CrossRef Meister IG, Foltys H, Gallea C, Hallett M. How the brain handles temporally uncoupled bimanual movements. Cereb Cortex. 2011;20(12):2996–3004.CrossRef
278.
Zurück zum Zitat Spencer RMC, Verstynen T, Brett M, Ivry R. Cerebellar activation during discrete and not continuous timed movements: an fMRI study. Neuroimage. 2007;36:378–87.PubMedCrossRef Spencer RMC, Verstynen T, Brett M, Ivry R. Cerebellar activation during discrete and not continuous timed movements: an fMRI study. Neuroimage. 2007;36:378–87.PubMedCrossRef
279.
Zurück zum Zitat Tanaka Y, Fujimara N, Tsuji T, Maruishi M, Muranaka H, Kasai T. Functional interactions between the cerebellum and the premotor cortex for error correction during the slow rate force production task: an fMRI study. Exp Brain Res. 2009;193(1):143–50.PubMedCrossRef Tanaka Y, Fujimara N, Tsuji T, Maruishi M, Muranaka H, Kasai T. Functional interactions between the cerebellum and the premotor cortex for error correction during the slow rate force production task: an fMRI study. Exp Brain Res. 2009;193(1):143–50.PubMedCrossRef
281.
Zurück zum Zitat Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE. Motor sequence learning: a study with positron emission tomography. J Neurosci. 1994;14:3775–90.PubMed Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE. Motor sequence learning: a study with positron emission tomography. J Neurosci. 1994;14:3775–90.PubMed
282.
Zurück zum Zitat Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Underleider LG. Experience dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci USA. 2002;99:1017–22.PubMedCrossRef Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Underleider LG. Experience dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci USA. 2002;99:1017–22.PubMedCrossRef
283.
Zurück zum Zitat Floyer-Lea A, Matthews PM. Distinguishable brain activation networks for short- and long-term motor skill learning. J Neurophysiol. 2005;94:512–8.PubMedCrossRef Floyer-Lea A, Matthews PM. Distinguishable brain activation networks for short- and long-term motor skill learning. J Neurophysiol. 2005;94:512–8.PubMedCrossRef
284.
Zurück zum Zitat Okada Y, Lauritzen M, Nicholson C. MEG source models and physiology. Phys Med Biol. 1987;32(1):43–51.PubMedCrossRef Okada Y, Lauritzen M, Nicholson C. MEG source models and physiology. Phys Med Biol. 1987;32(1):43–51.PubMedCrossRef
285.
Zurück zum Zitat Tesche CD, Karhu J. Somatosensory evoked magnetic fields arising from sources in the human cerebellum. Brain Res. 1997;744(1):23–31.PubMedCrossRef Tesche CD, Karhu J. Somatosensory evoked magnetic fields arising from sources in the human cerebellum. Brain Res. 1997;744(1):23–31.PubMedCrossRef
286.
Zurück zum Zitat Ivry R. Exploring the role of the cerebellum in sensory anticipation and timing: commentary on Tesche and Karhu. Hum Brain Mapp. 2000;9(3):115–8.PubMedCrossRef Ivry R. Exploring the role of the cerebellum in sensory anticipation and timing: commentary on Tesche and Karhu. Hum Brain Mapp. 2000;9(3):115–8.PubMedCrossRef
287.
Zurück zum Zitat Baker SN. Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol. 2007;17(6):649–55.PubMedCrossRef Baker SN. Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol. 2007;17(6):649–55.PubMedCrossRef
288.
Zurück zum Zitat Engel AK, Fries P. Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol. 2010;20(2):156–65.PubMedCrossRef Engel AK, Fries P. Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol. 2010;20(2):156–65.PubMedCrossRef
289.
Zurück zum Zitat Wilson TW, Slason E, Hernandez OO, Asherin R, Reite ML, Teale PD, Rojas DC. Aberrant high-frequency desynchronization of cerebellar cortices in early-onset psychosis. Psychiatry Res. 2009;174(1):47–56.PubMedCrossRef Wilson TW, Slason E, Hernandez OO, Asherin R, Reite ML, Teale PD, Rojas DC. Aberrant high-frequency desynchronization of cerebellar cortices in early-onset psychosis. Psychiatry Res. 2009;174(1):47–56.PubMedCrossRef
290.
Zurück zum Zitat Hari R, Salmelin R. Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci. 1997;20(1):44–9.PubMedCrossRef Hari R, Salmelin R. Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci. 1997;20(1):44–9.PubMedCrossRef
291.
Zurück zum Zitat Jurkiewicz MT, Gaetz WC, Bostan AC, Cheyne D. Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings. Neuroimage. 2006;32(3):1281–9.PubMedCrossRef Jurkiewicz MT, Gaetz WC, Bostan AC, Cheyne D. Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings. Neuroimage. 2006;32(3):1281–9.PubMedCrossRef
292.
Zurück zum Zitat Gross J, Timmermann L, Kujala J, Dirks M, Schmitz F, Salmelin R, Schnitzler A. The neural basis of intermittent motor control in humans. Proc Natl Acad Sci USA. 2002;99(4):2299–302.PubMedCrossRef Gross J, Timmermann L, Kujala J, Dirks M, Schmitz F, Salmelin R, Schnitzler A. The neural basis of intermittent motor control in humans. Proc Natl Acad Sci USA. 2002;99(4):2299–302.PubMedCrossRef
293.
Zurück zum Zitat Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ, Schnitzler A. The cerebral oscillatory network of parkinsonian resting tremor. Brain. 2003;126(Pt 1):199–212.PubMed Timmermann L, Gross J, Dirks M, Volkmann J, Freund HJ, Schnitzler A. The cerebral oscillatory network of parkinsonian resting tremor. Brain. 2003;126(Pt 1):199–212.PubMed
294.
Zurück zum Zitat Timmermann L, Gross J, Butz M, Kircheis G, Haussinger D, Schnitzler A. Pathological oscillatory coupling within the human motor system in different tremor syndromes as revealed by magnetoencephalography. Neurol Clin Neurophysiol. 2004;2004:26.PubMed Timmermann L, Gross J, Butz M, Kircheis G, Haussinger D, Schnitzler A. Pathological oscillatory coupling within the human motor system in different tremor syndromes as revealed by magnetoencephalography. Neurol Clin Neurophysiol. 2004;2004:26.PubMed
295.
Zurück zum Zitat Schnitzler A, Timmermann L, Gross J. Physiological and pathological oscillatory networks in the human motor system. J Physiol Paris. 2006;99(1):3–7.PubMedCrossRef Schnitzler A, Timmermann L, Gross J. Physiological and pathological oscillatory networks in the human motor system. J Physiol Paris. 2006;99(1):3–7.PubMedCrossRef
296.
Zurück zum Zitat Pollok B, Butz M, Gross J, Schnitzler A. Intercerebellar coupling contributes to bimanual coordination. J Cogn Neurosci. 2007;19(4):704–19.PubMedCrossRef Pollok B, Butz M, Gross J, Schnitzler A. Intercerebellar coupling contributes to bimanual coordination. J Cogn Neurosci. 2007;19(4):704–19.PubMedCrossRef
297.
Zurück zum Zitat Wilson TW, Slason E, Asherin R, Kronberg E, Reite ML, Teale PD, Rojas DC. An extended motor network generates beta and gamma oscillatory perturbations during development. Brain Cogn. 2010;73(2):75–84.PubMedCrossRef Wilson TW, Slason E, Asherin R, Kronberg E, Reite ML, Teale PD, Rojas DC. An extended motor network generates beta and gamma oscillatory perturbations during development. Brain Cogn. 2010;73(2):75–84.PubMedCrossRef
298.
Zurück zum Zitat Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.PubMedCrossRef Schmahmann JD. An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.PubMedCrossRef
299.
Zurück zum Zitat Andreasen NC, O'Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, Watkins GL, Hichwa RD. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci USA. 1996;93(18):9985–90.PubMedCrossRef Andreasen NC, O'Leary DS, Cizadlo T, Arndt S, Rezai K, Ponto LL, Watkins GL, Hichwa RD. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci USA. 1996;93(18):9985–90.PubMedCrossRef
300.
Zurück zum Zitat Perez Velazquez JL, Barcelo F, Hung Y, Leshchenko Y, Nenadovic V, Belkas J, Raghavan V, Brian J, Garcia Dominguez L. Decreased brain coordinated activity in autism spectrum disorders during executive tasks: reduced long-range synchronization in the frontoparietal networks. Int J Psychophysiol. 2009;73(3):341–9.PubMedCrossRef Perez Velazquez JL, Barcelo F, Hung Y, Leshchenko Y, Nenadovic V, Belkas J, Raghavan V, Brian J, Garcia Dominguez L. Decreased brain coordinated activity in autism spectrum disorders during executive tasks: reduced long-range synchronization in the frontoparietal networks. Int J Psychophysiol. 2009;73(3):341–9.PubMedCrossRef
301.
Zurück zum Zitat Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, Seidman LJ, Schmahmann JD, Pascual-Leone A. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124(1–3):91–100.PubMedCrossRef Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, Seidman LJ, Schmahmann JD, Pascual-Leone A. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res. 2010;124(1–3):91–100.PubMedCrossRef
302.
Zurück zum Zitat Martin T, Houck JM, Bish JP, Kiciæ D, Woodruff CC, Moses SN, Lee DC, Tesche CD. MEG reveals different contributions of somatomotor cortex and cerebellum to simple reaction time after temporally structured cues. Hum Brain Mapp. 2006;27(7):552–61.PubMedCrossRef Martin T, Houck JM, Bish JP, Kiciæ D, Woodruff CC, Moses SN, Lee DC, Tesche CD. MEG reveals different contributions of somatomotor cortex and cerebellum to simple reaction time after temporally structured cues. Hum Brain Mapp. 2006;27(7):552–61.PubMedCrossRef
303.
Zurück zum Zitat Krause V, Schnitzler A, Pollok B. Functional network interactions during sensorimotor synchronization in musicians and non-musicians. Neuroimage. 2010;52(1):245–51.PubMedCrossRef Krause V, Schnitzler A, Pollok B. Functional network interactions during sensorimotor synchronization in musicians and non-musicians. Neuroimage. 2010;52(1):245–51.PubMedCrossRef
304.
Zurück zum Zitat Guggisberg AG, Dalal SS, Findlay AM, Nagarajan SS. High-frequency oscillations in distributed neural networks reveal the dynamics of human decision making. Front Hum Neurosci. 2007;1:14.PubMed Guggisberg AG, Dalal SS, Findlay AM, Nagarajan SS. High-frequency oscillations in distributed neural networks reveal the dynamics of human decision making. Front Hum Neurosci. 2007;1:14.PubMed
305.
Zurück zum Zitat Kessler K, Biermann-Ruben K, Jonas M, Siebner HR, Bäumer T, Münchau A, Schnitzler A. Investigating the human mirror neuron system by means of cortical synchronization during the imitation of biological movements. Neuroimage. 2006;33(1):227–38.PubMedCrossRef Kessler K, Biermann-Ruben K, Jonas M, Siebner HR, Bäumer T, Münchau A, Schnitzler A. Investigating the human mirror neuron system by means of cortical synchronization during the imitation of biological movements. Neuroimage. 2006;33(1):227–38.PubMedCrossRef
306.
Zurück zum Zitat Dalal SS, Guggisberg AG, Edwards E, Sekihara K, Findlay AM, Canolty RT, Berger MS, Knight RT, Barbaro NM, Kirsch HE, Nagarajan SS. Five-dimensional neuroimaging: localization of the time-frequency dynamics of cortical activity. Neuroimage. 2008;40(4):1686–700.PubMedCrossRef Dalal SS, Guggisberg AG, Edwards E, Sekihara K, Findlay AM, Canolty RT, Berger MS, Knight RT, Barbaro NM, Kirsch HE, Nagarajan SS. Five-dimensional neuroimaging: localization of the time-frequency dynamics of cortical activity. Neuroimage. 2008;40(4):1686–700.PubMedCrossRef
307.
Zurück zum Zitat Kotini A, Mavraki E, Anninos P, Piperidou H, Prassopoulos P. Magnetoencephalographic findings in two cases of juvenile myoclonus epilepsy. Brain Topogr. 2010;23(1):41–5.PubMedCrossRef Kotini A, Mavraki E, Anninos P, Piperidou H, Prassopoulos P. Magnetoencephalographic findings in two cases of juvenile myoclonus epilepsy. Brain Topogr. 2010;23(1):41–5.PubMedCrossRef
308.
Zurück zum Zitat Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMedCrossRef Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMedCrossRef
Metadaten
Titel
Consensus Paper: Roles of the Cerebellum in Motor Control—The Diversity of Ideas on Cerebellar Involvement in Movement
verfasst von
Mario Manto
James M. Bower
Adriana Bastos Conforto
José M. Delgado-García
Suzete Nascimento Farias da Guarda
Marcus Gerwig
Christophe Habas
Nobuhiro Hagura
Richard B. Ivry
Peter Mariën
Marco Molinari
Eiichi Naito
Dennis A. Nowak
Nordeyn Oulad Ben Taib
Denis Pelisson
Claudia D. Tesche
Caroline Tilikete
Dagmar Timmann
Publikationsdatum
01.06.2012
Verlag
Springer-Verlag
Erschienen in
The Cerebellum / Ausgabe 2/2012
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-011-0331-9

Weitere Artikel der Ausgabe 2/2012

The Cerebellum 2/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.