Skip to main content
Erschienen in: Nuclear Medicine and Molecular Imaging 1/2019

15.01.2019 | Review

Radiomics in Oncological PET/CT: a Methodological Overview

verfasst von: Seunggyun Ha, Hongyoon Choi, Jin Chul Paeng, Gi Jeong Cheon

Erschienen in: Nuclear Medicine and Molecular Imaging | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Radiomics is a medical imaging analysis approach based on computer-vision. Metabolic radiomics in particular analyses the spatial distribution patterns of molecular metabolism on PET images. Measuring intratumoral heterogeneity via image is one of the main targets of radiomics research, and it aims to build a image-based model for better patient management. The workflow of radiomics using texture analysis follows these steps: 1) imaging (image acquisition and reconstruction); 2) preprocessing (segmentation & quantization); 3) quantification (texture matrix design & texture feature extraction); and 4) analysis (statistics and/or machine learning). The parameters or conditions at each of these steps are effect on the results. In statistical testing or modeling, problems such as multiple comparisons, dependence on other variables, and high dimensionality of small sample size data should be considered. Standardization of methodology and harmonization of image quality are one of the most important challenges with radiomics methodology. Even though there are current issues in radiomics methodology, it is expected that radiomics will be clinically useful in personalized medicine for oncology.
Literatur
1.
Zurück zum Zitat Shackney SE, Shankey TV. Genetic and phenotypic heterogeneity of human malignancies: finding order in chaos. Cytometry Part A. 1995;21(1):2–5.CrossRef Shackney SE, Shankey TV. Genetic and phenotypic heterogeneity of human malignancies: finding order in chaos. Cytometry Part A. 1995;21(1):2–5.CrossRef
2.
Zurück zum Zitat Gerlinger M, Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer. 2010;103(8):1139.CrossRefPubMedPubMedCentral Gerlinger M, Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer. 2010;103(8):1139.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.CrossRefPubMedPubMedCentral Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Kim L, Tsao MS. Tumour tissue sampling for lung cancer management in the era of personalised therapy: what is good enough for molecular testing? Eur Respir J. 2014;44:erj01970–2013.CrossRef Kim L, Tsao MS. Tumour tissue sampling for lung cancer management in the era of personalised therapy: what is good enough for molecular testing? Eur Respir J. 2014;44:erj01970–2013.CrossRef
6.
Zurück zum Zitat Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49(3):480–508.CrossRefPubMed Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49(3):480–508.CrossRefPubMed
9.
Zurück zum Zitat Arimoto MK, Nakamoto Y, Higashi T, Ishimori T, Ishibashi M, Togashi K. Intra- and inter-observer agreement in the visual interpretation of interim 18F-FDG PET/CT in malignant lymphoma: influence of clinical information. Acta Radiol (Stockholm, Sweden : 1987). 2018;59:1218–24. https://doi.org/10.1177/0284185117751279.CrossRef Arimoto MK, Nakamoto Y, Higashi T, Ishimori T, Ishibashi M, Togashi K. Intra- and inter-observer agreement in the visual interpretation of interim 18F-FDG PET/CT in malignant lymphoma: influence of clinical information. Acta Radiol (Stockholm, Sweden : 1987). 2018;59:1218–24. https://​doi.​org/​10.​1177/​0284185117751279​.CrossRef
10.
Zurück zum Zitat Duncan JS, Ayache N. Medical image analysis: Progress over two decades and the challenges ahead. IEEE Trans Pattern Anal Mach Intell. 2000;22(1):85–106.CrossRef Duncan JS, Ayache N. Medical image analysis: Progress over two decades and the challenges ahead. IEEE Trans Pattern Anal Mach Intell. 2000;22(1):85–106.CrossRef
11.
Zurück zum Zitat Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C, et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol. 2008;3(1):6–12.CrossRefPubMed Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C, et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol. 2008;3(1):6–12.CrossRefPubMed
13.
Zurück zum Zitat Sher A, Lacoeuille F, Fosse P, Vervueren L, Cahouet-Vannier A, Dabli D, et al. For avid glucose tumors, the SUV peak is the most reliable parameter for [18 F] FDG-PET/CT quantification, regardless of acquisition time. EJNMMI Res. 2016;6(1):21.CrossRefPubMedPubMedCentral Sher A, Lacoeuille F, Fosse P, Vervueren L, Cahouet-Vannier A, Dabli D, et al. For avid glucose tumors, the SUV peak is the most reliable parameter for [18 F] FDG-PET/CT quantification, regardless of acquisition time. EJNMMI Res. 2016;6(1):21.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Kajáry K, Tokés T, Dank M, Kulka J, Szakáll S Jr, Lengyel Z. Correlation of the value of 18F-FDG uptake, described by SUVmax, SUVavg, metabolic tumour volume and total lesion glycolysis, to clinicopathological prognostic factors and biological subtypes in breast cancer. Nucl Med Commun. 2015;36(1):28–37.CrossRefPubMed Kajáry K, Tokés T, Dank M, Kulka J, Szakáll S Jr, Lengyel Z. Correlation of the value of 18F-FDG uptake, described by SUVmax, SUVavg, metabolic tumour volume and total lesion glycolysis, to clinicopathological prognostic factors and biological subtypes in breast cancer. Nucl Med Commun. 2015;36(1):28–37.CrossRefPubMed
15.
Zurück zum Zitat Costelloe CM, Macapinlac HA, Madewell JE, Fitzgerald NE, Mawlawi OR, Rohren EM, et al. 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med. 2009;50(3):340–7.CrossRefPubMed Costelloe CM, Macapinlac HA, Madewell JE, Fitzgerald NE, Mawlawi OR, Rohren EM, et al. 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med. 2009;50(3):340–7.CrossRefPubMed
17.
Zurück zum Zitat Moon SH, Hyun SH, Choi JY. Prognostic significance of volume-based PET parameters in cancer patients. Korean J Radiol. 2013;14(1):1–12.CrossRefPubMed Moon SH, Hyun SH, Choi JY. Prognostic significance of volume-based PET parameters in cancer patients. Korean J Radiol. 2013;14(1):1–12.CrossRefPubMed
18.
Zurück zum Zitat Haralick RM, Shanmugam K. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;3(6):610–21.CrossRef Haralick RM, Shanmugam K. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;3(6):610–21.CrossRef
19.
Zurück zum Zitat Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2015;278(2):563–77.CrossRefPubMed Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2015;278(2):563–77.CrossRefPubMed
20.
Zurück zum Zitat Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.CrossRefPubMedPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Cid YD, Castelli J, Schaer R, Scher N, Pomoni A, Prior JO, et al. QuantImage: an online tool for high-throughput 3D radiomics feature extraction in PET-CT. Biomedical texture analysis. Amsterdam: Elsevier; 2018. p. 349–77. Cid YD, Castelli J, Schaer R, Scher N, Pomoni A, Prior JO, et al. QuantImage: an online tool for high-throughput 3D radiomics feature extraction in PET-CT. Biomedical texture analysis. Amsterdam: Elsevier; 2018. p. 349–77.
25.
Zurück zum Zitat Folkert MR, Setton J, Apte AP, Grkovski M, Young RJ, Schöder H, et al. Predictive modeling of outcomes following definitive chemoradiotherapy for oropharyngeal cancer based on FDG-PET image characteristics. Phys Med Biol. 2017;62(13):5327.CrossRefPubMedPubMedCentral Folkert MR, Setton J, Apte AP, Grkovski M, Young RJ, Schöder H, et al. Predictive modeling of outcomes following definitive chemoradiotherapy for oropharyngeal cancer based on FDG-PET image characteristics. Phys Med Biol. 2017;62(13):5327.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Kirienko M, Cozzi L, Antunovic L, Lozza L, Fogliata A, Voulaz E, et al. Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery. Eur J Nucl Med Mol Imaging. 2018;45(2):207–17.CrossRefPubMed Kirienko M, Cozzi L, Antunovic L, Lozza L, Fogliata A, Voulaz E, et al. Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery. Eur J Nucl Med Mol Imaging. 2018;45(2):207–17.CrossRefPubMed
42.
Zurück zum Zitat Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys. 1999;44(3):593–7.CrossRefPubMed Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, et al. 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys. 1999;44(3):593–7.CrossRefPubMed
43.
Zurück zum Zitat Fiorino C, Reni M, Bolognesi A, Cattaneo GM, Calandrino R. Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. Radiother Oncol. 1998;47(3):285–92.CrossRefPubMed Fiorino C, Reni M, Bolognesi A, Cattaneo GM, Calandrino R. Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. Radiother Oncol. 1998;47(3):285–92.CrossRefPubMed
48.
Zurück zum Zitat Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005;46(8):1342–8.PubMed Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med. 2005;46(8):1342–8.PubMed
52.
Zurück zum Zitat Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer. 1997;80(12 Suppl):2505–9.CrossRefPubMed Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer. 1997;80(12 Suppl):2505–9.CrossRefPubMed
53.
Zurück zum Zitat Schaefer A, Kremp S, Hellwig D, Rube C, Kirsch CM, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35(11):1989–99. https://doi.org/10.1007/s00259-008-0875-1.CrossRefPubMed Schaefer A, Kremp S, Hellwig D, Rube C, Kirsch CM, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging. 2008;35(11):1989–99. https://​doi.​org/​10.​1007/​s00259-008-0875-1.CrossRefPubMed
60.
Zurück zum Zitat Zhu W, Jiang T Automation segmentation of PET image for brain tumors. Nuclear Science Symposium Conference Record. 2003 IEEE; 2003: IEEE. Zhu W, Jiang T Automation segmentation of PET image for brain tumors. Nuclear Science Symposium Conference Record. 2003 IEEE; 2003: IEEE.
73.
Zurück zum Zitat Orlhac F, Nioche C, Soussan M, Buvat I. Understanding changes in tumor textural indices in PET: a comparison between visual assessment and index values in simulated and patient data. J Nucl Med. 2017;58(3):387–92.CrossRefPubMed Orlhac F, Nioche C, Soussan M, Buvat I. Understanding changes in tumor textural indices in PET: a comparison between visual assessment and index values in simulated and patient data. J Nucl Med. 2017;58(3):387–92.CrossRefPubMed
76.
84.
Zurück zum Zitat Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989;19(5):1264–74.CrossRef Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989;19(5):1264–74.CrossRef
86.
Zurück zum Zitat Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, et al. Texture indexes and gray level size zone matrix application to cell nuclei classification. Pattern Recognition and Information Processing. 2009: 140-145. Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, et al. Texture indexes and gray level size zone matrix application to cell nuclei classification. Pattern Recognition and Information Processing. 2009: 140-145.
90.
Zurück zum Zitat Thibault G. Advanced statistical matrices for texture characterization: application to DNA chromatin and microtubule network classification. 18th IEEE International Conference on Image Processing. 2011. Thibault G. Advanced statistical matrices for texture characterization: application to DNA chromatin and microtubule network classification. 18th IEEE International Conference on Image Processing. 2011.
92.
Zurück zum Zitat van Velden FH, Nissen IA, Jongsma F, Velasquez LM, Hayes W, Lammertsma AA, et al. Test-retest variability of various quantitative measures to characterize tracer uptake and/or tracer uptake heterogeneity in metastasized liver for patients with colorectal carcinoma. Mol Imaging Biol. 2014;16(1):13–8. https://doi.org/10.1007/s11307-013-0660-9.CrossRefPubMed van Velden FH, Nissen IA, Jongsma F, Velasquez LM, Hayes W, Lammertsma AA, et al. Test-retest variability of various quantitative measures to characterize tracer uptake and/or tracer uptake heterogeneity in metastasized liver for patients with colorectal carcinoma. Mol Imaging Biol. 2014;16(1):13–8. https://​doi.​org/​10.​1007/​s11307-013-0660-9.CrossRefPubMed
93.
Zurück zum Zitat Chung HH, Kang SY, Ha S, Kim J-W, Park N-H, Song YS, et al. Prognostic value of preoperative intratumoral FDG uptake heterogeneity in early stage uterine cervical cancer. J Gynecol Oncol. 2015;27(2):e15.CrossRefPubMedCentral Chung HH, Kang SY, Ha S, Kim J-W, Park N-H, Song YS, et al. Prognostic value of preoperative intratumoral FDG uptake heterogeneity in early stage uterine cervical cancer. J Gynecol Oncol. 2015;27(2):e15.CrossRefPubMedCentral
94.
Zurück zum Zitat Park S, Ha S, Lee S-H, Paeng JC, Keam B, Kim TM, et al. Intratumoral heterogeneity characterized by pretreatment PET in non-small cell lung cancer patients predicts progression-free survival on EGFR tyrosine kinase inhibitor. PLoS One. 2018;13(1):e0189766.CrossRefPubMedPubMedCentral Park S, Ha S, Lee S-H, Paeng JC, Keam B, Kim TM, et al. Intratumoral heterogeneity characterized by pretreatment PET in non-small cell lung cancer patients predicts progression-free survival on EGFR tyrosine kinase inhibitor. PLoS One. 2018;13(1):e0189766.CrossRefPubMedPubMedCentral
95.
Zurück zum Zitat Bender R, Lange S. Adjusting for multiple testing—when and how? J Clin Epidemiol. 2001;54(4):343–9.CrossRefPubMed Bender R, Lange S. Adjusting for multiple testing—when and how? J Clin Epidemiol. 2001;54(4):343–9.CrossRefPubMed
96.
Zurück zum Zitat Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979;6:65–70.
97.
Zurück zum Zitat Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
98.
Zurück zum Zitat Alpaydin E. Introduction to machine learning. Cambridge: MIT press; 2009. Alpaydin E. Introduction to machine learning. Cambridge: MIT press; 2009.
99.
Zurück zum Zitat Hastie T, Friedman J, Tibshirani R. Model assessment and selection. In: The elements of statistical learning. Berlin: Springer; 2001. p. 193–224.CrossRef Hastie T, Friedman J, Tibshirani R. Model assessment and selection. In: The elements of statistical learning. Berlin: Springer; 2001. p. 193–224.CrossRef
100.
Zurück zum Zitat Kohavi R, editor. A study of cross-validation and bootstrap for accuracy estimation and model selection. Montreal: Ijcai; 1995. Kohavi R, editor. A study of cross-validation and bootstrap for accuracy estimation and model selection. Montreal: Ijcai; 1995.
101.
Zurück zum Zitat Köppen M The curse of dimensionality. 5th Online World Conference on Soft Computing in Industrial Applications (WSC5). 2000 Köppen M The curse of dimensionality. 5th Online World Conference on Soft Computing in Industrial Applications (WSC5). 2000
102.
Zurück zum Zitat Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25(6):675.CrossRefPubMed Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25(6):675.CrossRefPubMed
103.
Zurück zum Zitat Hall MA Correlation-based feature selection for machine learning. 1999 Hall MA Correlation-based feature selection for machine learning. 1999
104.
Zurück zum Zitat Misaki M, Kim Y, Bandettini PA, Kriegeskorte N. Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. NeuroImage. 2010;53(1):103–18.CrossRefPubMed Misaki M, Kim Y, Bandettini PA, Kriegeskorte N. Comparison of multivariate classifiers and response normalizations for pattern-information fMRI. NeuroImage. 2010;53(1):103–18.CrossRefPubMed
105.
Zurück zum Zitat Van Der Maaten L, Postma E, Van den Herik J. Dimensionality reduction: a comparative. J Mach Learn Res. 2009;10:66–71. Van Der Maaten L, Postma E, Van den Herik J. Dimensionality reduction: a comparative. J Mach Learn Res. 2009;10:66–71.
Metadaten
Titel
Radiomics in Oncological PET/CT: a Methodological Overview
verfasst von
Seunggyun Ha
Hongyoon Choi
Jin Chul Paeng
Gi Jeong Cheon
Publikationsdatum
15.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Nuclear Medicine and Molecular Imaging / Ausgabe 1/2019
Print ISSN: 1869-3474
Elektronische ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-019-00571-4

Weitere Artikel der Ausgabe 1/2019

Nuclear Medicine and Molecular Imaging 1/2019 Zur Ausgabe