Skip to main content
Erschienen in: Current Geriatrics Reports 2/2012

01.06.2012 | Biomarkers in the Classification of Biological Health and Disease Aging (Y Shen, Section Editor)

Spectrin Breakdown Products (SBDPs) as Potential Biomarkers for Neurodegenerative Diseases

verfasst von: Xiao-Xin Yan, Andreas Jeromin

Erschienen in: Current Geriatrics Reports | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

The expected lifespan of the world’s human population grows rapidly thanks to the great advance in modern medicine. While more and more body system diseases become treatable and curable, age-related neurodegenerative diseases remain poorly understood mechanistically, and are desperately in need of preventive and therapeutic interventions. Biomarker development consists of a key part of concerted efforts in combating neurodegenerative diseases. In many chronic neurodegenerative conditions, neuronal damage/death occurs long before the onset of disease symptoms, and abnormal proteolysis may either play an active role or be an accompanying event of neuronal injury. Increased spectrin cleavage yielding elevated spectrin breakdown products (SBDPs) by calcium-sensitive proteases such as calpain and caspases has been established in conditions associated with acute neuronal damage such as traumatic brain injury (TBI). In this article, we review literature regarding spectrin expression and metabolism in the brain, and propose a potential use of SBDPs as biomarkers for neurodegenerative diseases such as Alzheimer’s disease.
Literatur
1.
Zurück zum Zitat Marchesi VT, Steers Jr E. Selective solubilization of a protein component of the red cell membrane. Science. 1968;159:203–4.PubMedCrossRef Marchesi VT, Steers Jr E. Selective solubilization of a protein component of the red cell membrane. Science. 1968;159:203–4.PubMedCrossRef
2.
Zurück zum Zitat Goodman SR, Zagon IS, Whitfield CF, et al. A spectrin-like protein from mouse brain membranes: immunological and structural correlations with erythrocyte spectrin. Cell Motil. 1983;3:635–47.PubMedCrossRef Goodman SR, Zagon IS, Whitfield CF, et al. A spectrin-like protein from mouse brain membranes: immunological and structural correlations with erythrocyte spectrin. Cell Motil. 1983;3:635–47.PubMedCrossRef
3.
Zurück zum Zitat Bennett V, Lambert S. The spectrin skeleton: from red cells to brain. J Clin Invest. 1991;87:1483–9.PubMedCrossRef Bennett V, Lambert S. The spectrin skeleton: from red cells to brain. J Clin Invest. 1991;87:1483–9.PubMedCrossRef
4.
Zurück zum Zitat Baines AJ. Evolution of spectrin function in cytoskeletal and membrane networks. Biochem Soc Trans. 2009;37:796–803.PubMedCrossRef Baines AJ. Evolution of spectrin function in cytoskeletal and membrane networks. Biochem Soc Trans. 2009;37:796–803.PubMedCrossRef
5.
Zurück zum Zitat Ikeda Y, Dick KA, Weatherspoon MR, et al. Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet. 2006;38:184–90.PubMedCrossRef Ikeda Y, Dick KA, Weatherspoon MR, et al. Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet. 2006;38:184–90.PubMedCrossRef
6.
Zurück zum Zitat Lynch G, Baudry M. Brain spectrin, calpain and long-term changes in synaptic efficacy. Brain Res Bull. 1987;18:809–15.PubMedCrossRef Lynch G, Baudry M. Brain spectrin, calpain and long-term changes in synaptic efficacy. Brain Res Bull. 1987;18:809–15.PubMedCrossRef
7.
Zurück zum Zitat Czogalla A, Sikorski AF. Spectrin and calpain: a 'target' and a 'sniper' in the pathology of neuronal cells. Cell Mol Life Sci. 2005;62:1913–24.PubMedCrossRef Czogalla A, Sikorski AF. Spectrin and calpain: a 'target' and a 'sniper' in the pathology of neuronal cells. Cell Mol Life Sci. 2005;62:1913–24.PubMedCrossRef
8.
Zurück zum Zitat Pineda JA, Lewis SB, Valadka AB, et al. Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma. 2007;24:354–66.PubMedCrossRef Pineda JA, Lewis SB, Valadka AB, et al. Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma. 2007;24:354–66.PubMedCrossRef
9.
Zurück zum Zitat Weiss ES, Wang KK, Allen JG, et al. Alpha II-spectrin breakdown products serve as novel markers of brain injury severity in a canine model of hypothermic circulatory arrest. Ann Thorac Surg. 2009;88:543–50.PubMedCrossRef Weiss ES, Wang KK, Allen JG, et al. Alpha II-spectrin breakdown products serve as novel markers of brain injury severity in a canine model of hypothermic circulatory arrest. Ann Thorac Surg. 2009;88:543–50.PubMedCrossRef
10.
Zurück zum Zitat Zhang Z, Larner SF, Liu MC, et al. Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis. 2009;14:1289–98.PubMedCrossRef Zhang Z, Larner SF, Liu MC, et al. Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis. 2009;14:1289–98.PubMedCrossRef
11.
Zurück zum Zitat Mondello S, Robicsek SA, Gabrielli A, et al. αII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma. 2010;27:1203–13.PubMedCrossRef Mondello S, Robicsek SA, Gabrielli A, et al. αII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma. 2010;27:1203–13.PubMedCrossRef
12.
Zurück zum Zitat Peterson C, Vanderklish P, Seubert P, et al. Increased spectrin proteolysis in fibroblasts from aged and Alzheimer donors. Neurosci Lett. 1991;121:239–43.PubMedCrossRef Peterson C, Vanderklish P, Seubert P, et al. Increased spectrin proteolysis in fibroblasts from aged and Alzheimer donors. Neurosci Lett. 1991;121:239–43.PubMedCrossRef
13.
Zurück zum Zitat Masliah E, Iimoto DS, Saitoh T, et al. Increased immunoreactivity of brain spectrin in Alzheimer disease: a marker for synapse loss? Brain Res. 1990;531:36–44.PubMedCrossRef Masliah E, Iimoto DS, Saitoh T, et al. Increased immunoreactivity of brain spectrin in Alzheimer disease: a marker for synapse loss? Brain Res. 1990;531:36–44.PubMedCrossRef
14.
Zurück zum Zitat Mangeat PH. Interaction of biological membranes with the cytoskeletal framework of living cells. Biol Cell. 1988;64:261–81.PubMedCrossRef Mangeat PH. Interaction of biological membranes with the cytoskeletal framework of living cells. Biol Cell. 1988;64:261–81.PubMedCrossRef
15.
Zurück zum Zitat Palek J, Lambert S. Genetics of the red cell membrane skeleton. Semin Hematol. 1990;27:290–332.PubMed Palek J, Lambert S. Genetics of the red cell membrane skeleton. Semin Hematol. 1990;27:290–332.PubMed
16.
Zurück zum Zitat Winkelmann JC, Forget BG. Erythroid and nonerythroid spectrins. Blood. 1993;81:3173–85.PubMed Winkelmann JC, Forget BG. Erythroid and nonerythroid spectrins. Blood. 1993;81:3173–85.PubMed
17.
Zurück zum Zitat Delaunay J. The molecular basis of hereditary red cell membrane disorders. Blood Rev. 2007;21:1–20.PubMedCrossRef Delaunay J. The molecular basis of hereditary red cell membrane disorders. Blood Rev. 2007;21:1–20.PubMedCrossRef
18.
Zurück zum Zitat Gallagher PG. Update on the clinical spectrum and genetics of red blood cell membrane disorders. Curr Hematol Rep. 2004;3:85–91.PubMed Gallagher PG. Update on the clinical spectrum and genetics of red blood cell membrane disorders. Curr Hematol Rep. 2004;3:85–91.PubMed
19.
Zurück zum Zitat Karinch AM, Zimmer WE, Goodman SR. The identification and sequence of the actin-binding domain of human red blood cell beta-spectrin. J Biol Chem. 1990;265:11833–40.PubMed Karinch AM, Zimmer WE, Goodman SR. The identification and sequence of the actin-binding domain of human red blood cell beta-spectrin. J Biol Chem. 1990;265:11833–40.PubMed
20.
Zurück zum Zitat Fowler V, Taylor DL. Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium. J Cell Biol. 1980;85:361–76.PubMedCrossRef Fowler V, Taylor DL. Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium. J Cell Biol. 1980;85:361–76.PubMedCrossRef
21.
Zurück zum Zitat Davis JQ, Bennett V. Brain ankyrin. Purification of a 72,000 Mr spectrin-binding domain. J Biol Chem. 1984;259:1874–81.PubMed Davis JQ, Bennett V. Brain ankyrin. Purification of a 72,000 Mr spectrin-binding domain. J Biol Chem. 1984;259:1874–81.PubMed
22.
Zurück zum Zitat Coleman TR, Harris AS, Mische SM, et al. Beta spectrin bestows protein 4.1 sensitivity on spectrin-actin interactions. J Cell Biol. 1987;104:519–26.PubMedCrossRef Coleman TR, Harris AS, Mische SM, et al. Beta spectrin bestows protein 4.1 sensitivity on spectrin-actin interactions. J Cell Biol. 1987;104:519–26.PubMedCrossRef
23.
Zurück zum Zitat Fowler VM, Bennett V. Erythrocyte membrane tropomyosin. Purification and properties. J Biol Chem. 1984;259:5978–89.PubMed Fowler VM, Bennett V. Erythrocyte membrane tropomyosin. Purification and properties. J Biol Chem. 1984;259:5978–89.PubMed
24.
Zurück zum Zitat Fowler VM. Tropomodulin: a cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J Cell Biol. 1990;111:471–81.PubMedCrossRef Fowler VM. Tropomodulin: a cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J Cell Biol. 1990;111:471–81.PubMedCrossRef
25.
Zurück zum Zitat Gardner K, Bennett V. Modulation of spectrin-actin assembly by erythrocyte adducin. Nature. 1987;328:359–62.PubMedCrossRef Gardner K, Bennett V. Modulation of spectrin-actin assembly by erythrocyte adducin. Nature. 1987;328:359–62.PubMedCrossRef
26.
Zurück zum Zitat Morris CE. Mechanoprotection of the plasma membrane in neurons and other non-erythroid cells by the spectrin-based membrane skeleton. Cell Mol Biol Lett. 2001;6:703–20.PubMed Morris CE. Mechanoprotection of the plasma membrane in neurons and other non-erythroid cells by the spectrin-based membrane skeleton. Cell Mol Biol Lett. 2001;6:703–20.PubMed
27.
Zurück zum Zitat Mastrangelo M, Leuzzi V. Genes of early-onset epileptic encephalopathies: from genotype to phenotype. Pediatr Neurol. 2012;46:24–31.PubMedCrossRef Mastrangelo M, Leuzzi V. Genes of early-onset epileptic encephalopathies: from genotype to phenotype. Pediatr Neurol. 2012;46:24–31.PubMedCrossRef
28.
Zurück zum Zitat Fukushima Y, Byers MG, Watkins PC, et al. Assignment of the gene for beta-spectrin (SPTB) to chromosome 14q23----q24.2 by in situ hybridization. Cytogenet Cell Genet. 1990;53:232–3.PubMedCrossRef Fukushima Y, Byers MG, Watkins PC, et al. Assignment of the gene for beta-spectrin (SPTB) to chromosome 14q23----q24.2 by in situ hybridization. Cytogenet Cell Genet. 1990;53:232–3.PubMedCrossRef
29.
Zurück zum Zitat Dhermy D, Galand C, Bournier O, et al. Hereditary spherocytosis with spectrin deficiency related to null mutations of the beta-spectrin gene. Blood Cells Mol Dis. 1998;24:251–61.PubMedCrossRef Dhermy D, Galand C, Bournier O, et al. Hereditary spherocytosis with spectrin deficiency related to null mutations of the beta-spectrin gene. Blood Cells Mol Dis. 1998;24:251–61.PubMedCrossRef
30.
Zurück zum Zitat Gallagher PG, Petruzzi MJ, Weed SA, et al. Mutation of a highly conserved residue of betaI spectrin associated with fatal and near-fatal neonatal hemolytic anemia. J Clin Invest. 1997;99:267–77.PubMedCrossRef Gallagher PG, Petruzzi MJ, Weed SA, et al. Mutation of a highly conserved residue of betaI spectrin associated with fatal and near-fatal neonatal hemolytic anemia. J Clin Invest. 1997;99:267–77.PubMedCrossRef
31.
Zurück zum Zitat Stankewich MC, Tse WT, Peters LL, et al. A widely expressed betaIII spectrin associated with Golgi and cytoplasmic vesicles. Proc Natl Acad Sci U S A. 1998;95:14158–63.PubMedCrossRef Stankewich MC, Tse WT, Peters LL, et al. A widely expressed betaIII spectrin associated with Golgi and cytoplasmic vesicles. Proc Natl Acad Sci U S A. 1998;95:14158–63.PubMedCrossRef
32.
Zurück zum Zitat Berghs S, Aggujaro D, Dirkx Jr R, et al. betaIV spectrin, a new spectrin localized at axon initial segments and nodes of ranvier in the central and peripheral nervous system. J Cell Biol. 2000;151:985–1002.PubMedCrossRef Berghs S, Aggujaro D, Dirkx Jr R, et al. betaIV spectrin, a new spectrin localized at axon initial segments and nodes of ranvier in the central and peripheral nervous system. J Cell Biol. 2000;151:985–1002.PubMedCrossRef
33.
Zurück zum Zitat Stabach PR, Morrow JS. Identification and characterization of beta V spectrin, a mammalian ortholog of Drosophila beta H spectrin. J Biol Chem. 2000;275:21385–95.PubMedCrossRef Stabach PR, Morrow JS. Identification and characterization of beta V spectrin, a mammalian ortholog of Drosophila beta H spectrin. J Biol Chem. 2000;275:21385–95.PubMedCrossRef
34.
Zurück zum Zitat Jiang X, Gillen S, Esposito I, et al. Reduced expression of the membrane skeleton protein beta1-spectrin (SPTBN1) is associated with worsened prognosis in pancreatic cancer. Histol Histopathol. 2010;25:1497–506.PubMed Jiang X, Gillen S, Esposito I, et al. Reduced expression of the membrane skeleton protein beta1-spectrin (SPTBN1) is associated with worsened prognosis in pancreatic cancer. Histol Histopathol. 2010;25:1497–506.PubMed
35.
Zurück zum Zitat Bennett V, Davis J, Fowler WE. Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature. 1982;299:126–31.PubMedCrossRef Bennett V, Davis J, Fowler WE. Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature. 1982;299:126–31.PubMedCrossRef
36.
Zurück zum Zitat Bennett V, Healy J. Organizing the fluid membrane bilayer: diseases linked to spectrin and ankyrin. Trends Mol Med. 2008;4:28–36.CrossRef Bennett V, Healy J. Organizing the fluid membrane bilayer: diseases linked to spectrin and ankyrin. Trends Mol Med. 2008;4:28–36.CrossRef
37.
Zurück zum Zitat Goodman SR, Zimmer WE, Clark MB, et al. Brain spectrin: of mice and men. Brain Res Bull. 1995;36:593–606.PubMedCrossRef Goodman SR, Zimmer WE, Clark MB, et al. Brain spectrin: of mice and men. Brain Res Bull. 1995;36:593–606.PubMedCrossRef
38.
Zurück zum Zitat Zagon IS, Higbee R, Riederer BM, Goodman SR. Spectrin subtypes in mammalian brain: an immunoelectron microscopic study. J Neurosci. 1986;6:2977–86.PubMed Zagon IS, Higbee R, Riederer BM, Goodman SR. Spectrin subtypes in mammalian brain: an immunoelectron microscopic study. J Neurosci. 1986;6:2977–86.PubMed
39.
Zurück zum Zitat Susuki K, Raphael AR, Ogawa Y, et al. Schwann cell spectrins modulate peripheral nerve myelination. Proc Natl Acad Sci U S A. 2011;108:8009–80014.PubMedCrossRef Susuki K, Raphael AR, Ogawa Y, et al. Schwann cell spectrins modulate peripheral nerve myelination. Proc Natl Acad Sci U S A. 2011;108:8009–80014.PubMedCrossRef
40.
Zurück zum Zitat Koenig E, Kinsman S, Repasky E, Sultz L. Rapid mobility of motile varicosities and inclusions containing alpha-spectrin, actin, and calmodulin in regenerating axons in vitro. J Neurosci. 1985;5:715–29.PubMed Koenig E, Kinsman S, Repasky E, Sultz L. Rapid mobility of motile varicosities and inclusions containing alpha-spectrin, actin, and calmodulin in regenerating axons in vitro. J Neurosci. 1985;5:715–29.PubMed
41.
Zurück zum Zitat Bloch RJ, Morrow JS. An unusual beta-spectrin associated with clustered acetylcholine receptors. J Cell Biol. 1989;8:481–93.CrossRef Bloch RJ, Morrow JS. An unusual beta-spectrin associated with clustered acetylcholine receptors. J Cell Biol. 1989;8:481–93.CrossRef
42.
Zurück zum Zitat Sunderland WJ, Son YJ, Miner JH, et al. The presynaptic calcium channel is part of a transmembrane complex linking a synaptic laminin (alpha4beta2gamma1) with non-erythroid spectrin. J Neurosci. 2000;20:1009–19.PubMed Sunderland WJ, Son YJ, Miner JH, et al. The presynaptic calcium channel is part of a transmembrane complex linking a synaptic laminin (alpha4beta2gamma1) with non-erythroid spectrin. J Neurosci. 2000;20:1009–19.PubMed
43.
Zurück zum Zitat Lacas-Gervais S, Guo J, Strenzke N, et al. BetaIVSigma1 spectrin stabilizes the nodes of Ranvier and axon initial segments. J Cell Biol. 2004;166:983–90.PubMedCrossRef Lacas-Gervais S, Guo J, Strenzke N, et al. BetaIVSigma1 spectrin stabilizes the nodes of Ranvier and axon initial segments. J Cell Biol. 2004;166:983–90.PubMedCrossRef
44.
Zurück zum Zitat Hülsmeier J, Pielage J, Rickert C, et al. Distinct functions of alpha-spectrin and beta-spectrin during axonal pathfinding. Development. 2007;134:713–22.PubMedCrossRef Hülsmeier J, Pielage J, Rickert C, et al. Distinct functions of alpha-spectrin and beta-spectrin during axonal pathfinding. Development. 2007;134:713–22.PubMedCrossRef
45.
Zurück zum Zitat Yang Y, Ogawa Y, Hedstrom KL, Rasband MN. betaIV spectrin is recruited to axon initial segments and nodes of Ranvier by ankyrin G. J Cell Biol. 2007;176:509–19.PubMedCrossRef Yang Y, Ogawa Y, Hedstrom KL, Rasband MN. betaIV spectrin is recruited to axon initial segments and nodes of Ranvier by ankyrin G. J Cell Biol. 2007;176:509–19.PubMedCrossRef
46.
Zurück zum Zitat Voas MG, Lyons DA, Naylor SG, et al. alphaII-spectrin is essential for assembly of the nodes of Ranvier in myelinated axons. Curr Biol. 2007;7:562–8.CrossRef Voas MG, Lyons DA, Naylor SG, et al. alphaII-spectrin is essential for assembly of the nodes of Ranvier in myelinated axons. Curr Biol. 2007;7:562–8.CrossRef
47.
Zurück zum Zitat Puchkov D. Leshchyns'ka I, Nikonenko AG, et al.: NCAM/spectrin complex disassembly results in PSD perforation and postsynaptic endocytic zone formation. Cereb Cortex. 2011;21:2217–32.PubMedCrossRef Puchkov D. Leshchyns'ka I, Nikonenko AG, et al.: NCAM/spectrin complex disassembly results in PSD perforation and postsynaptic endocytic zone formation. Cereb Cortex. 2011;21:2217–32.PubMedCrossRef
48.
Zurück zum Zitat Pielage J, Fetter RD, Davis GW. A postsynaptic spectrin scaffold defines active zone size, spacing, and efficacy at the Drosophila neuromuscular junction. J Cell Biol. 2006;175:491–503.PubMedCrossRef Pielage J, Fetter RD, Davis GW. A postsynaptic spectrin scaffold defines active zone size, spacing, and efficacy at the Drosophila neuromuscular junction. J Cell Biol. 2006;175:491–503.PubMedCrossRef
49.
Zurück zum Zitat Ramser EM, Buck F, Schachner M, Tilling T. Binding of alphaII spectrin to 14-3-3beta is involved in NCAM-dependent neurite outgrowth. Mol Cell Neurosci. 2010;45:66–74.PubMedCrossRef Ramser EM, Buck F, Schachner M, Tilling T. Binding of alphaII spectrin to 14-3-3beta is involved in NCAM-dependent neurite outgrowth. Mol Cell Neurosci. 2010;45:66–74.PubMedCrossRef
50.
Zurück zum Zitat Stankewich MC, Gwynn B, Ardito T, et al. Targeted deletion of betaIII spectrin impairs synaptogenesis and generates ataxic and seizure phenotypes. Proc Natl Acad Sci U S A. 2010;107:6022–7.PubMedCrossRef Stankewich MC, Gwynn B, Ardito T, et al. Targeted deletion of betaIII spectrin impairs synaptogenesis and generates ataxic and seizure phenotypes. Proc Natl Acad Sci U S A. 2010;107:6022–7.PubMedCrossRef
51.
Zurück zum Zitat Westphal D, Sytnyk V, Schachner M. Leshchyns'ka I: Clustering of the neural cell adhesion molecule (NCAM) at the neuronal cell surface induces caspase-8- and -3-dependent changes of the spectrin meshwork required for NCAM-mediated neurite outgrowth. J Biol Chem. 2010;285:42046–57.PubMedCrossRef Westphal D, Sytnyk V, Schachner M. Leshchyns'ka I: Clustering of the neural cell adhesion molecule (NCAM) at the neuronal cell surface induces caspase-8- and -3-dependent changes of the spectrin meshwork required for NCAM-mediated neurite outgrowth. J Biol Chem. 2010;285:42046–57.PubMedCrossRef
52.
Zurück zum Zitat Gao Y, Perkins EM, Clarkson YL, et al. β-III spectrin is critical for development of Purkinje cell dendritic tree and spine morphogenesis. J Neurosci. 2011;31:16581–90.PubMedCrossRef Gao Y, Perkins EM, Clarkson YL, et al. β-III spectrin is critical for development of Purkinje cell dendritic tree and spine morphogenesis. J Neurosci. 2011;31:16581–90.PubMedCrossRef
53.
Zurück zum Zitat Nestor MW, Cai X, Stone MR, et al. The actin binding domain of βI-spectrin regulates the morphological and functional dynamics of dendritic spines. PLoS. 2011;6:e16197. Nestor MW, Cai X, Stone MR, et al. The actin binding domain of βI-spectrin regulates the morphological and functional dynamics of dendritic spines. PLoS. 2011;6:e16197.
54.
Zurück zum Zitat Lorenzo DN, Li MG, Mische SE, et al. Spectrin mutations that cause spinocerebellar ataxia type 5 impair axonal transport and induce neurodegeneration in Drosophila. J Cell Biol. 2010;189:143–58.PubMedCrossRef Lorenzo DN, Li MG, Mische SE, et al. Spectrin mutations that cause spinocerebellar ataxia type 5 impair axonal transport and induce neurodegeneration in Drosophila. J Cell Biol. 2010;189:143–58.PubMedCrossRef
55.
Zurück zum Zitat Perkins EM, Clarkson YL, Sabatier N, et al. Loss of beta-III spectrin leads to Purkinje cell dysfunction recapitulating the behavior and neuropathology of spinocerebellar ataxia type 5 in humans. J Neurosci. 2010;30:4857–67.PubMedCrossRef Perkins EM, Clarkson YL, Sabatier N, et al. Loss of beta-III spectrin leads to Purkinje cell dysfunction recapitulating the behavior and neuropathology of spinocerebellar ataxia type 5 in humans. J Neurosci. 2010;30:4857–67.PubMedCrossRef
56.
Zurück zum Zitat Nath R, Raser KJ, Stafford D, et al. Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J. 1996;319:683–90.PubMed Nath R, Raser KJ, Stafford D, et al. Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J. 1996;319:683–90.PubMed
57.
Zurück zum Zitat Hsu YJ, Zimmer WE, Goodman SR. Erythrocyte spectrin’s chimeric E2/E3 ubiquitin conjugating/ligating activity. Cell Mol Biol (Noisy-le-grand). 2005;51:187–93. Hsu YJ, Zimmer WE, Goodman SR. Erythrocyte spectrin’s chimeric E2/E3 ubiquitin conjugating/ligating activity. Cell Mol Biol (Noisy-le-grand). 2005;51:187–93.
58.
Zurück zum Zitat Wang KK, Posmantur R, Nath R, et al. Simultaneous degradation of alphaII- and betaII-spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem. 1998;273:22490–7.PubMedCrossRef Wang KK, Posmantur R, Nath R, et al. Simultaneous degradation of alphaII- and betaII-spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem. 1998;273:22490–7.PubMedCrossRef
59.
Zurück zum Zitat Zhao X, Newcomb JK, Pike BR, et al. Novel characteristics of glutamate-induced cell death in primary septohippocampal cultures: relationship to calpain and caspase-3 protease activation. J Cereb Blood Flow Metab. 2000;20:550–62.PubMedCrossRef Zhao X, Newcomb JK, Pike BR, et al. Novel characteristics of glutamate-induced cell death in primary septohippocampal cultures: relationship to calpain and caspase-3 protease activation. J Cereb Blood Flow Metab. 2000;20:550–62.PubMedCrossRef
60.
Zurück zum Zitat Newcomb-Fernandez JK, Zhao X, Pike BR, et al. Concurrent assessment of calpain and caspase-3 activation after oxygen-glucose deprivation in primary septo-hippocampal cultures. J Cereb Blood Flow Metab. 2001;21:1281–94.PubMedCrossRef Newcomb-Fernandez JK, Zhao X, Pike BR, et al. Concurrent assessment of calpain and caspase-3 activation after oxygen-glucose deprivation in primary septo-hippocampal cultures. J Cereb Blood Flow Metab. 2001;21:1281–94.PubMedCrossRef
61.
Zurück zum Zitat Pike BR, Flint J, Dave JR, et al. Accumulation of calpain and caspase-3 proteolytic fragments of brain-derived alphaII-spectrin in cerebral spinal fluid after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab. 2004;24:98–106.PubMedCrossRef Pike BR, Flint J, Dave JR, et al. Accumulation of calpain and caspase-3 proteolytic fragments of brain-derived alphaII-spectrin in cerebral spinal fluid after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab. 2004;24:98–106.PubMedCrossRef
62.
Zurück zum Zitat Gold MS, Kobeissy FH, Wang KK, et al. Methamphetamine- and trauma-induced brain injuries: comparative cellular and molecular neurobiological substrates. Biol Psychiatry. 2009;66:118–27.PubMedCrossRef Gold MS, Kobeissy FH, Wang KK, et al. Methamphetamine- and trauma-induced brain injuries: comparative cellular and molecular neurobiological substrates. Biol Psychiatry. 2009;66:118–27.PubMedCrossRef
63.
Zurück zum Zitat Vanderklish PW, Bahr BA. The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol. 2000;81:323–239.PubMedCrossRef Vanderklish PW, Bahr BA. The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol. 2000;81:323–239.PubMedCrossRef
64.
Zurück zum Zitat Bahr BA, Tiriveedhi S, Park GY, Lynch G. Induction of calpain-mediated spectrin fragments by pathogenic treatments in long-term hippocampal slices. J Pharmacol Exp Ther. 1995;273:902–8.PubMed Bahr BA, Tiriveedhi S, Park GY, Lynch G. Induction of calpain-mediated spectrin fragments by pathogenic treatments in long-term hippocampal slices. J Pharmacol Exp Ther. 1995;273:902–8.PubMed
65.
Zurück zum Zitat Seubert P, Larson J, Oliver M, et al. Stimulation of NMDA receptors induces proteolysis of spectrin in hippocampus. Brain Res. 1988;460:189–94.PubMedCrossRef Seubert P, Larson J, Oliver M, et al. Stimulation of NMDA receptors induces proteolysis of spectrin in hippocampus. Brain Res. 1988;460:189–94.PubMedCrossRef
66.
Zurück zum Zitat Siman R, Noszek JC, Kegerise C. Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci. 1989;9:1579–90.PubMed Siman R, Noszek JC, Kegerise C. Calpain I activation is specifically related to excitatory amino acid induction of hippocampal damage. J Neurosci. 1989;9:1579–90.PubMed
67.
Zurück zum Zitat Bi X, Chang V, Siman R, et al. Regional distribution and time-course of calpain activation following kainate-induced seizure activity in adult rat brain. Brain Res. 1996;726:98–108.PubMedCrossRef Bi X, Chang V, Siman R, et al. Regional distribution and time-course of calpain activation following kainate-induced seizure activity in adult rat brain. Brain Res. 1996;726:98–108.PubMedCrossRef
68.
Zurück zum Zitat Tamada Y, Nakajima E, Nakajima T, et al. Proteolysis of neuronal cytoskeletal proteins by calpain contributes to rat retinal cell death induced by hypoxia. Brain Res. 2005;1050:148–55.PubMedCrossRef Tamada Y, Nakajima E, Nakajima T, et al. Proteolysis of neuronal cytoskeletal proteins by calpain contributes to rat retinal cell death induced by hypoxia. Brain Res. 2005;1050:148–55.PubMedCrossRef
69.
Zurück zum Zitat Huang W, Fileta J, Rawe I, Qu J, Grosskreutz CL. Calpain activation in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010;51:3049–54.PubMedCrossRef Huang W, Fileta J, Rawe I, Qu J, Grosskreutz CL. Calpain activation in experimental glaucoma. Invest Ophthalmol Vis Sci. 2010;51:3049–54.PubMedCrossRef
70.
Zurück zum Zitat Hwang IK, Yoo KY, Kim DW, et al. AlphaII-spectrin breakdown product increases in principal cells in the gerbil main olfactory bulb following transient ischemia. Neurosci Lett. 2008;435:251–6.PubMedCrossRef Hwang IK, Yoo KY, Kim DW, et al. AlphaII-spectrin breakdown product increases in principal cells in the gerbil main olfactory bulb following transient ischemia. Neurosci Lett. 2008;435:251–6.PubMedCrossRef
71.
Zurück zum Zitat Farkas O, Polgár B, Szekeres-Barthó J, et al. Spectrin breakdown products in the cerebrospinal fluid in severe head injury–preliminary observations. Acta Neurochir (Wien). 2005;147:855–61.CrossRef Farkas O, Polgár B, Szekeres-Barthó J, et al. Spectrin breakdown products in the cerebrospinal fluid in severe head injury–preliminary observations. Acta Neurochir (Wien). 2005;147:855–61.CrossRef
72.
Zurück zum Zitat Brophy GM, Pineda JA, Papa L, et al. alphaII-Spectrin breakdown product cerebrospinal fluid exposure metrics suggest differences in cellular injury mechanisms after severe traumatic brain injury. J Neurotrauma. 2009;26:471–9.PubMedCrossRef Brophy GM, Pineda JA, Papa L, et al. alphaII-Spectrin breakdown product cerebrospinal fluid exposure metrics suggest differences in cellular injury mechanisms after severe traumatic brain injury. J Neurotrauma. 2009;26:471–9.PubMedCrossRef
73.
Zurück zum Zitat Mattson MP. Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal. 2006;8:1997–2006.PubMedCrossRef Mattson MP. Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal. 2006;8:1997–2006.PubMedCrossRef
74.
Zurück zum Zitat Raynaud F, Marcilhac A. Implication of calpain in neuronal apoptosis. A possible regulation of Alzheimer's disease. FEBS J. 2006;273:3437–43.PubMedCrossRef Raynaud F, Marcilhac A. Implication of calpain in neuronal apoptosis. A possible regulation of Alzheimer's disease. FEBS J. 2006;273:3437–43.PubMedCrossRef
75.
Zurück zum Zitat Levy OA, Malagelada C, Greene LA. Cell death pathways in Parkinson's disease: proximal triggers, distal effectors, and final steps. Apoptosis. 2009;14:478–500.PubMedCrossRef Levy OA, Malagelada C, Greene LA. Cell death pathways in Parkinson's disease: proximal triggers, distal effectors, and final steps. Apoptosis. 2009;14:478–500.PubMedCrossRef
76.
Zurück zum Zitat Vicencio JM, Lavandero S, Szabadkai G. Ca2+, autophagy and protein degradation: thrown off balance in neurodegenerative disease. Cell Calcium. 2010;47:112–21.PubMedCrossRef Vicencio JM, Lavandero S, Szabadkai G. Ca2+, autophagy and protein degradation: thrown off balance in neurodegenerative disease. Cell Calcium. 2010;47:112–21.PubMedCrossRef
77.
Zurück zum Zitat Mouatt-Prigent A, Karlsson JO, Agid Y, Hirsch EC. Increased M-calpain expression in the mesencephalon of patients with Parkinson's disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death? Neuroscience. 1996;73:979–87.PubMedCrossRef Mouatt-Prigent A, Karlsson JO, Agid Y, Hirsch EC. Increased M-calpain expression in the mesencephalon of patients with Parkinson's disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death? Neuroscience. 1996;73:979–87.PubMedCrossRef
78.
Zurück zum Zitat Alvira D, Ferrer I, Gutierrez-Cuesta J, et al. Activation of the calpain/cdk5/p25 pathway in the girus cinguli in Parkinson's disease. Parkinsonism Relat Disord. 2008;14:309–13.PubMedCrossRef Alvira D, Ferrer I, Gutierrez-Cuesta J, et al. Activation of the calpain/cdk5/p25 pathway in the girus cinguli in Parkinson's disease. Parkinsonism Relat Disord. 2008;14:309–13.PubMedCrossRef
79.
Zurück zum Zitat Dufty BM, Warner LR, Hou ST, et al. Calpain-cleavage of alpha-synuclein: connecting proteolytic processing to disease-linked aggregation. Am J Pathol. 2007;170:1725–38.PubMedCrossRef Dufty BM, Warner LR, Hou ST, et al. Calpain-cleavage of alpha-synuclein: connecting proteolytic processing to disease-linked aggregation. Am J Pathol. 2007;170:1725–38.PubMedCrossRef
80.
Zurück zum Zitat Gafni J, Ellerby LM. Calpain activation in Huntington's disease. J Neurosci. 2002;22:4842–9.PubMed Gafni J, Ellerby LM. Calpain activation in Huntington's disease. J Neurosci. 2002;22:4842–9.PubMed
81.
Zurück zum Zitat Kim YJ, Yi Y, Sapp E, et al. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci U S A. 2001;98:12784–9.PubMedCrossRef Kim YJ, Yi Y, Sapp E, et al. Caspase 3-cleaved N-terminal fragments of wild-type and mutant huntingtin are present in normal and Huntington's disease brains, associate with membranes, and undergo calpain-dependent proteolysis. Proc Natl Acad Sci U S A. 2001;98:12784–9.PubMedCrossRef
82.
Zurück zum Zitat Wellington CL, Ellerby LM, Gutekunst CA, et al. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. J Neurosci. 2002;22:7862–72.PubMed Wellington CL, Ellerby LM, Gutekunst CA, et al. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease. J Neurosci. 2002;22:7862–72.PubMed
83.
Zurück zum Zitat Gafni J, Hermel E, Young JE, et al. Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J Biol Chem. 2004;279:20211–20.PubMedCrossRef Gafni J, Hermel E, Young JE, et al. Inhibition of calpain cleavage of huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus. J Biol Chem. 2004;279:20211–20.PubMedCrossRef
84.
Zurück zum Zitat Nilsson E, Alafuzoff I, Blennow K, et al. Calpain and calpastatin in normal and Alzheimer-degenerated human brain tissue. Neurobiol Aging. 1990;11:425–31.PubMedCrossRef Nilsson E, Alafuzoff I, Blennow K, et al. Calpain and calpastatin in normal and Alzheimer-degenerated human brain tissue. Neurobiol Aging. 1990;11:425–31.PubMedCrossRef
85.
Zurück zum Zitat Saito K, Elce JS, Hamos JE, Nixon RA. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci U S A. 1993;90:2628–32.PubMedCrossRef Saito K, Elce JS, Hamos JE, Nixon RA. Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci U S A. 1993;90:2628–32.PubMedCrossRef
86.
Zurück zum Zitat •• Higuchi M, Iwata N, Matsuba Y, et al. Mechanistic involvement of the calpain-calpastatin system in Alzheimer neuropathology. FASEB J. 2011; doi:10.1096/fj.11-187740. This study reports that cerebrospinal fluid from patients with AD contained a higher level of calpain-cleaved spectrin than that of control patients. •• Higuchi M, Iwata N, Matsuba Y, et al. Mechanistic involvement of the calpain-calpastatin system in Alzheimer neuropathology. FASEB J. 2011; doi:10.​1096/​fj.​11-187740. This study reports that cerebrospinal fluid from patients with AD contained a higher level of calpain-cleaved spectrin than that of control patients.
87.
Zurück zum Zitat Rohn TT, Head E. Caspase activation in Alzheimer's disease: early to rise and late to bed. Rev Neurosci. 2008;19:383–93.PubMed Rohn TT, Head E. Caspase activation in Alzheimer's disease: early to rise and late to bed. Rev Neurosci. 2008;19:383–93.PubMed
88.
Zurück zum Zitat Garg S, Timm T, Mandelkow EM, et al. Cleavage of Tau by calpain in Alzheimer's disease: the quest for the toxic 17 kD fragment. Neurobiol Aging. 2011;32:1–14.PubMedCrossRef Garg S, Timm T, Mandelkow EM, et al. Cleavage of Tau by calpain in Alzheimer's disease: the quest for the toxic 17 kD fragment. Neurobiol Aging. 2011;32:1–14.PubMedCrossRef
89.
Zurück zum Zitat Gaczyńska M. Changes in proteolytic susceptibility of human erythrocyte membrane proteins during red blood cell aging. Cytobios. 1992;72:197–200.PubMed Gaczyńska M. Changes in proteolytic susceptibility of human erythrocyte membrane proteins during red blood cell aging. Cytobios. 1992;72:197–200.PubMed
90.
Zurück zum Zitat Lee A, Morrow JS, Fowler VM. Caspase remodeling of the spectrin membrane skeleton during lens development and aging. J Biol Chem. 2001;276:20735–42.PubMedCrossRef Lee A, Morrow JS, Fowler VM. Caspase remodeling of the spectrin membrane skeleton during lens development and aging. J Biol Chem. 2001;276:20735–42.PubMedCrossRef
91.
Zurück zum Zitat Bahr BA, Vanderklish PW, Ha LT, et al. Spectrin breakdown products increase with age in telencephalon of mouse brain. Neurosci Lett. 1991;131:237–40.PubMedCrossRef Bahr BA, Vanderklish PW, Ha LT, et al. Spectrin breakdown products increase with age in telencephalon of mouse brain. Neurosci Lett. 1991;131:237–40.PubMedCrossRef
92.
Zurück zum Zitat Bernath E, Kupina N, Liu MC, et al. Elevation of cytoskeletal protein breakdown in aged Wistar rat brain. Neurobiol Aging. 2006;27:624–32.PubMedCrossRef Bernath E, Kupina N, Liu MC, et al. Elevation of cytoskeletal protein breakdown in aged Wistar rat brain. Neurobiol Aging. 2006;27:624–32.PubMedCrossRef
93.
Zurück zum Zitat Ayala-Grosso C, Tam J, Roy S, et al. Caspase-3 cleaved spectrin colocalizes with neurofilament-immunoreactive neurons in Alzheimer's disease. Neuroscience. 2006;141:863–74.PubMedCrossRef Ayala-Grosso C, Tam J, Roy S, et al. Caspase-3 cleaved spectrin colocalizes with neurofilament-immunoreactive neurons in Alzheimer's disease. Neuroscience. 2006;141:863–74.PubMedCrossRef
94.
Zurück zum Zitat •• Liang B, Duan BY, Zhou XP, et al. Calpain activation promotes BACE1 expression, amyloid precursor protein processing, and amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J Biol Chem. 2010;285:27737–44. This study shows elevation of calpain-mediated SBDPs in the brain in a transgenic model of AD, and attenuation of amyloid plaque pathogenesis and tau phosphorylation by in vivo inhibition of calpain activity.PubMedCrossRef •• Liang B, Duan BY, Zhou XP, et al. Calpain activation promotes BACE1 expression, amyloid precursor protein processing, and amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J Biol Chem. 2010;285:27737–44. This study shows elevation of calpain-mediated SBDPs in the brain in a transgenic model of AD, and attenuation of amyloid plaque pathogenesis and tau phosphorylation by in vivo inhibition of calpain activity.PubMedCrossRef
95.
Zurück zum Zitat Zhang XM, Cai Y, Xiong K, et al. Beta-secretase-1 elevation in transgenic mouse models of Alzheimer's disease is associated with synaptic/axonal pathology and amyloidogenesis: implications for neuritic plaque development. Eur J Neurosci. 2009;30:2271–83.PubMedCrossRef Zhang XM, Cai Y, Xiong K, et al. Beta-secretase-1 elevation in transgenic mouse models of Alzheimer's disease is associated with synaptic/axonal pathology and amyloidogenesis: implications for neuritic plaque development. Eur J Neurosci. 2009;30:2271–83.PubMedCrossRef
Metadaten
Titel
Spectrin Breakdown Products (SBDPs) as Potential Biomarkers for Neurodegenerative Diseases
verfasst von
Xiao-Xin Yan
Andreas Jeromin
Publikationsdatum
01.06.2012
Verlag
Springer-Verlag
Erschienen in
Current Geriatrics Reports / Ausgabe 2/2012
Elektronische ISSN: 2196-7865
DOI
https://doi.org/10.1007/s13670-012-0009-2

Weitere Artikel der Ausgabe 2/2012

Current Geriatrics Reports 2/2012 Zur Ausgabe

Biomarkers in the Classification of Biological Health and Disease Aging (Y Shen, Section

Biomarkers in Mood Disorders Among the Elderly: Can They Contribute to Diagnosis and Prognosis?

Biomarkers in the Classification of Biological Health and Disease Aging (Y Shen, Section Editor)

Neuropsychological Parameters as Potential Biomarkers for Alzheimer’s Disease

Biomarkers in the Classification of Biological Health and Disease Aging (Y Shen, Section Editor)

Biomarkers of Cognitive Training Effects in Aging

Biomarkers in the Classification of Biological Health and Disease Aging (Y Shen, Section Editor)

Use of Telomere Length as a Biomarker for Aging and Age-Related Disease

Biomarkers in the Classification of Biological Health and Disease Aging (Y Shen, Section Editor)

An Overview of Endogenous Catechol-Isoquinolines and Their Related Enzymes: Possible Biomarkers for Parkinson’s Disease

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.