Skip to main content
Erschienen in: Current Obesity Reports 1/2016

01.03.2016 | Psychological Issues (M Hetherington and V Drapeau, Section Editors)

The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders?

verfasst von: Javier Ochoa-Repáraz, Lloyd H. Kasper

Erschienen in: Current Obesity Reports | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

The gut-brain axis is a bi-directional integrated system composed by immune, endocrine, and neuronal components by which the gap between the gut microbiota and the brain is significantly impacted. An increasing number of different gut microbial species are now postulated to regulate brain function in health and disease. The westernized diet is hypothesized to be the cause of the current obesity levels in many countries, a major socio-economical health problem. Experimental and epidemiological evidence suggest that the gut microbiota is responsible for significant immunologic, neuronal, and endocrine changes that lead to obesity. We hypothesize that the gut microbiota, and changes associated with diet, affect the gut-brain axis and may possibly contribute to the development of mental illness. In this review, we discuss the links between diet, gut dysbiosis, obesity, and immunologic and neurologic diseases that impact brain function and behavior.
Literatur
1.
Zurück zum Zitat Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–48.PubMedCrossRef Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–48.PubMedCrossRef
2.
Zurück zum Zitat Lederberg J, Mccray A. ‘Ome sweet’ omics—a genealogical treasury of words. The Scientist. 2001;17. Lederberg J, Mccray A. ‘Ome sweet’ omics—a genealogical treasury of words. The Scientist. 2001;17.
3.
Zurück zum Zitat Jiménez E, Marín ML, Martín R, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008;159(3):187–93.PubMedCrossRef Jiménez E, Marín ML, Martín R, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008;159(3):187–93.PubMedCrossRef
4.
Zurück zum Zitat Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703.PubMedCrossRef Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703.PubMedCrossRef
5.
Zurück zum Zitat Marietta E, Rishi A, Taneja V. Immunogenetic control of the intestinal microbiota. Immunology. 2015;145(3):313–22.PubMedCrossRef Marietta E, Rishi A, Taneja V. Immunogenetic control of the intestinal microbiota. Immunology. 2015;145(3):313–22.PubMedCrossRef
6.
Zurück zum Zitat Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5.PubMedPubMedCentralCrossRef Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104(34):13780–5.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Swidsinski A, Loening-Baucke V, Lochs H, et al. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. WJG. 2005;11:1131–40.PubMedPubMedCentralCrossRef Swidsinski A, Loening-Baucke V, Lochs H, et al. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. WJG. 2005;11:1131–40.PubMedPubMedCentralCrossRef
8.
9.
Zurück zum Zitat Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14.PubMedPubMedCentralCrossRef Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.PubMedPubMedCentral Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.PubMedPubMedCentral
11.
Zurück zum Zitat De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6.PubMedPubMedCentralCrossRef De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691–6.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Zimmer J, Lange B, Frick J-S, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 2012;66(1):53–60.PubMedCrossRef Zimmer J, Lange B, Frick J-S, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 2012;66(1):53–60.PubMedCrossRef
13.
Zurück zum Zitat Martínez I, Stegen JC, Maldonado-Gómez MX, et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 2015;11(4):527–38.PubMedCrossRef Martínez I, Stegen JC, Maldonado-Gómez MX, et al. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep. 2015;11(4):527–38.PubMedCrossRef
14.
Zurück zum Zitat Bach J-F. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347(12):911–20.PubMedCrossRef Bach J-F. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347(12):911–20.PubMedCrossRef
15.
Zurück zum Zitat Joscelyn J, Kasper LH. Digesting the emerging role for the gut microbiome in central nervous system demyelination. Mult Scler. 2014;20(12):1553–9.PubMedCrossRef Joscelyn J, Kasper LH. Digesting the emerging role for the gut microbiome in central nervous system demyelination. Mult Scler. 2014;20(12):1553–9.PubMedCrossRef
17.
Zurück zum Zitat Tilg H, Moschen AR. Food, immunity, and the microbiome. Gastroenterology. 2015;148:1107–19.PubMedCrossRef Tilg H, Moschen AR. Food, immunity, and the microbiome. Gastroenterology. 2015;148:1107–19.PubMedCrossRef
18.
Zurück zum Zitat Riccio P, Rossano R, Liuzzi GM. May diet and dietary supplements improve the wellness of multiple sclerosis patients? A molecular approach. Autoimmune Dis. 2011;2010:249842.PubMedPubMedCentral Riccio P, Rossano R, Liuzzi GM. May diet and dietary supplements improve the wellness of multiple sclerosis patients? A molecular approach. Autoimmune Dis. 2011;2010:249842.PubMedPubMedCentral
19.
Zurück zum Zitat Ghosh S, Molcan E, DeCoffe D, et al. Diets rich in n-6 PUFA induce intestinal microbial dysbiosis in aged mice. Br J Nutr. 2013;110(3):515–23.PubMedCrossRef Ghosh S, Molcan E, DeCoffe D, et al. Diets rich in n-6 PUFA induce intestinal microbial dysbiosis in aged mice. Br J Nutr. 2013;110(3):515–23.PubMedCrossRef
20.
Zurück zum Zitat Tripathy D, Mohanty P, Dhindsa S, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003;52(12):2882–7.PubMedCrossRef Tripathy D, Mohanty P, Dhindsa S, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003;52(12):2882–7.PubMedCrossRef
21.
Zurück zum Zitat Theriot CM, Koenigsknecht MJ, Carlson PE, et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014;5:3114.PubMedPubMedCentralCrossRef Theriot CM, Koenigsknecht MJ, Carlson PE, et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014;5:3114.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Kleinewietfeld M, Manzel A, Titze J, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496(7446):518–22.PubMedPubMedCentralCrossRef Kleinewietfeld M, Manzel A, Titze J, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496(7446):518–22.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Coluccia A, Borracci P, Renna G, et al. Developmental omega-3 supplementation improves motor skills in juvenile-adult rats. Int J Dev Neurosci. 2009;27(6):599–605.PubMedCrossRef Coluccia A, Borracci P, Renna G, et al. Developmental omega-3 supplementation improves motor skills in juvenile-adult rats. Int J Dev Neurosci. 2009;27(6):599–605.PubMedCrossRef
24.
Zurück zum Zitat Liuzzi GM, Latronico T, Rossano R, et al. Inhibitory effect of polyunsaturated fatty acids on MMP-9 release from microglial cells--implications for complementary multiple sclerosis treatment. Neurochem Res. 2007;32(12):2184–93.PubMedCrossRef Liuzzi GM, Latronico T, Rossano R, et al. Inhibitory effect of polyunsaturated fatty acids on MMP-9 release from microglial cells--implications for complementary multiple sclerosis treatment. Neurochem Res. 2007;32(12):2184–93.PubMedCrossRef
25.
Zurück zum Zitat Stefka AT, Feehley T, Tripathi P, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci U S A. 2014;111:13145–50.PubMedPubMedCentralCrossRef Stefka AT, Feehley T, Tripathi P, et al. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci U S A. 2014;111:13145–50.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Li Y, Innocentin S, Withers DR, et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell. 2011;147:629–40.PubMedCrossRef Li Y, Innocentin S, Withers DR, et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell. 2011;147:629–40.PubMedCrossRef
27.
Zurück zum Zitat Monteleone I, Rizzo A, Sarra M, et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology. 2011;141:237–48, 248 e1.PubMedCrossRef Monteleone I, Rizzo A, Sarra M, et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology. 2011;141:237–48, 248 e1.PubMedCrossRef
28.
Zurück zum Zitat Oh DY, Talukdar S, Bae EJ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142:687–98.PubMedPubMedCentralCrossRef Oh DY, Talukdar S, Bae EJ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142:687–98.PubMedPubMedCentralCrossRef
29.••
Zurück zum Zitat Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158. This work shows that the gut microbiota and metabolites produced by gut microbes affect the integrity of the blood–brain barrier, essential in controlling neuroinflammation.PubMedPubMedCentralCrossRef Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158. This work shows that the gut microbiota and metabolites produced by gut microbes affect the integrity of the blood–brain barrier, essential in controlling neuroinflammation.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.PubMedPubMedCentralCrossRef Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Noga MJ, Dane A, Shi S, Attali A, et al. Metabolomics of cerebrospinal fluid reveals changes in the central nervous system metabolism in a rat model of multiple sclerosis. Metabolomics. 2012;8(2):253–63.PubMedPubMedCentralCrossRef Noga MJ, Dane A, Shi S, Attali A, et al. Metabolomics of cerebrospinal fluid reveals changes in the central nervous system metabolism in a rat model of multiple sclerosis. Metabolomics. 2012;8(2):253–63.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Mangalam, A. Poisson L, Nemutlu E, et al. Profile of circulatory metabolites in a relapsing-remitting animal model of multiple sclerosis using global metabolomics. J Clin Cell Immunol 2013;4. Mangalam, A. Poisson L, Nemutlu E, et al. Profile of circulatory metabolites in a relapsing-remitting animal model of multiple sclerosis using global metabolomics. J Clin Cell Immunol 2013;4.
33.
Zurück zum Zitat Wu, GD, Compher C, Chen EZ, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 2014; pii: gutjnl-2014-308209. Wu, GD, Compher C, Chen EZ, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 2014; pii: gutjnl-2014-308209.
35.
Zurück zum Zitat Ochoa-Repáraz J, Mielcarz DW, Wang Y, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010;3(5):487–95.PubMedCrossRef Ochoa-Repáraz J, Mielcarz DW, Wang Y, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010;3(5):487–95.PubMedCrossRef
36.
Zurück zum Zitat Wang Y, Telesford KM, Ochoa-Reparaz J, et al. An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling. Nat Commun. 2014;5:4432.PubMedPubMedCentral Wang Y, Telesford KM, Ochoa-Reparaz J, et al. An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling. Nat Commun. 2014;5:4432.PubMedPubMedCentral
37.
Zurück zum Zitat Wang Y, Begum-Haque S, Telesford KM, et al. A commensal bacterial product elicits and modulates migratory capacity of CD39 + CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes. 2014;5(4):552–61.PubMedCrossRef Wang Y, Begum-Haque S, Telesford KM, et al. A commensal bacterial product elicits and modulates migratory capacity of CD39 + CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes. 2014;5(4):552–61.PubMedCrossRef
38.
Zurück zum Zitat Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide a expression. J Immunol. 2010;185(7):4101–8.PubMedCrossRef Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide a expression. J Immunol. 2010;185(7):4101–8.PubMedCrossRef
39.
Zurück zum Zitat Lee YK, Menezes JS, Umesaki Y, et al. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4615–22.PubMedPubMedCentralCrossRef Lee YK, Menezes JS, Umesaki Y, et al. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4615–22.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Lavasani S, Dzhambazov B, Nouri M, et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS ONE. 2010;5(2):e9009.PubMedPubMedCentralCrossRef Lavasani S, Dzhambazov B, Nouri M, et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS ONE. 2010;5(2):e9009.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Ezendam J, de Klerk A, Gremmer ER, et al. Effects of Bifidobacterium animalis administered during lactation on allergic and autoimmune responses in rodents. Clin Exp Immunol. 2008;154(3):424–31.PubMedPubMedCentralCrossRef Ezendam J, de Klerk A, Gremmer ER, et al. Effects of Bifidobacterium animalis administered during lactation on allergic and autoimmune responses in rodents. Clin Exp Immunol. 2008;154(3):424–31.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Takata K, Kinoshita M, Okuno T, et al. The lactic acid bacterium Pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells. PLoS ONE. 2011;6(11):e27644.PubMedPubMedCentralCrossRef Takata K, Kinoshita M, Okuno T, et al. The lactic acid bacterium Pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells. PLoS ONE. 2011;6(11):e27644.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Rezende RM, Oliveira RP, Medeiros SR, et al. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4 + LAP+ regulatory T cells. J Autoimmun. 2013;40:45–57.PubMedPubMedCentralCrossRef Rezende RM, Oliveira RP, Medeiros SR, et al. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4 + LAP+ regulatory T cells. J Autoimmun. 2013;40:45–57.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–75.PubMedPubMedCentralCrossRef Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–75.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Desbonnet L, Garrett L, Clarke G, et al. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170(4):1179–88.PubMedCrossRef Desbonnet L, Garrett L, Clarke G, et al. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010;170(4):1179–88.PubMedCrossRef
46.
Zurück zum Zitat Ohland CL, Kish L, Bell H, et al. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology. 2013;38(9):1738–47.PubMedCrossRef Ohland CL, Kish L, Bell H, et al. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology. 2013;38(9):1738–47.PubMedCrossRef
47.
Zurück zum Zitat Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5.PubMedPubMedCentralCrossRef Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Matthews DM, Jenks SM. Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav Process. 2013;96:27–35.CrossRef Matthews DM, Jenks SM. Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav Process. 2013;96:27–35.CrossRef
49.
Zurück zum Zitat Distrutti E, O’Reilly J-A, McDonald C, et al. Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS ONE. 2014;9(9):e106503.PubMedPubMedCentralCrossRef Distrutti E, O’Reilly J-A, McDonald C, et al. Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS ONE. 2014;9(9):e106503.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Gareau MG, Wine E, Rodrigues DM, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 2011;60(3):307–17.PubMedCrossRef Gareau MG, Wine E, Rodrigues DM, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 2011;60(3):307–17.PubMedCrossRef
51.••
Zurück zum Zitat Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63. This manuscript describes the regulatory effect of bacteroides fragilis in a murine model of autism.PubMedPubMedCentralCrossRef Hsiao EY, McBride SW, Hsien S, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63. This manuscript describes the regulatory effect of bacteroides fragilis in a murine model of autism.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Walker AW, Ince J, Duncan SH, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5(2):220–30.PubMedPubMedCentralCrossRef Walker AW, Ince J, Duncan SH, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5(2):220–30.PubMedPubMedCentralCrossRef
53.••
Zurück zum Zitat David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63. This manuscript demonstrates the rapid effects that diet has in the composition of the gut microbiota.PubMedPubMedCentralCrossRef David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63. This manuscript demonstrates the rapid effects that diet has in the composition of the gut microbiota.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31.PubMedPubMedCentralCrossRef Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81.PubMedCrossRef Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81.PubMedCrossRef
57.
Zurück zum Zitat Turnbaugh PJ, Bäckhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3(4):213–23.PubMedPubMedCentralCrossRef Turnbaugh PJ, Bäckhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3(4):213–23.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Bäckhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104(3):979–84.PubMedPubMedCentralCrossRef Bäckhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104(3):979–84.PubMedPubMedCentralCrossRef
59.
60.
Zurück zum Zitat Kassinen A, Krogius-Kurikka L, Mäkivuokko H, et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology. 2007;133(1):24–33.PubMedCrossRef Kassinen A, Krogius-Kurikka L, Mäkivuokko H, et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology. 2007;133(1):24–33.PubMedCrossRef
61.
Zurück zum Zitat Aguilar-Valles A, Inoue W, Rummel C, et al. Obesity, adipokines and neuroinflammation. Neuropharmacology. 2015;96(Pt A):124–34.PubMedCrossRef Aguilar-Valles A, Inoue W, Rummel C, et al. Obesity, adipokines and neuroinflammation. Neuropharmacology. 2015;96(Pt A):124–34.PubMedCrossRef
62.
Zurück zum Zitat Sanna V, Di Giacomo A, La Cava A, et al. Leptin surge precedes onset of autoimmune encephalomyelitis and correlates with development of pathogenic T cell responses. J Clin Invest. 2003;111(2):241–50.PubMedPubMedCentralCrossRef Sanna V, Di Giacomo A, La Cava A, et al. Leptin surge precedes onset of autoimmune encephalomyelitis and correlates with development of pathogenic T cell responses. J Clin Invest. 2003;111(2):241–50.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Matarese G, Di Giacomo A, Sanna V, et al. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J Immunol. 2001;166(10):5909–16.PubMedCrossRef Matarese G, Di Giacomo A, Sanna V, et al. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J Immunol. 2001;166(10):5909–16.PubMedCrossRef
64.
Zurück zum Zitat Matarese G, Carrieri PB, La Cava A, et al. Leptin increase in multiple sclerosis associates with reduced number of CD4(+)CD25+ regulatory T cells. Proc Natl Acad Sci U S A. 2005;102(14):5150–5.PubMedPubMedCentralCrossRef Matarese G, Carrieri PB, La Cava A, et al. Leptin increase in multiple sclerosis associates with reduced number of CD4(+)CD25+ regulatory T cells. Proc Natl Acad Sci U S A. 2005;102(14):5150–5.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat De Rosa V, Procaccini C, La Cava A, et al. Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J Clin Invest. 2006;116(2):447–55.PubMedPubMedCentralCrossRef De Rosa V, Procaccini C, La Cava A, et al. Leptin neutralization interferes with pathogenic T cell autoreactivity in autoimmune encephalomyelitis. J Clin Invest. 2006;116(2):447–55.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Baranowska-Bik A, Bik W, Styczynska M, et al. Plasma leptin levels and free leptin index in women with Alzheimer’s disease. Neuropeptides. 2015;52:73–8.PubMedCrossRef Baranowska-Bik A, Bik W, Styczynska M, et al. Plasma leptin levels and free leptin index in women with Alzheimer’s disease. Neuropeptides. 2015;52:73–8.PubMedCrossRef
67.
Zurück zum Zitat Folch J, Patraca I, Martínez N, et al. The role of leptin in the sporadic form of Alzheimer’s disease. Interactions with the adipokines amylin, ghrelin and the pituitary hormone prolactin. Life Sci. 2015: S0024-3205(15)00258-1. Folch J, Patraca I, Martínez N, et al. The role of leptin in the sporadic form of Alzheimer’s disease. Interactions with the adipokines amylin, ghrelin and the pituitary hormone prolactin. Life Sci. 2015: S0024-3205(15)00258-1.
68.
Zurück zum Zitat Castanon N, Luheshi G, Layé S. Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front Neurosci. 2015;9:229.PubMedPubMedCentralCrossRef Castanon N, Luheshi G, Layé S. Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front Neurosci. 2015;9:229.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479(7374):538–41.PubMedCrossRef Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479(7374):538–41.PubMedCrossRef
70.
Zurück zum Zitat Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol. 2009;183(10):6041–50.PubMedCrossRef Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol. 2009;183(10):6041–50.PubMedCrossRef
71.
Zurück zum Zitat Yokote H, Miyake S, Croxford JL, et al. NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol. 2008;173(6):1714–23.PubMedPubMedCentralCrossRef Yokote H, Miyake S, Croxford JL, et al. NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol. 2008;173(6):1714–23.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Shapira L, Ayalon S, Brenner T. Effects of porphyromonas gingivalis on the central nervous system: activation of glial cells and exacerbation of experimental autoimmune encephalomyelitis. J Periodontol. 2002;73(5):511–6.PubMedCrossRef Shapira L, Ayalon S, Brenner T. Effects of porphyromonas gingivalis on the central nervous system: activation of glial cells and exacerbation of experimental autoimmune encephalomyelitis. J Periodontol. 2002;73(5):511–6.PubMedCrossRef
73.
Zurück zum Zitat Nichols FC, Housley WJ, O’Conor CA, et al. Unique lipids from a common human bacterium represent a new class of Toll-like receptor 2 ligands capable of enhancing autoimmunity. Am J Pathol. 2009;175(6):2430–8.PubMedPubMedCentralCrossRef Nichols FC, Housley WJ, O’Conor CA, et al. Unique lipids from a common human bacterium represent a new class of Toll-like receptor 2 ligands capable of enhancing autoimmunity. Am J Pathol. 2009;175(6):2430–8.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–9.PubMedPubMedCentralCrossRef Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–9.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Mazmanian SK, Liu CH, Tzianabos AO, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–18.PubMedCrossRef Mazmanian SK, Liu CH, Tzianabos AO, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–18.PubMedCrossRef
76.
Zurück zum Zitat Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620–5.PubMedCrossRef Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453(7195):620–5.PubMedCrossRef
77.
Zurück zum Zitat Johnson JL, Jones MB, Cobb BA. Bacterial capsular polysaccharide prevents the onset of asthma through T-cell activation. Glycobiology. 2015;25(4):368–75.PubMedCrossRef Johnson JL, Jones MB, Cobb BA. Bacterial capsular polysaccharide prevents the onset of asthma through T-cell activation. Glycobiology. 2015;25(4):368–75.PubMedCrossRef
78.
Zurück zum Zitat Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, et al. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe. 2014;15(4):413–23.PubMedPubMedCentralCrossRef Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, et al. Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe. 2014;15(4):413–23.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Fletcher JM, Lonergan R, Costelloe L, et al. CD39 + Foxp3+ regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol. 2009;183(11):7602–10.PubMedCrossRef Fletcher JM, Lonergan R, Costelloe L, et al. CD39 + Foxp3+ regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol. 2009;183(11):7602–10.PubMedCrossRef
80.
Zurück zum Zitat Telesford KM, Yan W, Ochoa-Reparaz J, et al. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+)Foxp3(+) T cells and Treg function. Gut Microbes. 2015;6(4):234–42.PubMedCrossRef Telesford KM, Yan W, Ochoa-Reparaz J, et al. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39(+)Foxp3(+) T cells and Treg function. Gut Microbes. 2015;6(4):234–42.PubMedCrossRef
81.
Zurück zum Zitat Cantarel BL, Waubant E, Chehoud C, et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med. 2015;63(5):729–34.PubMedCrossRef Cantarel BL, Waubant E, Chehoud C, et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med. 2015;63(5):729–34.PubMedCrossRef
82.
Zurück zum Zitat Mielcarz DW, Kasper LH. The gut microbiome in multiple sclerosis. Curr Treat Options Neurol. 2015;17(4):344.PubMedCrossRef Mielcarz DW, Kasper LH. The gut microbiome in multiple sclerosis. Curr Treat Options Neurol. 2015;17(4):344.PubMedCrossRef
83.•
Zurück zum Zitat Nouri M, Bredberg A, Weström B, et al. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PLoS ONE. 2014;9(9):e106335. This work demonstrates that inflammatory CNS demyelinating disease affects directly the intestinal structure, permeability and inflammation, suggesting a bi-directional nature of the gut-brain axis.PubMedPubMedCentralCrossRef Nouri M, Bredberg A, Weström B, et al. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PLoS ONE. 2014;9(9):e106335. This work demonstrates that inflammatory CNS demyelinating disease affects directly the intestinal structure, permeability and inflammation, suggesting a bi-directional nature of the gut-brain axis.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat de Vries HE, Kooij G, Frenkel D, et al. Inflammatory events at blood-brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease. Epilepsia. 2012;53 suppl 6:45–52.PubMedCrossRef de Vries HE, Kooij G, Frenkel D, et al. Inflammatory events at blood-brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease. Epilepsia. 2012;53 suppl 6:45–52.PubMedCrossRef
85.•
Zurück zum Zitat Mao Y-K, Kasper DL, Wang B, et al. Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat Commun. 2013;4:1465. This manuscript shows that gut symbiont products directly interact with the neuronal system.PubMedCrossRef Mao Y-K, Kasper DL, Wang B, et al. Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat Commun. 2013;4:1465. This manuscript shows that gut symbiont products directly interact with the neuronal system.PubMedCrossRef
86.
Zurück zum Zitat Yano JM, Yu K, Donaldson GP, Shastri GG, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76.PubMedCrossRef Yano JM, Yu K, Donaldson GP, Shastri GG, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76.PubMedCrossRef
87.
Zurück zum Zitat Gonzalez-Rey E, Fernandez-Martin A, Chorny A, et al. Therapeutic effect of vasoactive intestinal peptide on experimental autoimmune encephalomyelitis: down-regulation of inflammatory and autoimmune responses. Am J Pathol. 2006;168(4):1179–88.PubMedPubMedCentralCrossRef Gonzalez-Rey E, Fernandez-Martin A, Chorny A, et al. Therapeutic effect of vasoactive intestinal peptide on experimental autoimmune encephalomyelitis: down-regulation of inflammatory and autoimmune responses. Am J Pathol. 2006;168(4):1179–88.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Schéle E, Grahnemo L, Anesten F, et al. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology. 2013;154(10):3643–51.PubMedCrossRef Schéle E, Grahnemo L, Anesten F, et al. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology. 2013;154(10):3643–51.PubMedCrossRef
89.
Zurück zum Zitat Foster JA, Neufeld K-AM. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12.PubMedCrossRef Foster JA, Neufeld K-AM. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12.PubMedCrossRef
90.
Zurück zum Zitat Mayer EA. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci. 2011;12(8):453–66.PubMedCrossRef Mayer EA. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci. 2011;12(8):453–66.PubMedCrossRef
91.
92.
Zurück zum Zitat Kohane IS, McMurry A, Weber G, et al. The co-morbidity burden of children and young adults with autism spectrum disorders. PLoS ONE. 2012;7(4):e33224.PubMedPubMedCentralCrossRef Kohane IS, McMurry A, Weber G, et al. The co-morbidity burden of children and young adults with autism spectrum disorders. PLoS ONE. 2012;7(4):e33224.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Adams JB, Johansen LJ, Powell LD, et al. Gastrointestinal flora and gastrointestinal status in children with autism--comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11:22.PubMedPubMedCentralCrossRef Adams JB, Johansen LJ, Powell LD, et al. Gastrointestinal flora and gastrointestinal status in children with autism--comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11:22.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Williams BL, Hornig M, Buie T, et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE. 2011;6(9):e24585.PubMedPubMedCentralCrossRef Williams BL, Hornig M, Buie T, et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE. 2011;6(9):e24585.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Finegold SM, Downes J, Summanen PH. Microbiology of regressive autism. Anaerobe. 2012;18(2):260–2.PubMedCrossRef Finegold SM, Downes J, Summanen PH. Microbiology of regressive autism. Anaerobe. 2012;18(2):260–2.PubMedCrossRef
96.
Zurück zum Zitat Kang D-W, Park JG, Ilhan ZE, et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE. 2013;8(7):e68322.PubMedPubMedCentralCrossRef Kang D-W, Park JG, Ilhan ZE, et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE. 2013;8(7):e68322.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Latta CH, Brothers HM, Wilcock DM. Neuroinflammation in Alzheimer’s disease; a source of heterogeneity and target for personalized therapy. Neuroscience. 2015;302:103–11.PubMedCrossRef Latta CH, Brothers HM, Wilcock DM. Neuroinflammation in Alzheimer’s disease; a source of heterogeneity and target for personalized therapy. Neuroscience. 2015;302:103–11.PubMedCrossRef
98.
Zurück zum Zitat Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405.PubMedCrossRef Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405.PubMedCrossRef
99.
Zurück zum Zitat Lafaye A, Junot C, Ramounet-Le Gall B, et al. Profiling of sulfoconjugates in urine by using precursor ion and neutral loss scans in tandem mass spectrometry. Application to the investigation of heavy metal toxicity in rats. J Mass Spectrom. 2004;39:655–64.PubMedCrossRef Lafaye A, Junot C, Ramounet-Le Gall B, et al. Profiling of sulfoconjugates in urine by using precursor ion and neutral loss scans in tandem mass spectrometry. Application to the investigation of heavy metal toxicity in rats. J Mass Spectrom. 2004;39:655–64.PubMedCrossRef
100.
Zurück zum Zitat Schmidt MV, Schmidt M, Oitzl MS, et al. The HPA system during the postnatal development of CD1 mice and the effects of maternal deprivation. Brain Res Dev Brain Res. 2002;139(1):39–49.PubMedCrossRef Schmidt MV, Schmidt M, Oitzl MS, et al. The HPA system during the postnatal development of CD1 mice and the effects of maternal deprivation. Brain Res Dev Brain Res. 2002;139(1):39–49.PubMedCrossRef
101.
Zurück zum Zitat Crumeyrolle-Arias M, Jaglin M, Bruneau A, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 2014;42:207–17.PubMedCrossRef Crumeyrolle-Arias M, Jaglin M, Bruneau A, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology. 2014;42:207–17.PubMedCrossRef
102.
Zurück zum Zitat Dinan TG, Cryan JF. Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterol Motil. 2013;25(9):713–9.PubMedCrossRef Dinan TG, Cryan JF. Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterol Motil. 2013;25(9):713–9.PubMedCrossRef
103.
Zurück zum Zitat Ochoa-Reparaz J, Mielcarz DW, Begum-Haque S, et al. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol. 2011;69:240–7.PubMedCrossRef Ochoa-Reparaz J, Mielcarz DW, Begum-Haque S, et al. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol. 2011;69:240–7.PubMedCrossRef
105.
Zurück zum Zitat Bercik P, Park AJ, Sinclair D, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil. 2011;23(12):1132–9.PubMedPubMedCentralCrossRef Bercik P, Park AJ, Sinclair D, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil. 2011;23(12):1132–9.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141(2):599–609. 609.e1-3.PubMedCrossRef Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141(2):599–609. 609.e1-3.PubMedCrossRef
107.
Zurück zum Zitat Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.PubMedCrossRef Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.PubMedCrossRef
108.
Zurück zum Zitat Borre YE, O’Keeffe GW, Clarke G, et al. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 2014;20(9):509–18.PubMedCrossRef Borre YE, O’Keeffe GW, Clarke G, et al. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 2014;20(9):509–18.PubMedCrossRef
109.
Zurück zum Zitat Needham BL, Epel ES, Adler NE, et al. Trajectories of change in obesity and symptoms of depression: the CARDIA study. Am J Public Health. 2010;100(6):1040–6.PubMedPubMedCentralCrossRef Needham BL, Epel ES, Adler NE, et al. Trajectories of change in obesity and symptoms of depression: the CARDIA study. Am J Public Health. 2010;100(6):1040–6.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Ma J, Xiao L. Obesity and depression in US women: results from the 2005–2006 National Health and Nutritional Examination Survey. Obesity (Silver Spring). 2010;18(2):347–53.CrossRef Ma J, Xiao L. Obesity and depression in US women: results from the 2005–2006 National Health and Nutritional Examination Survey. Obesity (Silver Spring). 2010;18(2):347–53.CrossRef
111.
Zurück zum Zitat Nagl M, Linde K, Stepan H, et al. Obesity and anxiety during pregnancy and postpartum: a systematic review. J Affect Disord. 2015;186:293–305.PubMedCrossRef Nagl M, Linde K, Stepan H, et al. Obesity and anxiety during pregnancy and postpartum: a systematic review. J Affect Disord. 2015;186:293–305.PubMedCrossRef
112.
Zurück zum Zitat Francis H, Stevenson R. The longer-term impacts of western diet on human cognition and the brain. Appetite. 2013;63:119–28.PubMedCrossRef Francis H, Stevenson R. The longer-term impacts of western diet on human cognition and the brain. Appetite. 2013;63:119–28.PubMedCrossRef
114.
Zurück zum Zitat Atlantis E, Baker M. Obesity effects on depression: systematic review of epidemiological studies. Int J Obes. 2008;32(6):881–91.CrossRef Atlantis E, Baker M. Obesity effects on depression: systematic review of epidemiological studies. Int J Obes. 2008;32(6):881–91.CrossRef
115.
Zurück zum Zitat Bruce-Keller AJ, Salbaum JM, Luo M, et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry. 2015;77(7):607–15.PubMedCrossRef Bruce-Keller AJ, Salbaum JM, Luo M, et al. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry. 2015;77(7):607–15.PubMedCrossRef
Metadaten
Titel
The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders?
verfasst von
Javier Ochoa-Repáraz
Lloyd H. Kasper
Publikationsdatum
01.03.2016
Verlag
Springer US
Erschienen in
Current Obesity Reports / Ausgabe 1/2016
Elektronische ISSN: 2162-4968
DOI
https://doi.org/10.1007/s13679-016-0191-1

Weitere Artikel der Ausgabe 1/2016

Current Obesity Reports 1/2016 Zur Ausgabe

Psychological Issues (M Hetherington and V Drapeau, Section Editors)

Obesity Stigmatization and the Importance of the Research of A.J. Stunkard

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.