Skip to main content
Erschienen in: Clinical Pharmacokinetics 1/2016

01.01.2016 | Leading Article

To Apply Microdosing or Not? Recommendations to Single Out Compounds with Non-Linear Pharmacokinetics

verfasst von: Sieto Bosgra, Maria L. H. Vlaming, Wouter H. J. Vaes

Erschienen in: Clinical Pharmacokinetics | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

Microdosing studies allow clinical investigation of pharmacokinetics earlier in drug development, before all high-dose safety concerns have been sorted out. Furthermore, microdosing allows inclusion of target groups that are inadmissible in high-dose phase I trials. A potential concern when considering a microdosing study is that a particular drug candidate may display non-linear pharmacokinetics. Saturation of, for example, membrane transport or metabolism at exposure levels between the microdose and therapeutic dose may limit the predictivity of high-dose pharmacokinetics from microdose observations. Guidance on the likelihood of appreciable non-linear pharmacokinetics based on preclinical information can be helpful in staging the clinical phase and the place of microdosing in it. We present a decision tree that evaluates concerns about non-linearities raised in the preclinical phase and their potential impact on the proportionality between microdose and intended therapeutic dose as predicted from preclinical information. The expected maximum concentrations at relevant sites are estimated by non-compartmental methods. These are compared with dissolution, Michaelis constants for active or enzymatic processes, and binding protein concentrations to assess the potential saturation of the processes below therapeutic doses. The decision tree was applied to ten published cases comparing microdose and therapeutic dose pharmacokinetics, for which concerns about non-linear pharmacokinetics were raised a priori. The decision tree was able to discriminate cases showing substantial non-linearities from cases displaying dose-proportional pharmacokinetics. The recommendations described in this paper may be useful in deciding whether a microdosing study is a sensible option to gain early insight in clinical pharmacokinetics of drug candidates.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dueker SR, Vuong LT, Lohstroh PN, Giacomo JA, Vogel JS. Quantifying exploratory low dose compounds in humans with AMS. Adv Drug Deliv Rev. 2011;63(7):518–31.PubMedPubMedCentralCrossRef Dueker SR, Vuong LT, Lohstroh PN, Giacomo JA, Vogel JS. Quantifying exploratory low dose compounds in humans with AMS. Adv Drug Deliv Rev. 2011;63(7):518–31.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Lappin G, Shishikura Y, Jochemsen R, Weaver RJ, Gesson C, Houston B, et al. Pharmacokinetics of fexofenadine: evaluation of a microdose and assessment of absolute oral bioavailability. Eur J Pharm Sci. 2010;40(2):125–31.PubMedCrossRef Lappin G, Shishikura Y, Jochemsen R, Weaver RJ, Gesson C, Houston B, et al. Pharmacokinetics of fexofenadine: evaluation of a microdose and assessment of absolute oral bioavailability. Eur J Pharm Sci. 2010;40(2):125–31.PubMedCrossRef
3.
Zurück zum Zitat Denton CL, Minthorn E, Carson SW, Young GC, Richards-Peterson LE, Botbyl J, et al. Concomitant oral and intravenous pharmacokinetics of dabrafenib, a BRAF inhibitor, in patients with BRAF V600 mutation-positive solid tumors. J Clin Pharmacol. 2013;53(9):955–61.PubMedCrossRef Denton CL, Minthorn E, Carson SW, Young GC, Richards-Peterson LE, Botbyl J, et al. Concomitant oral and intravenous pharmacokinetics of dabrafenib, a BRAF inhibitor, in patients with BRAF V600 mutation-positive solid tumors. J Clin Pharmacol. 2013;53(9):955–61.PubMedCrossRef
4.
Zurück zum Zitat Croft M, Keely B, Morris I, Tann L, Lappin G. Predicting drug candidate victims of drug-drug interactions, using microdosing. Clin Pharmacokinet. 2012;51(4):237–46.PubMedCrossRef Croft M, Keely B, Morris I, Tann L, Lappin G. Predicting drug candidate victims of drug-drug interactions, using microdosing. Clin Pharmacokinet. 2012;51(4):237–46.PubMedCrossRef
5.
Zurück zum Zitat Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Guidance for industry, investigators, and reviewers - exploratory IND studies. Rockville: FDA; 2006. Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Guidance for industry, investigators, and reviewers - exploratory IND studies. Rockville: FDA; 2006.
6.
Zurück zum Zitat Brown K, Dingley KH, Turteltaub KW. Accelerator mass spectrometry for biomedical research. Methods Enzymol. 2005;402:423–43.PubMedCrossRef Brown K, Dingley KH, Turteltaub KW. Accelerator mass spectrometry for biomedical research. Methods Enzymol. 2005;402:423–43.PubMedCrossRef
7.
Zurück zum Zitat Jacobson-Kram D, Mills G. Leveraging exploratory investigational new drug studies to accelerate drug development. Clin Cancer Res. 2008;14(12):3670–4.PubMedCrossRef Jacobson-Kram D, Mills G. Leveraging exploratory investigational new drug studies to accelerate drug development. Clin Cancer Res. 2008;14(12):3670–4.PubMedCrossRef
8.
Zurück zum Zitat Lappin G, Seymour M, Gross G, Jørgensen M, Kall M, Kværnø L. Meeting the MIST regulations: human metabolism in phase I using AMS and a tiered bioanalytical approach. Bioanalysis. 2012;4(4):407–16.PubMedCrossRef Lappin G, Seymour M, Gross G, Jørgensen M, Kall M, Kværnø L. Meeting the MIST regulations: human metabolism in phase I using AMS and a tiered bioanalytical approach. Bioanalysis. 2012;4(4):407–16.PubMedCrossRef
9.
Zurück zum Zitat Morris CA, Dueker SR, Lohstroh PN, Wang LQ, Fang XP, Jung D, et al. Mass balance and metabolism of the antimalarial pyronaridine in healthy volunteers. Eur J Drug Metab Pharmacokinet. 2014. doi:10.1007/s13318-014-0182-0.PubMed Morris CA, Dueker SR, Lohstroh PN, Wang LQ, Fang XP, Jung D, et al. Mass balance and metabolism of the antimalarial pyronaridine in healthy volunteers. Eur J Drug Metab Pharmacokinet. 2014. doi:10.​1007/​s13318-014-0182-0.PubMed
10.
Zurück zum Zitat Mooij MG, van Duijn E, Knibbe CA, Windhorst AD, Hendrikse NH, Vaes WH, et al. Pediatric microdose study of [14C]paracetamol to study drug metabolism using accelerated mass spectrometry: proof of concept. Clin Pharmacokinet. 2014;53(11):1045–51.PubMedPubMedCentralCrossRef Mooij MG, van Duijn E, Knibbe CA, Windhorst AD, Hendrikse NH, Vaes WH, et al. Pediatric microdose study of [14C]paracetamol to study drug metabolism using accelerated mass spectrometry: proof of concept. Clin Pharmacokinet. 2014;53(11):1045–51.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Gordi T, Baillie R, le Vuong T, Abidi S, Dueker S, Vasquez H, et al. Pharmacokinetic analysis of 14C-ursodiol in newborn infants using accelerator mass spectrometry. J Clin Pharmacol. 2014;54(9):1031–7.PubMedCrossRef Gordi T, Baillie R, le Vuong T, Abidi S, Dueker S, Vasquez H, et al. Pharmacokinetic analysis of 14C-ursodiol in newborn infants using accelerator mass spectrometry. J Clin Pharmacol. 2014;54(9):1031–7.PubMedCrossRef
12.
14.
Zurück zum Zitat Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.PubMedCrossRef Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.PubMedCrossRef
15.
Zurück zum Zitat Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Guidance for industry, drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. Silver Spring: FDA; 2012. Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER). Guidance for industry, drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. Silver Spring: FDA; 2012.
16.
Zurück zum Zitat European Medicine Agency (EMA), Committee for Human Medicinal Products (CHMP). Guideline on the investigation of drug interactions. London: EMA; 2012. European Medicine Agency (EMA), Committee for Human Medicinal Products (CHMP). Guideline on the investigation of drug interactions. London: EMA; 2012.
17.
Zurück zum Zitat Ludden TM. Nonlinear pharmacokinetics: clinical Implications. Clin Pharmacokinet. 1991;20(6):429–46.PubMedCrossRef Ludden TM. Nonlinear pharmacokinetics: clinical Implications. Clin Pharmacokinet. 1991;20(6):429–46.PubMedCrossRef
18.
Zurück zum Zitat Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.PubMedCrossRef Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.PubMedCrossRef
20.
Zurück zum Zitat Lennernäs H. Modeling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: experience from in vivo dissolution and permeability studies in humans. Curr Drug Metab. 2007;8(7):645–57.PubMedCrossRef Lennernäs H. Modeling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: experience from in vivo dissolution and permeability studies in humans. Curr Drug Metab. 2007;8(7):645–57.PubMedCrossRef
21.
Zurück zum Zitat Tu M, Mathiowetz AM, Pfefferkorn JA, Cameron KO, Dow RL, Litchfield J, et al. Medicinal chemistry design principles for liver targeting through OATP transporters. Curr Top Med Chem. 2013;13(7):857–66.PubMedCrossRef Tu M, Mathiowetz AM, Pfefferkorn JA, Cameron KO, Dow RL, Litchfield J, et al. Medicinal chemistry design principles for liver targeting through OATP transporters. Curr Top Med Chem. 2013;13(7):857–66.PubMedCrossRef
22.
Zurück zum Zitat Rowland M, Tozer TN. Clinical pharmacokinetics and pharmacodynamics—concepts and applications. 4th ed. Baltimore: Williams & Wilkins; 2011. Rowland M, Tozer TN. Clinical pharmacokinetics and pharmacodynamics—concepts and applications. 4th ed. Baltimore: Williams & Wilkins; 2011.
23.
Zurück zum Zitat Weiner IM, Blanchard KC, Mudge GH. Factors influencing renal excretion of foreign organic acids. Am J Physiol. 1964;207:953–63.PubMed Weiner IM, Blanchard KC, Mudge GH. Factors influencing renal excretion of foreign organic acids. Am J Physiol. 1964;207:953–63.PubMed
24.
Zurück zum Zitat Rostami-Hodjegan A, Tucker G. ‘In silico’ simulations to assess the ‘in vivo’ consequences of ‘in vitro’ metabolic drug-drug interactions. Drug Discov Today Technol. 2004;1(4):441–8.PubMedCrossRef Rostami-Hodjegan A, Tucker G. ‘In silico’ simulations to assess the ‘in vivo’ consequences of ‘in vitro’ metabolic drug-drug interactions. Drug Discov Today Technol. 2004;1(4):441–8.PubMedCrossRef
25.
Zurück zum Zitat Bosgra S, van Eijkeren J, Bos P, Zeilmaker M, Slob W. An improved model to predict physiologically based model parameters and their inter-individual variability from anthropometry. Crit Rev Toxicol. 2012;42(9):751–67.PubMedCrossRef Bosgra S, van Eijkeren J, Bos P, Zeilmaker M, Slob W. An improved model to predict physiologically based model parameters and their inter-individual variability from anthropometry. Crit Rev Toxicol. 2012;42(9):751–67.PubMedCrossRef
26.
Zurück zum Zitat Ito K, Chiba K, Horikawa M, Ishigami M, Mizuno N, Aoki J, et al. Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS Pharm Sci. 2002;4(4):E25.CrossRef Ito K, Chiba K, Horikawa M, Ishigami M, Mizuno N, Aoki J, et al. Which concentration of the inhibitor should be used to predict in vivo drug interactions from in vitro data? AAPS Pharm Sci. 2002;4(4):E25.CrossRef
27.
Zurück zum Zitat Westerhout J, van de Steeg E, Grossouw D, Zeijdner EE, Krul CA, Verwei M, et al. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur J Pharm Sci. 2014;63:167–77.PubMedCrossRef Westerhout J, van de Steeg E, Grossouw D, Zeijdner EE, Krul CA, Verwei M, et al. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices. Eur J Pharm Sci. 2014;63:167–77.PubMedCrossRef
28.
Zurück zum Zitat Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27(11):1350–9.PubMed Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999;27(11):1350–9.PubMed
29.
Zurück zum Zitat Chiba M, Ishii Y, Sugiyama Y. Prediction of hepatic clearance in human from in vitro data for successful drug development. AAPS J. 2009;11(2):262–76.PubMedPubMedCentralCrossRef Chiba M, Ishii Y, Sugiyama Y. Prediction of hepatic clearance in human from in vitro data for successful drug development. AAPS J. 2009;11(2):262–76.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Oie S, Tozer TN. Effect of altered plasma protein binding on apparent volume of distribution. J Pharm Sci. 1979;68:1203–5.PubMedCrossRef Oie S, Tozer TN. Effect of altered plasma protein binding on apparent volume of distribution. J Pharm Sci. 1979;68:1203–5.PubMedCrossRef
31.
Zurück zum Zitat Lombardo F, Obach RS, Shalaeva MY, Gao F. Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data. J Med Chem. 2002;45:2867–76.PubMedCrossRef Lombardo F, Obach RS, Shalaeva MY, Gao F. Prediction of volume of distribution values in humans for neutral and basic drugs using physicochemical measurements and plasma protein binding data. J Med Chem. 2002;45:2867–76.PubMedCrossRef
32.
Zurück zum Zitat Lombardo F, Obach RS, Shalaeva MY, Gao F. Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. J Med Chem. 2004;47:1242–50.PubMedCrossRef Lombardo F, Obach RS, Shalaeva MY, Gao F. Prediction of human volume of distribution values for neutral and basic drugs. 2. Extended data set and leave-class-out statistics. J Med Chem. 2004;47:1242–50.PubMedCrossRef
33.
Zurück zum Zitat Lappin G, Shishikura Y, Jochemsen R, Weaver RJ, Gesson C, Houston JB, et al. Comparative pharmacokinetics between a microdose and therapeutic dose for clarithromycin, sumatriptan, propafenone, paracetamol (acetaminophen), and phenobarbital in human volunteers. Eur J Pharm Sci. 2011;43(3):141–50.PubMedCrossRef Lappin G, Shishikura Y, Jochemsen R, Weaver RJ, Gesson C, Houston JB, et al. Comparative pharmacokinetics between a microdose and therapeutic dose for clarithromycin, sumatriptan, propafenone, paracetamol (acetaminophen), and phenobarbital in human volunteers. Eur J Pharm Sci. 2011;43(3):141–50.PubMedCrossRef
34.
Zurück zum Zitat Lappin G, Kuhnz W, Jochemsen R, Kneer J, Chaudhary A, Oosterhuis B, et al. Use of microdosing to predict pharmacokinetics at the therapeutic dose: experience with 5 drugs. Clin Pharmacol Ther. 2006;80(3):203–15.PubMedCrossRef Lappin G, Kuhnz W, Jochemsen R, Kneer J, Chaudhary A, Oosterhuis B, et al. Use of microdosing to predict pharmacokinetics at the therapeutic dose: experience with 5 drugs. Clin Pharmacol Ther. 2006;80(3):203–15.PubMedCrossRef
35.
Zurück zum Zitat Ieiri I, Nishimura C, Maeda K, Sasaki T, Kimura M, Chiyoda T, et al. Pharmacokinetic and pharmacogenomic profiles of telmisartan after the oral microdose and therapeutic dose. Pharmacogenet Genomics. 2011;21(8):495–505.PubMedCrossRef Ieiri I, Nishimura C, Maeda K, Sasaki T, Kimura M, Chiyoda T, et al. Pharmacokinetic and pharmacogenomic profiles of telmisartan after the oral microdose and therapeutic dose. Pharmacogenet Genomics. 2011;21(8):495–505.PubMedCrossRef
36.
Zurück zum Zitat Maeda K, Takano J, Ikeda Y, Fujita T, Oyama Y, Nozawa K, et al. Nonlinear pharmacokinetics of oral quinidine and verapamil in healthy subjects: a clinical microdosing study. Clin Pharmacol Ther. 2011;90(2):263–70.PubMedCrossRef Maeda K, Takano J, Ikeda Y, Fujita T, Oyama Y, Nozawa K, et al. Nonlinear pharmacokinetics of oral quinidine and verapamil in healthy subjects: a clinical microdosing study. Clin Pharmacol Ther. 2011;90(2):263–70.PubMedCrossRef
37.
Zurück zum Zitat Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883–91.PubMedCrossRef Williams JA, Ring BJ, Cantrell VE, Jones DR, Eckstein J, Ruterbories K, et al. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab Dispos. 2002;30(8):883–91.PubMedCrossRef
38.
Zurück zum Zitat Togami K, Chono S, Morimoto K. Transport characteristics of clarithromycin, azithromycin and telithromycin, antibiotics applied for treatment of respiratory infections, in Calu-3 cell monolayers as model lung epithelial cells. Pharmazie. 2012;67(5):389–93.PubMed Togami K, Chono S, Morimoto K. Transport characteristics of clarithromycin, azithromycin and telithromycin, antibiotics applied for treatment of respiratory infections, in Calu-3 cell monolayers as model lung epithelial cells. Pharmazie. 2012;67(5):389–93.PubMed
39.
Zurück zum Zitat Andersson T, Miners JO, Veronese ME, Birkett DJ. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol. 1994;38(2):131–7.PubMedPubMedCentralCrossRef Andersson T, Miners JO, Veronese ME, Birkett DJ. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol. 1994;38(2):131–7.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Wang RW, Newton DJ, Scheri TD, Lu AY. Human cytochrome P450 3A4-catalyzed testosterone 6 beta-hydroxylation and erythromycin N-demethylation. Competition during catalysis. Drug Metab Dispos. 1997;25(4):502–7.PubMed Wang RW, Newton DJ, Scheri TD, Lu AY. Human cytochrome P450 3A4-catalyzed testosterone 6 beta-hydroxylation and erythromycin N-demethylation. Competition during catalysis. Drug Metab Dispos. 1997;25(4):502–7.PubMed
41.
Zurück zum Zitat Nozinic D, Milic A, Mikac L, Ralic J, Padovan J, Antolovic R. Assessment of macrolide transport using PAMPA, Caco-2 and MDCKII-hMDR1 assays. Croat Chem Acta. 2010;83:323–31. Nozinic D, Milic A, Mikac L, Ralic J, Padovan J, Antolovic R. Assessment of macrolide transport using PAMPA, Caco-2 and MDCKII-hMDR1 assays. Croat Chem Acta. 2010;83:323–31.
42.
Zurück zum Zitat Kobayashi Y, Sakai R, Ohshiro N, Ohbayashi M, Kohyama N, Yamamoto T. Possible involvement of organic anion transporter 2 on the interaction of theophylline with erythromycin in the human liver. Drug Metab Dispos. 2005;33(5):619–22.PubMedCrossRef Kobayashi Y, Sakai R, Ohshiro N, Ohbayashi M, Kohyama N, Yamamoto T. Possible involvement of organic anion transporter 2 on the interaction of theophylline with erythromycin in the human liver. Drug Metab Dispos. 2005;33(5):619–22.PubMedCrossRef
43.
Zurück zum Zitat Petri N, Tannergren C, Rungstad D, Lennernäs H. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm Res. 2004;21(8):1398–404.PubMedCrossRef Petri N, Tannergren C, Rungstad D, Lennernäs H. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm Res. 2004;21(8):1398–404.PubMedCrossRef
44.
Zurück zum Zitat Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27(8):866–71.PubMed Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27(8):866–71.PubMed
45.
46.
Zurück zum Zitat Riches Z, Bloomer J, Patel A, Nolan A, Coughtrie M. Assessment of cryopreserved human hepatocytes as a model system to investigate sulfation and glucuronidation and to evaluate inhibitors of drug conjugation. Xenobiotica. 2009;39(5):374–81.PubMedCrossRef Riches Z, Bloomer J, Patel A, Nolan A, Coughtrie M. Assessment of cryopreserved human hepatocytes as a model system to investigate sulfation and glucuronidation and to evaluate inhibitors of drug conjugation. Xenobiotica. 2009;39(5):374–81.PubMedCrossRef
47.
Zurück zum Zitat Hemeryck A, De Vriendt C, Belpaire FM. Effect of selective serotonin reuptake inhibitors on the oxidative metabolism of propafenone: in vitro studies using human liver microsomes. J Clin Psychopharmacol. 2000;20(4):428–34.PubMedCrossRef Hemeryck A, De Vriendt C, Belpaire FM. Effect of selective serotonin reuptake inhibitors on the oxidative metabolism of propafenone: in vitro studies using human liver microsomes. J Clin Psychopharmacol. 2000;20(4):428–34.PubMedCrossRef
48.
Zurück zum Zitat Ekins S, Bravi G, Wikel JH, Wrighton SA. Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther. 1999;291(1):424–33.PubMed Ekins S, Bravi G, Wikel JH, Wrighton SA. Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther. 1999;291(1):424–33.PubMed
49.
Zurück zum Zitat Shirasaka Y, Masaoka Y, Kataoka M, Sakuma S, Yamashita S. Scaling of in vitro membrane permeability to predict P-glycoprotein-mediated drug absorption in vivo. Drug Metab Dispos. 2008;36(5):916–22.PubMedCrossRef Shirasaka Y, Masaoka Y, Kataoka M, Sakuma S, Yamashita S. Scaling of in vitro membrane permeability to predict P-glycoprotein-mediated drug absorption in vivo. Drug Metab Dispos. 2008;36(5):916–22.PubMedCrossRef
50.
Zurück zum Zitat Ebner T, Schänzle G, Weber W, Sent U, Elliott J. In vitro glucuronidation of the angiotensin II receptor antagonist telmisartan in the cat: a comparison with other species. J Vet Pharmacol Ther. 2013;36(2):154–60.PubMedCrossRef Ebner T, Schänzle G, Weber W, Sent U, Elliott J. In vitro glucuronidation of the angiotensin II receptor antagonist telmisartan in the cat: a comparison with other species. J Vet Pharmacol Ther. 2013;36(2):154–60.PubMedCrossRef
51.
Zurück zum Zitat Ishiguro N, Maeda K, Kishimoto W, Saito A, Harada A, Ebner T, et al. Predominant contribution of OATP1B3 to the hepatic uptake of telmisartan, an angiotensin II receptor antagonist, in humans. Drug Metab Dispos. 2006;34(7):1109–15.PubMedCrossRef Ishiguro N, Maeda K, Kishimoto W, Saito A, Harada A, Ebner T, et al. Predominant contribution of OATP1B3 to the hepatic uptake of telmisartan, an angiotensin II receptor antagonist, in humans. Drug Metab Dispos. 2006;34(7):1109–15.PubMedCrossRef
52.
Zurück zum Zitat Yazdanian M, Glynn SL, Wright JL, Hawi A. Correlating partitioning and caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res. 1998;15(9):1490–4.PubMedCrossRef Yazdanian M, Glynn SL, Wright JL, Hawi A. Correlating partitioning and caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharm Res. 1998;15(9):1490–4.PubMedCrossRef
53.
Zurück zum Zitat Tolle-Sander S, Rautio J, Wring S, Polli JW, Polli JE. Midazolam exhibits characteristics of a highly permeable P-glycoprotein substrate. Pharm Res. 2003;20(5):757–64.PubMedCrossRef Tolle-Sander S, Rautio J, Wring S, Polli JW, Polli JE. Midazolam exhibits characteristics of a highly permeable P-glycoprotein substrate. Pharm Res. 2003;20(5):757–64.PubMedCrossRef
54.
Zurück zum Zitat Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci. 2000;10(3):195–204.PubMedCrossRef Yamashita S, Furubayashi T, Kataoka M, Sakane T, Sezaki H, Tokuda H. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci. 2000;10(3):195–204.PubMedCrossRef
55.
Zurück zum Zitat Castillo-Garit JA, Marrero-Ponce Y, Torrens F, García-Domenech R. Estimation of ADME properties in drug discovery: predicting Caco-2 cell permeability using atom-based stochastic and non-stochastic linear indices. J Pharm Sci. 2008;97(5):1946–76.PubMedCrossRef Castillo-Garit JA, Marrero-Ponce Y, Torrens F, García-Domenech R. Estimation of ADME properties in drug discovery: predicting Caco-2 cell permeability using atom-based stochastic and non-stochastic linear indices. J Pharm Sci. 2008;97(5):1946–76.PubMedCrossRef
56.
Zurück zum Zitat Rodrigues AD, Roberts EM, Mulford DJ, Yao Y, Ouellet D. Oxidative metabolism of clarithromycin in the presence of human liver microsomes. Major role for the cytochrome P4503A (CYP3A) subfamily. Drug Metab Dispos. 1997;25(5):623–30.PubMed Rodrigues AD, Roberts EM, Mulford DJ, Yao Y, Ouellet D. Oxidative metabolism of clarithromycin in the presence of human liver microsomes. Major role for the cytochrome P4503A (CYP3A) subfamily. Drug Metab Dispos. 1997;25(5):623–30.PubMed
57.
Zurück zum Zitat Swift B, Tian X, Brouwer KLR. Integration of preclinical and clinical data with pharmacokinetic modeling and simulation to evaluate fexofenadine as a probe for hepatobiliary transport function. Pharm Res. 2009;26(8):1942–51.PubMedPubMedCentralCrossRef Swift B, Tian X, Brouwer KLR. Integration of preclinical and clinical data with pharmacokinetic modeling and simulation to evaluate fexofenadine as a probe for hepatobiliary transport function. Pharm Res. 2009;26(8):1942–51.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Naritomi Y, Terashita S, Kagayama A, Sugiyama Y. Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos. 2003;31(5):580–8.PubMedCrossRef Naritomi Y, Terashita S, Kagayama A, Sugiyama Y. Utility of hepatocytes in predicting drug metabolism: comparison of hepatic intrinsic clearance in rats and humans in vivo and in vitro. Drug Metab Dispos. 2003;31(5):580–8.PubMedCrossRef
59.
Zurück zum Zitat Barter ZE, Bayliss MK, Beaune PH, Boobis AR, Carlile DJ, Edwards RJ, et al. Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr Drug Metab. 2007;8(1):33–45.PubMedCrossRef Barter ZE, Bayliss MK, Beaune PH, Boobis AR, Carlile DJ, Edwards RJ, et al. Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr Drug Metab. 2007;8(1):33–45.PubMedCrossRef
60.
Zurück zum Zitat Niwa T, Murayama N, Emoto C, Yamazaki H. Comparison of kinetic parameters for drug oxidation rates and substrate inhibition potential mediated by cytochrome P450 3A4 and 3A5. Curr Drug Metab. 2008;9(1):20–33.PubMedCrossRef Niwa T, Murayama N, Emoto C, Yamazaki H. Comparison of kinetic parameters for drug oxidation rates and substrate inhibition potential mediated by cytochrome P450 3A4 and 3A5. Curr Drug Metab. 2008;9(1):20–33.PubMedCrossRef
61.
Zurück zum Zitat Snyder R, Sangar R, Wang J, Ekins S. Three-dimensional quantitative structure activity relationship for CYP2D6 substrates. QSAR. 2002;21:357–68. Snyder R, Sangar R, Wang J, Ekins S. Three-dimensional quantitative structure activity relationship for CYP2D6 substrates. QSAR. 2002;21:357–68.
62.
Zurück zum Zitat Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8.PubMedCrossRef Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8.PubMedCrossRef
63.
Zurück zum Zitat Nagar S, Walther S, Blanchard RL. Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation. Mol Pharmacol. 2006;69(6):2084–92.PubMedCrossRef Nagar S, Walther S, Blanchard RL. Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation. Mol Pharmacol. 2006;69(6):2084–92.PubMedCrossRef
64.
Zurück zum Zitat Riches Z, Stanley EL, Bloomer JC, Coughtrie MW. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”. Drug Metab Dispos. 2009;37(11):2255–61.PubMedPubMedCentralCrossRef Riches Z, Stanley EL, Bloomer JC, Coughtrie MW. Quantitative evaluation of the expression and activity of five major sulfotransferases (SULTs) in human tissues: the SULT “pie”. Drug Metab Dispos. 2009;37(11):2255–61.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Cole GB, Keum G, Liu J, Small GW, Satyamurthy N, Kepe V, et al. Specific estrogen sulfotransferase (SULT1E1) substrates and molecular imaging probe candidates. Proc Natl Acad Sci. 2010;107(14):6222–7.PubMedPubMedCentralCrossRef Cole GB, Keum G, Liu J, Small GW, Satyamurthy N, Kepe V, et al. Specific estrogen sulfotransferase (SULT1E1) substrates and molecular imaging probe candidates. Proc Natl Acad Sci. 2010;107(14):6222–7.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Hashiguchi T, Kurogi K, Sakakibara Y, Yamasaki M, Nishiyama K, Yasuda S, et al. Enzymatic sulfation of tocopherols and tocopherol metabolites by human cytosolic sulfotransferases. Biosci Biotechnol Biochem. 2011;75(10):1951–6.PubMedCrossRef Hashiguchi T, Kurogi K, Sakakibara Y, Yamasaki M, Nishiyama K, Yasuda S, et al. Enzymatic sulfation of tocopherols and tocopherol metabolites by human cytosolic sulfotransferases. Biosci Biotechnol Biochem. 2011;75(10):1951–6.PubMedCrossRef
67.
Zurück zum Zitat Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260–87.PubMedPubMedCentralCrossRef Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br J Pharmacol. 2012;165(5):1260–87.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Levy G, Mager DE, Cheung WK, Jusko WJ. Comparative pharmacokinetics of coumarin anticoagulants L: physiologic modeling of S-warfarin in rats and pharmacologic target-mediated warfarin disposition in man. J Pharm Sci. 2003;92(5):985–94.PubMedCrossRef Levy G, Mager DE, Cheung WK, Jusko WJ. Comparative pharmacokinetics of coumarin anticoagulants L: physiologic modeling of S-warfarin in rats and pharmacologic target-mediated warfarin disposition in man. J Pharm Sci. 2003;92(5):985–94.PubMedCrossRef
69.
Zurück zum Zitat Gill KL, Houston JB, Galetin A. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin. Drug Metab Dispos. 2012;40(4):825–35.PubMedPubMedCentralCrossRef Gill KL, Houston JB, Galetin A. Characterization of in vitro glucuronidation clearance of a range of drugs in human kidney microsomes: comparison with liver and intestinal glucuronidation and impact of albumin. Drug Metab Dispos. 2012;40(4):825–35.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Cubitt HE, Houston JB, Galetin A. Prediction of human drug clearance by multiple metabolic pathways: integration of hepatic and intestinal microsomal and cytosolic data. Drug Metab Dispos. 2011;39(5):864–73.PubMedCrossRef Cubitt HE, Houston JB, Galetin A. Prediction of human drug clearance by multiple metabolic pathways: integration of hepatic and intestinal microsomal and cytosolic data. Drug Metab Dispos. 2011;39(5):864–73.PubMedCrossRef
71.
Zurück zum Zitat Zou P, Zheng N, Yang Y, Yu LX, Sun D. Prediction of volume of distribution at steady state in humans: comparison of different approaches. Expert Opin Drug Metab Toxicol. 2012;8(7):855–72.PubMedCrossRef Zou P, Zheng N, Yang Y, Yu LX, Sun D. Prediction of volume of distribution at steady state in humans: comparison of different approaches. Expert Opin Drug Metab Toxicol. 2012;8(7):855–72.PubMedCrossRef
72.
Zurück zum Zitat Sugiyama Y, Yamashita S. Impact of microdosing clinical study—why necessary and how useful? Adv Drug Deliv Rev. 2011;63(7):494–502.PubMedCrossRef Sugiyama Y, Yamashita S. Impact of microdosing clinical study—why necessary and how useful? Adv Drug Deliv Rev. 2011;63(7):494–502.PubMedCrossRef
73.
Zurück zum Zitat Vlaming M, van Duijn E, Dillingh MR, Brands R, Windhorst AD, Hendrikse NH, et al. Microdosing of a carbon-14 labeled protein in healthy volunteers accurately predicts its pharmacokinetics at therapeutic dosages. Clin Pharmacol Ther. 2015;. doi:10.1002/cpt.131 (Epub 2015 Apr 13).PubMed Vlaming M, van Duijn E, Dillingh MR, Brands R, Windhorst AD, Hendrikse NH, et al. Microdosing of a carbon-14 labeled protein in healthy volunteers accurately predicts its pharmacokinetics at therapeutic dosages. Clin Pharmacol Ther. 2015;. doi:10.​1002/​cpt.​131 (Epub 2015 Apr 13).PubMed
74.
Zurück zum Zitat Smith BP, Vandenhende FR, DeSante KA, Farid NA, Welch PA, Callaghan JT, et al. Confidence interval criteria for assessment of dose proportionality. Pharm Res. 2000;17:1278–83.PubMedCrossRef Smith BP, Vandenhende FR, DeSante KA, Farid NA, Welch PA, Callaghan JT, et al. Confidence interval criteria for assessment of dose proportionality. Pharm Res. 2000;17:1278–83.PubMedCrossRef
75.
Zurück zum Zitat Hummel J, McKendrick S, Brindley C, French R. Exploratory assessment of dose proportionality: review of current approaches and proposal for a practical criterion. Pharm Stat. 2009;8(1):38–49.PubMedCrossRef Hummel J, McKendrick S, Brindley C, French R. Exploratory assessment of dose proportionality: review of current approaches and proposal for a practical criterion. Pharm Stat. 2009;8(1):38–49.PubMedCrossRef
Metadaten
Titel
To Apply Microdosing or Not? Recommendations to Single Out Compounds with Non-Linear Pharmacokinetics
verfasst von
Sieto Bosgra
Maria L. H. Vlaming
Wouter H. J. Vaes
Publikationsdatum
01.01.2016
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 1/2016
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-015-0308-9

Weitere Artikel der Ausgabe 1/2016

Clinical Pharmacokinetics 1/2016 Zur Ausgabe