Skip to main content
Erschienen in: BMC Cancer 1/2007

Open Access 01.12.2007 | Research article

Prognostic impact of clinicopathologic parameters in stage II/III breast cancer treated with neoadjuvant docetaxel and doxorubicin chemotherapy: paradoxical features of the triple negative breast cancer

verfasst von: Bhumsuk Keam, Seock-Ah Im, Hee-Jun Kim, Do-Youn Oh, Jee Hyun Kim, Se-Hoon Lee, Eui Kyu Chie, Wonshik Han, Dong-Wan Kim, Woo Kyung Moon, Tae-You Kim, In Ae Park, Dong-Young Noh, Dae Seog Heo, Sung Whan Ha, Yung-Jue Bang

Erschienen in: BMC Cancer | Ausgabe 1/2007

Abstract

Background

Prognostic factors in locally advanced breast cancer treated with neoadjuvant chemotherapy differ from those of early breast cancer. The purpose of this study was to identify the clinical significance of potential predictive and prognostic factors in breast cancer patients treated by neoadjuvant chemotherapy.

Methods

A total of 145 stage II and III breast cancer patients received neoadjuvant docetaxel/doxorubicin chemotherapy were enrolled in this study. We examined the clinical and biological factors (ER, PR, p53, c-erbB2, bcl-2, and Ki-67) by immunohistochemistry. We analyzed clinical outcome and their correlation with clinicopathologic parameters.

Results

Among the clinicopathologic parameters investigated, none of the marker was correlated with response rate (RR) except triple negative phenotype. Patients with triple negative phenotype showed higher RR (83.0% in triple negative vs. 62.2% in non-triple negative, p = 0.012) and pathologic complete RR (17.0% in triple negative vs. 3.1% in non-triple negative, p = 0.005). However, relapse free survival (RFS) and overall survival (OS) were significantly shorter in triple negative breast cancer patients (p < 0.001, p = 0.021, respectively). Low histologic grade, positive hormone receptors, positive bcl-2 and low level of Ki-67 were associated with prolonged RFS. In addition, positive ER and positive bcl-2 were associated with prolonged OS. In our homogeneous patient population, initial clinical stage reflects RFS and OS more precisely than pathologic stage. In multivariate analysis, initial clinical stage was the only significant independent prognostic factor to impact on OS (hazard ratio 3.597, p = 0.044).

Conclusion

Several molecular markers provided useful predictive and prognostic information in stage II and III breast cancer patients treated with neoadjuvant docetaxel/doxorubicin chemotherapy. Triple negative phenotype was associated with shorter survival, even though it was associated with a higher response rate to neoadjuvant chemotherapy.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2407-7-203) contains supplementary material, which is available to authorized users.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

BK collected the data, performed the statistical analysis and drafted the manuscript. SAI designed the concept of this study, performed the statistical analysis with interpretation and approved the final manuscript. HJK collected the data. DYO, JHK, SHL, DWK, TYK, DSH and YJB performed the chemotherapy for patients and revised the manuscript. EKC and SWH performed radiation therapy for patients and participated in treatment coordination. WH and DYN performed operation and treatment coordination. WKM reviewed the breast images and measured the tumor size. IAP carried out the immunoassays and pathologic examinations. All authors read and approved the final manuscript.

Background

Neoadjuvant chemotherapy has become a standard therapy for patients with locally advanced breast cancer [1, 2]. Major roles of neoadjuvant chemotherapy are 1) conversion of inoperable or inflammatory breast cancer to operable status 2) increasing the rate of breast conserving surgery, and 3) individual in vivo chemosensitivity test of the tumor [24]. However, a potential disadvantage of neoadjuvant chemotherapy is the loss of prognostic value provided by tumor size and nodal status at surgery and before adjuvant chemotherapy [3, 4].
A number of studies have investigated prognostic factors in the neoadjuvant setting. At present, pathologic complete response (pCR) is a useful independent prognostic factor and the patients who achieved pCR showed better survival compared with those with residual tumor [58]. However a small percentage of patients achieved pCR, and a significant portion of patients with pCR had recurrent disease [9]. Molecular markers such as estrogen receptor (ER), progesterone receptor (PR), p53, Ki-67 and c-erbB2 considered predictive or prognostic factors in neoadjuvant setting [7, 1014]. However, these markers are often contradictory and not conclusive because of heterogeneous patient populations, small sample sizes, and different chemotherapeutic regimens. Due to alterations in molecular mechanism during neoadjuvant chemotherapy, and also uncertainty regarding the prognostic value of clinicopatholgic parameters, physicians felt difficulties to accurately define risk profiles and identify optimal post operation treatment including chemotherapy and radiation therapy.
We ourselves have conducted neoadjuvant docetaxel/doxorubicin combination chemotherapy in stage II and III breast cancer patients. The purpose of this study was to identify the clinical significance of potential predictive and prognostic factors in the neoadjuvant setting.

Methods

Patients and treatment

From March 2002 to March 2006, patients were enrolled in this study. Eligibility criteria included: 1) pathologically confirmed breast cancer by core needle biopsy, 2) clinical stage II or III, 3) objective measurable lesion, 4) ECOG performance 0–2, 5) previously untreated, 6) adequate bone marrow, hepatic, cardiac, and renal functions. Initial evaluation included clinical examination, mammography, breast ultrasonography, computed tomography of chest, bone scan, and breast magnetic resonance imaging (MRI). Initial tumor size was measured by MRI. Initial nodal staging was evaluated by physical examination and by computed tomography. After three cycles of neoadjuvant chemotherapy, the patients were re-evaluated for response.
The chemotherapeutic regimen comprised docetaxel (75 mg/m2 or 60 mg/m2) and doxorubicin (60 mg/m2 or 50 mg/m2) by intravenous infusion every three weeks for three cycles, with granulocyte colony stimulating factor as primary prophylaxis. After completion of neoadjuvant treatment, the patients underwent primary surgery and received three more cycles of docetaxel and doxorubicin as adjuvant chemotherapy, followed by radiation or hormonal therapy if indicated [15]. If the patients had been found to have progressive disease, they underwent primary surgery and received adjuvant chemotherapy using different regimens. This regimen was known to be effective and well tolerated as neoadjuvant chemotherapy for stage II or III breast cancer [16].
Radiologic response was evaluated using breast MRI for primary breast cancer measurement and chest CT for lymph node measurement by RECIST criteria [17] as follows; complete response was defined as the complete disappearance of all assessable lesions; partial response as a >30% reduction in the sum of the longest diameters of all measurable lesions; stable disease as a <30% reduction or a <20% increase in the sum of the longest diameters of all measurable lesions; and progressive disease was defined as >20% increase in the area(s) of original measurable lesion or the appearance of a new lesion.
We examined the conventional clinicopathologic factors including the six different biological factors (ER, PR, p53, c-erbB2, bcl-2, and Ki-67) by immunohistochemistry and evaluated their association with clinical outcomes. The study protocol was reviewed and approved by the institutional review board at the Seoul National University Hospital. Recommendations of the Declaration of Helsinki for biomedical research involving human subjects were also followed.

Pathologic Examination and Immunohistochemistry

The pretreatment formalin-fixed, paraffin-embedded tissue blocks were used for immunohistochemistry. The pathological tumor stage assessed according to the criteria established by the 6th edition of AJCC cancer staging manual [18], the grade of the tumor according to the Scarff-Bloom-Richardson classification modified by Elston and Ellis [19]. The pathologic complete response (pCR) was defined as complete disappearance of invasive carcinoma in both breast and axillary lymph nodes after three cycles of chemotherapy. Residual ductal carcinoma in-situ was included in the pCR category.
ER, PR, c-erbB2, p53, bcl-2, and Ki-67 expressions were evaluated by the avidin-biotin complex immunohistochemical technique [20]. Tissue sections (4-μm thickness) from paraffin-embedded tissue blocks were cut, deparaffinized in xylene, rehydrated with graded ethanol, and immersed in Tris-buffered saline. After an antigen-retrieval process, primary antibodies were used as previously described [21]. The companies that supplied the primary antibodies and the dilution factors used were; ER (Dako Corporation, Carpinteria, CA, USA; 1:50), PR (Dako Corporation; 1:50), c-erbB2 (Novocastra Laboratories Ltd., New Castle-Upon-Tyne, U.K.; 1:200), p53 (Dako Corporation; 1:1200), bcl-2 (Dako Corporation; 1:50), and Ki-67 (Dako Corporation; 1:800). All primary antibodies were mouse monoclonal antibodies. Biotinylated anti-mouse antibody was used as secondary antibody and streptavidin horseradish peroxidase (Zymed laboratories, San Francisco, CA, USA) methods were used.
A cut-off value of 10% or more positively stained nuclei in ten high-power fields was used to define ER and PR positivity. C-erbB2 scores of 0, 1 and 2 were considered negative, and a score of 3 was considered positive [22]. In the current study, we did not have FISH information available on the majority of c-erbB2 positive patients. Ki-67 with ≤ 5% and p53 with <25% were considered as low expression. Triple negative subtype was defined as ER negative, PR negative, and c-erbB2 negative, regardless of the expression of EGFR or basal cytokeratins.

Statistical analysis

The significance of the difference in the response rate among different groups was calculated using the Chi-squared test and Fisher's exact test, where appropriate. Multivariate analyses were carried out using the Cox proportional hazard regression models. Relapse free survival (RFS) was determined as the interval between the initiation of neoadjuvant chemotherapy and the date when disease relapse or progression was first documented or the date of death from any cause. Overall survival (OS) was measured from the date of neoadjuvant chemotherapy initiation to the date of death. Survival comparisons between different groups were made using the log-rank tests. All values were two sided and statistical significance was defined as p < 0.05. SPSS version 12.0 software (SPSS, Inc., Chicago, IL, USA) was used for all statistical analyses.

Results

Patient Characteristics and efficacy

A total of 145 patients with a median age of 45 (range 25–69) were evaluated in this study. The clinical characteristics of the patients are summarized in Table 1. Most of the patients (84.1%) were clinical stage III at the time of initial diagnosis and eighteen patients (12.4%) had inflammatory breast cancers. The median tumor size was 5 cm which is relatively large for Asian woman who have small breast. The breast conserving surgery rate was 35.9%. The overall radiologic response rate (RR) was 68.9% including 7 complete response (4.8%) and 93 partial response (64.1%) (Table 2). All 7 radiologic complete responder showed pCR and four patients who showed radiologic residual lesion were turned out to pCR. Consequently, eleven patients (7.6%) achieved a pCR (Table 2).
Table 1
Clinical characteristics of 145 patients
Characteristics
No. of Pt (%)
Median age (range)
45 (range 25–69)
   Age < 50
102 (70.3)
   Age ≥ 50
43 (29.7)
Performance status
 
   ECOG 0–1
139 (95.9)
   ECOG 2
6 (4.1)
Pathologic characteristics
 
   Invasive ductal carcinoma
137 (94.5)
   Others
8 (5.5)
Initial clinical stage
 
   IIA
2 (1.4)
   IIB
21 (14.5)
   IIIA
70 (48.3)
   IIIB
34 (23.4)
   IIIC
18 (12.4)
Median tumor size
5.0 cm (range 1.2–12.0 cm)
Inflammatory breast cancer
 
   Yes
18 (12.4)
   No
127 (87.6)
Type of surgery
 
   Breast conserving
52 (35.9)
   Mastectomy
93 (64.1)
Adjuvant hormonal therapy
 
   Yes
63 (43.4)
   No
82 (56.6)
Radiation therapy
 
   Yes
128 (88.3)
   No
17 (11.7)
ECOG, Eastern Cooperative Oncology Group.
Table 2
Radiologic and pathologic response after docetaxel plus doxorubicin neoadjuvant chemotherapy
Response
No. of Pts (%)
Radiologic response
 
   Complete response
7 (4.8)
   Partial response
93 (64.1)
   Stable disease
42 (29.0)
   Progressive disease
3 (2.1)
Pathologic complete response
 
   Yes
11 (7.6)
   No
134 (92.4)
Of 145 patients, 138 patients including patients with pCR received three more cycles of docetaxel and doxorubicin as planned adjuvant chemotherapy. Three patients who showed progressive disease and 4 patients who were unacceptable to docetaxel received different adjuvant chemotherapy using FAC (5-fluorouracil, doxorubicin, cyclophosphamide), AC (doxorubicin, cyclophosphamide) or CMF (cyclophosphamide, methotrexate, 5-fluorouracil) after curative surgery.
Median follow-up duration was 18.6 months. Estimated one and three year relapse free survival rates were 88.7% and 56.5%, respectively. Estimated one and three year overall survival rates were 97.5% and 71.6% respectively.

Correlation between clinicopathological variables and response rate

Potential traditional predictive factors (age, performance, stage, nuclear grade, histologic grade, ER, PR, p53, c-erbB2, bcl-2 and Ki-67) were analyzed. Table 3 compares radiologic RR and predictive factors. pCR was correlated with radiologic RR (p = 0.018). pCR and radiologic RR according to ER/PR/c-erbB2 are summarized in Table 4. Patients with triple negative breast cancer showed higher RR (83.0% in triple negative vs. 62.2% in non-triple negative, p = 0.012).
Table 3
Correlation between clinicopathological variables and radiologic response rate
Variables
 
No. of Pts
Responders (RR %)
p-value*
Age
< 50
≥ 50
102
43
69 (67.6)
31 (72.1)
0.597
Performance
ECOG 0–1
ECOG 2
139
6
95 (68.3)
5 (83.3)
0.666
Initial clinical stage
IIA, IIB, IIIA
IIIB, IIIC
93
52
64 (68.8)
36 (69.2)
0.959
pCR
No
134
89 (66.4)
0.018
 
Yes
11
11 (100.0)
 
Nuclear grade
I, II
41
22 (53.7)
0.069
 
III
87
61 (70.1)
 
 
Unknown
17
-
 
Histologic grade
I, II
39
24 (61.5)
0.741
 
III
82
53 (64.6)
 
 
Unknown
24
-
 
ER
Positive
64
41 (64.1)
0.257
 
Negative
81
59 (72.8)
 
PR
Positive
44
28 (63.6)
0.360
 
Negative
101
72 (71.3)
 
bcl-2
Positive
63
45 (71.4)
0.749
 
Negative
74
51 (68.9)
 
 
Unknown
8
-
 
Ki-67
Low expression#
56
34 (60.7)
0.066
 
High expression
85
64 (75.3)
 
 
Unknown
4
-
 
p53
Low expression#
67
43 (64.2)
0.219
 
High expression
76
56 (73.7)
 
 
Unknown
2
-
 
c-erbB2
0/+/++
107
76 (71.0)
0.368
 
+++
38
24 (63.2)
 
Triple negative
No
98
61 (62.2)
0.012
 
Yes
47
39 (83.0)
 
RR, response rate; pCR, pathologic complete response; ER, estrogen receptor; PR, progesterone receptor.
*based on Pearson's χ2 test (using Fisher's exact test if N ≤ 5).
#Ki-67 with ≤ 5% and p53 with <25% were considered as low expression.
Table 4
Pathologic complete response and radiologic response rate according to ER/PR/c-erbB2
  
No. of Pts
pCR (N = 11)
p-value
Radiologic Response (RR %)
p-value
Variables
  
No. of Pts (%)
 
No. of Pts (%)
 
ER
Positive
64
1 (1.6)
0.023
41 (64.1)
0.257
 
Negative
81
10 (12.3)
 
59 (72.8)
 
PR
Positive
44
1 (2.3)
0.173
28 (63.6)
0.360
 
Negative
101
10 (9.9)
 
72 (71.3)
 
c-erbB2
0/+/++
107
9 (8.4)
0.728
76 (71.0)
0.368
 
+++
38
2 (5.3)
 
24 (63.2)
 

Correlation between clinicopathological variables and survival

The results of univariate analyses for RFS and OS were shown in Table 5. Responding to neoadjuvant chemotherapy did not affect RFS or OS. Among the parameters investigated, low histologic grade, positive ER, positive PR, positive bcl-2 and low level of Ki-67 were associated with prolonged RFS in univariate analysis. In addition, positive ER and positive bcl-2 were associated with prolonged overall survival (OS) in univariate analysis. In terms of stage, initial clinical stage reflects RFS and OS more precisely than pathologic stage. Kaplan-Meier plots (Figure 1) show the survival curve according to clinical and pathologic stage.
Table 5
Correlation between clinicopathological variables and survival-univariate analysis
   
RFS
OS
Variables
 
No. of Pt
HR* (95% CI)
p-value
HR* (95% CI)
p-value
Age
<50
102
1
0.317
1
0.283
 
≥50
43
1.476 (0.688–3.166)
 
1.831 (0.606–5.533)
 
Performance
ECOG 0–1
139
1
0.686
1
0.888
 
ECOG 2
6
1.349 (0.316–5.756)
 
1.160 (0.148–9.073)
 
Initial clinical stage
IIA, IIB, IIIA
93
1
0.017
1
0.010
 
IIIB, IIIC
52
2.370 (1.116–4.815)
 
4.764 (1.462–15.525)
 
pCR
No
134
1
0.817
NA#
NA#
 
Yes
11
1.186 (0.281–5.005)
   
Pathologic stage
pCR~IIIA
113
1
0.288
1
0.086
 
IIIB, IIIC
32
1.525 (0.700–3.319)
 
2.608 (0.874–7.786)
 
Pathologic N stage
N0
42
1
0.636
1
0.566
 
N1–3
103
0.828 (0.378–1.812)
 
1.558 (0.342–7.099)
 
Radiologic response
Responder
100
1
0.515
1
0.683
 
Non-responder
45
0.776 (0.361–1.665)
 
1.258 (0.419–3.775)
 
Nuclear grade
I, II
41
1
0.151
1
0.141
 
III
87
1.894 (0.792–4.532)
 
2.689 (0.722–10.023)
 
Histologic grade
I, II
39
1
0.020
1
0.132
 
III
82
4.159 (1.248–13.865)
 
4.820 (0.621–32.387)
 
ER
Positive
64
1
0.001
1
0.028
 
Negative
81
5.410 (2.073–14.119)
 
9.921 (1.289–76.349)
 
PR
Positive
44
1
0.005
1
0.166
 
Negative
101
7.778 (1.851–32.673)
 
4.278 (0.547–33.476)
 
bcl-2
Positive
63
1
0.034
1
0.046
 
Negative
74
2.351 (1.068–5.175)
 
4.705 (1.030–21.490)
 
Ki-67
Low expression
56
1
0.038
1
0.082
 
High expression
85
2.357 (1.050–5.287)
 
3.263 (0.861–12.363)
 
p53
Low expression
67
1
0.869
1
0.670
 
High expression
76
1.063 (0.515–2.193)
 
1.281 (0.410–3.998)
 
c-erbB2
0/+/++
107
1
0.242
1
0.678
 
+++
38
1.555 (0.742–3.255)
 
1.273 (0.408–3.973)
 
Triple negative
No
98
1
0.002
1
0.029
 
Yes
47
3.148 (1.539–6.441)
 
3.430 (1.133–10.378)
 
RFS, relapse free survival; OS, overall survival; HR, hazard ratio; CI, confidence interval.
*Hazard ratio was calculated by Cox's proportional hazard model. If the hazard ratio is greater than 1, the hazard ratio can be thought of as the average increased risk of relapse or dying at any point in time compared with the reference group (described upper line).
#NA: Not available due to all censored in pCR.
We also performed multivariate analysis (Table 6). Cox proportional hazard regression analysis for OS included statistically significant variables (initial clinical stage, ER, bcl-2, and triple negative). In multivariate analysis, initial clinical stage was the only significant independent prognostic factor to impact on OS (hazard ratio 3.597, p = 0.044).
Table 6
Multivariate Cox regression analyses for the factors associated with overall survival
 
OS
Variables
HR
95% CI
p-value
Initial clinical stage
3.597
1.037–12.480
0.044
ER
3.329
0.296–37.454
0.330
bcl-2
3.027
0.557–16.437
0.200
Triple negative
1.847
0.492–6.935
0.364

Clinical significance of triple negative breast cancer

Forty seven patients (32.4%) of the 145 were triple negative breast cancer. Clinicopathologic variables according to triple negative are summarized in Table 7. Triple negative breast cancer patients showed statistically higher nuclear grade, and lower bcl-2 positive rate than non-triple negative breast cancer patients. A trend for high levels of Ki-67 was also observed in triple negative, although it did not reach statistical significance (p = 0.053). The pCR rate and clinical RR in triple negative were significantly higher (p = 0.005, p = 0.012, respectively). However, RFS and OS were significantly short in triple negative breast cancer patients (p < 0.001, p = 0.021, respectively). RFS and OS survival curves for triple negative and non-triple negative are shown in Figure 2. Because c-erbB2 positivity by immunohistochemistry was unclear, we conducted a second analysis considering 2+ as c-erbB2 positive. Using this definition of triple negative, the results were similar.
Table 7
Clinicopathologic characteristics according to triple negative and non-triple negative breast cancer
  
No. of Pts
Triple negative (N = 47)
Non-triple negative (N = 98)
p-value*
Variables
  
No. of Pts (%)
No. of Pts (%)
 
Age
< 50
102
33 (70.2)
69 (70.4)
0.981
 
≥ 50
43
14 (29.8)
29 (29.6)
 
Performance
ECOG 0–1
139
45 (95.7)
94 (95.9)
0.961
 
ECOG 2
6
2 (4.3)
4 (4.1)
 
Initial clinical stage
IIA, IIB, IIIA
93
27 (57.4)
66 (67.3)
0.245
 
IIIB, IIIC
52
20 (42.6)
32 (32.7)
 
Inflammatory breast cancer
Yes
18
4 (8.5)
14 (14.3)
0.425
 
No
127
43 (91.5)
84 (85.7)
 
Radiologic response
Responder
100
39 (83.0)
61 (62.2)
0.012
 
Non-responder
45
8 (17.0)
37 (37.8)
 
pCR
No
134
39 (83.0)
95 (96.9)
0.005
 
Yes
11
8 (17.0)
3 (3.1)
 
Adjuvant hormonal therapy
Yes
63
0 (0.0)
63 (64.3)
<0.001
 
No
82
47(100.0)
35 (35.7)
 
Radiation therapy
Yes
128
41 (87.2)
87 (88.8)
0.787
 
No
17
6 (12.8)
11 (11.2)
 
Nuclear grade
I, II
41
3 (8.1)
38 (41.8)
<0.001
 
III
87
34 (91.9)
53 (58.2)
 
Histologic grade
I, II
39
7 (20.0)
32 (37.2)
0.066
 
III
82
28 (80.0)
54 (62.8)
 
bcl-2
Positive
63
14 (31.8)
49 (52.7)
0.022
 
Negative
74
30 (68.2)
44 (47.3)
 
Ki-67
Low expression
56
13 (28.3)
43 (45.3)
0.053
 
High expression
85
33 (71.7)
52 (54.7)
 
p53
Low expression
67
22 (46.8)
45 (46.9)
0.994
 
High expression
76
25 (53.2)
51 (53.1)
 
*based on Pearson's χ2 test (using Fisher's exact test if N ≤ 5)

Discussion

The clinical course of breast cancer patients treated with neoadjuvant chemotherapy remains difficult to predict, because histologically homogeneous breast cancers vary in response to therapy and have divergent outcomes [23]. As a result, many researchers have tried to identify prognostic factors in order to give optimal individualized therapy in locally advanced breast cancer, as well as in early breast cancer. Currently, pCR is the most powerful prognostic factor for prolonged survival in neoadjuvant chemotherapy [3, 5, 6, 24]. However, a significant proportion of patients with pCR have recurrent diseases [9]. Moreover, the prognostic factors for patients receiving neoadjuvant chemotherapy differ from those for patients who receive adjuvant or palliative chemotherapy, because pathologic parameters including tumor size and nodal status are changed by neoadjuvant chemotherapy [3]. Hence we tried to determine the additional predictive and prognostic markers for early relapse other than pCR in neoadjuvant setting.
In the present study, we found that a triple negative phenotype was a predictive marker for response in neoadjuvant docetaxel and doxorubicin chemotherapy. In addition, initial clinical stage, hormone receptor, histologic grade, bcl-2 and Ki-67 were all associated with RFS. In other published studies using non-anthracycline based chemoendocrine agents [11], it was reported that positive ER, absence of c-erbB2 and decrease in Ki-67 were associated with a good clinical response. Overexpression of p53 was also reported to be associated with a lower response rate to anthracycline based neoadjuvant chemotherapy [13, 14, 25] and to be an independent factor for poor survival [14, 25]. In our results, overexpression of p53 failed to show clinical significance in neoadjuvant setting. However, p53 mutation which was associated with response to neoadjuvant chemotherapy [13] was not in agreement with p53 overexpression measured by quantitative immunohistochemistry. Additional mutational study of p53 is needed to clarify correlation between p53 and clinical outcomes. The predictive or prognostic value of bcl-2, apoptosis regulatory protein, remains controversial in neoadjuvant setting. In one study, higher bcl-2 expression was predictive for pCR [26], while other studies did not find any correlation between bcl-2 expression and clinical response [25, 27]. Traditional prognostic makers such as nodal stage [28] and c-erbB2 [10, 11] showed no prognostic value in our result. Relatively short follow up period of 18.6 months might partially explain this. As yet, these biologic markers are inconclusive, owing to heterogeneous chemotherapeutic regimens and the small sample size of extant studies. More studies should be carried out, to identify more precisely the prognostic markers in the neoadjuvant setting.
In our results, pCR which is considered to be the most powerful prognostic factor did not show significant prognostic value. Possible explanations for the weakened prognostic power of pCR are the relatively lower rate of pCR (7.6%), the short course of neoadjuvant chemotherapy, and the short duration of follow up (18.6 months). We conducted only three cycles of neoadjuvant chemotherapy, while other neoadjuvant regimens have been based on four to six cycles, and have shown higher pCR rates (8–26%) than our own study [24, 29, 30].
Optimal treatment after neoadjuvant chemotherapy remains still uncertain [31]. Unlike early breast cancer, it is not yet clear whether adjuvant therapy should be conducted according to initial clinical stage or post operative pathologic stage. In our homogeneous patient population, initial clinical stage was an independent prognostic factor for survival, while pathologic stage failed to reflect ultimate survival. This result was obtained by using accurate staging work up modalities, including breast MRI and chest computed tomography. In contrast, Carey et al [32] analyzed 135 patients with median follow up of 5 years and reported that pathologic stage after neoadjuvant chemotherapy was useful for predicting survival. Chollet et al [33] also reported prognostic value of residual tumor size and nodal status after neoadjuvant chemotherapy with median follow up of 9.3 year. However, despite short duration of follow up, our results showed statistical superiority of initial clinical stage in predicting survival. This result might give us useful information when determining post operative adjuvant therapy.
Triple negative breast cancer has been reported as being associated with a poor clinical outcome in early breast cancer [34, 35]. In locally advanced breast cancer, there are limited data about response to chemotherapy and survival. In the present study, we found that triple negative breast cancer responded to neoadjuvant chemotherapy initially but then relapsed rapidly. Generally, tumor responsiveness to chemotherapy is believed to be associated with a longer survival. However, in triple negative phenotype, tumor responsiveness did not affect prolonged survival. In contrast, non-triple negative breast cancer did not show a marked response but progressed rather slowly. This paradoxical feature is consistent with other studies conducted in basal-like breast cancer, which was identified using gene expression profiling [36, 37]. In the present study, we did not conduct gene expression profiling and hierachial cluster analysis. However, it is known that 80–90% of triple negative breast cancers by immunohistochemistry are basal-like subtypes by gene expression profiling [35] and have a similar clinical behavior, in addition [38, 39]. It is notable that we were able to obtain useful predictive and prognostic information by simple immunohistochemistry without high cost.
It is not yet certain whether the poor prognosis of triple negative breast cancer is due to its aggressive feature or because of lack of targeted therapy, including adjuvant hormonal therapy and c-erbB2 targeted agents. We hypothesized that triple negative breast cancer itself seems to reflect more aggressive tumor biology and growth rate potential with high expression of Ki-67. Our data suggest that patients with triple negative breast cancer should be candidates for clinical trials to determine additional agents including antiangiogenic agents.

Conclusion

Several molecular markers play a role as predictive and prognostic factors in stage II and III breast cancer patients receiving neoadjuvant chemotherapy. We also confirmed the usefulness of initial clinical stage, as a predictor of survival. We found that triple negative phenotype was associated with shorter survival, even though it was associated with a higher response rate to neoadjuvant chemotherapy. These results might assist in identifying and understanding the importance of clinically useful markers in the neoadjuvant setting, and help to optimize treatments.

Acknowledgements

This study was supported by a Korean Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2006-531-E00034), a grant from the Seoul National University Hospital Research Fund (05-800-20050148) and a grant from the Korean Health 21 R &D Project, Ministry of Health & Welfare, Republic of Korea (03-PJ10-PG13-GD01-0002). We would like to thank our clinical research nurse Kyung-Hee Lee for her assistance of clinical trial. We thank BioMed Proofreading for English editing services.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

BK collected the data, performed the statistical analysis and drafted the manuscript. SAI designed the concept of this study, performed the statistical analysis with interpretation and approved the final manuscript. HJK collected the data. DYO, JHK, SHL, DWK, TYK, DSH and YJB performed the chemotherapy for patients and revised the manuscript. EKC and SWH performed radiation therapy for patients and participated in treatment coordination. WH and DYN performed operation and treatment coordination. WKM reviewed the breast images and measured the tumor size. IAP carried out the immunoassays and pathologic examinations. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Esteva FJ, Hortobagyi GN: Locally advanced breast cancer. Hematol Oncol Clin North Am. 1999, 13: 457-72. 10.1016/S0889-8588(05)70065-4.CrossRefPubMed Esteva FJ, Hortobagyi GN: Locally advanced breast cancer. Hematol Oncol Clin North Am. 1999, 13: 457-72. 10.1016/S0889-8588(05)70065-4.CrossRefPubMed
2.
Zurück zum Zitat Kaufmann M, von Minckwitz G, Smith R, Valero V, Gianni L, Eiermann W, Howell A, Costa SD, Beuzeboc P, Untch M, Blohmer JU, Sinn HP, Sittek R, Souchon R, Tulusan AH, Volm T, Senn HJ: International expert panel on the use of primary (preoperative) systemic treatment of operable breast cancer: review and recommendations. J Clin Oncol. 2003, 21: 2600-8. 10.1200/JCO.2003.01.136.CrossRefPubMed Kaufmann M, von Minckwitz G, Smith R, Valero V, Gianni L, Eiermann W, Howell A, Costa SD, Beuzeboc P, Untch M, Blohmer JU, Sinn HP, Sittek R, Souchon R, Tulusan AH, Volm T, Senn HJ: International expert panel on the use of primary (preoperative) systemic treatment of operable breast cancer: review and recommendations. J Clin Oncol. 2003, 21: 2600-8. 10.1200/JCO.2003.01.136.CrossRefPubMed
3.
Zurück zum Zitat Estevez LG, Gradishar WJ: Evidence-based use of neoadjuvant taxane in operable and inoperable breast cancer. Clin Cancer Res. 2004, 10: 3249-61. 10.1158/1078-0432.CCR-03-0133.CrossRefPubMed Estevez LG, Gradishar WJ: Evidence-based use of neoadjuvant taxane in operable and inoperable breast cancer. Clin Cancer Res. 2004, 10: 3249-61. 10.1158/1078-0432.CCR-03-0133.CrossRefPubMed
4.
Zurück zum Zitat Shimizu C, Ando M, Kouno T, Katsumata N, Fujiwara Y: Current Trends and Controversies over Pre-operative Chemotherapy for Women with Operable Breast Cancer. Jpn J Clin Oncol. 2007, 37: 1-8. 10.1093/jjco/hyl122.CrossRefPubMed Shimizu C, Ando M, Kouno T, Katsumata N, Fujiwara Y: Current Trends and Controversies over Pre-operative Chemotherapy for Women with Operable Breast Cancer. Jpn J Clin Oncol. 2007, 37: 1-8. 10.1093/jjco/hyl122.CrossRefPubMed
5.
Zurück zum Zitat Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, Wickerham DL, Begovic M, DeCillis A, Robidoux A, Margolese RG, Cruz AB, Hoehn JL, Lees AW, Dimitrov NV, Bear HD: Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol. 1998, 16: 2672-85.PubMed Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, Wickerham DL, Begovic M, DeCillis A, Robidoux A, Margolese RG, Cruz AB, Hoehn JL, Lees AW, Dimitrov NV, Bear HD: Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol. 1998, 16: 2672-85.PubMed
6.
Zurück zum Zitat Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K, Theriault RL, Singh G, Binkley SM, Sneige N, Buchholz TA, Ross MI, McNeese MD, Buzdar AU, Hortobagyi GN, Singletary SE: Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol. 1999, 17: 460-9.PubMed Kuerer HM, Newman LA, Smith TL, Ames FC, Hunt KK, Dhingra K, Theriault RL, Singh G, Binkley SM, Sneige N, Buchholz TA, Ross MI, McNeese MD, Buzdar AU, Hortobagyi GN, Singletary SE: Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol. 1999, 17: 460-9.PubMed
7.
Zurück zum Zitat Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B: Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr. 2001, 30: 96-102.CrossRefPubMed Wolmark N, Wang J, Mamounas E, Bryant J, Fisher B: Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr. 2001, 30: 96-102.CrossRefPubMed
8.
Zurück zum Zitat Guarneri V, Broglio K, Kau SW, Cristofanilli M, Buzdar AU, Valero V, Buchholz T, Meric F, Middleton L, Hortobagyi GN, Gonzalez-Angulo AM: Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. J Clin Oncol. 2006, 24: 1037-44. 10.1200/JCO.2005.02.6914.CrossRefPubMed Guarneri V, Broglio K, Kau SW, Cristofanilli M, Buzdar AU, Valero V, Buchholz T, Meric F, Middleton L, Hortobagyi GN, Gonzalez-Angulo AM: Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. J Clin Oncol. 2006, 24: 1037-44. 10.1200/JCO.2005.02.6914.CrossRefPubMed
9.
Zurück zum Zitat Gonzalez-Angulo AM, McGuire SE, Buchholz TA, Buchholz TA, Tucker SL, Kuerer HM, Rouzier R, Kau SW, Huang EH, Morandi P, Ocana A, Cristofanilli M, Valero V, Buzdar AU, Hortobagyi GN: Factors predictive of distant metastases in patients with breast cancer who have a pathologic complete response after neoadjuvant chemotherapy. J Clin Oncol. 2005, 23: 7098-104. 10.1200/JCO.2005.11.124.CrossRefPubMed Gonzalez-Angulo AM, McGuire SE, Buchholz TA, Buchholz TA, Tucker SL, Kuerer HM, Rouzier R, Kau SW, Huang EH, Morandi P, Ocana A, Cristofanilli M, Valero V, Buzdar AU, Hortobagyi GN: Factors predictive of distant metastases in patients with breast cancer who have a pathologic complete response after neoadjuvant chemotherapy. J Clin Oncol. 2005, 23: 7098-104. 10.1200/JCO.2005.11.124.CrossRefPubMed
10.
Zurück zum Zitat Willsher PC, Pinder SE, Gee JM, Ellis IO, Chan SY, Nicholson RI, Blamey RW, Robertson JF: c-erbB2 expression predicts response to preoperative chemotherapy for locally advanced breast cancer. Anticancer Res. 1998, 18: 3695-98.PubMed Willsher PC, Pinder SE, Gee JM, Ellis IO, Chan SY, Nicholson RI, Blamey RW, Robertson JF: c-erbB2 expression predicts response to preoperative chemotherapy for locally advanced breast cancer. Anticancer Res. 1998, 18: 3695-98.PubMed
11.
Zurück zum Zitat Chang J, Powles TJ, Allred DC, Ashley SE, Clark GM, Makris A, Assersohn L, Gregory RK, Osborne CK, Dowsett M: Biologic markers as predictors of clinical outcome from systemic therapy for primary operable breast cancer. J Clin Oncol. 1999, 17: 3058-63.PubMed Chang J, Powles TJ, Allred DC, Ashley SE, Clark GM, Makris A, Assersohn L, Gregory RK, Osborne CK, Dowsett M: Biologic markers as predictors of clinical outcome from systemic therapy for primary operable breast cancer. J Clin Oncol. 1999, 17: 3058-63.PubMed
12.
Zurück zum Zitat Mauriac L, MacGrogan G, Avril A, Durand M, Floquet A, Debled M, Dilhuydy JM, Bonichon F: Neoadjuvant chemotherapy for operable breast carcinoma larger than 3 cm: a unicentre randomized trial with a 124-month median follow-up. Institut Bergonie Bordeaux Groupe Sein (IBBGS). Ann Oncol. 1999, 10: 47-52. 10.1023/A:1008337009350.CrossRefPubMed Mauriac L, MacGrogan G, Avril A, Durand M, Floquet A, Debled M, Dilhuydy JM, Bonichon F: Neoadjuvant chemotherapy for operable breast carcinoma larger than 3 cm: a unicentre randomized trial with a 124-month median follow-up. Institut Bergonie Bordeaux Groupe Sein (IBBGS). Ann Oncol. 1999, 10: 47-52. 10.1023/A:1008337009350.CrossRefPubMed
13.
Zurück zum Zitat Kandioler-Eckersberger D, Ludwig C, Rudas M, Kappel S, Janschek E, Wenzel C, Schlagbauer-Wadl H, Mittlbock M, Gnant M, Steger G, Jakesz R: TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin Cancer Res. 2000, 6: 50-6.PubMed Kandioler-Eckersberger D, Ludwig C, Rudas M, Kappel S, Janschek E, Wenzel C, Schlagbauer-Wadl H, Mittlbock M, Gnant M, Steger G, Jakesz R: TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin Cancer Res. 2000, 6: 50-6.PubMed
14.
Zurück zum Zitat Bonnefoi H, Diebold-Berger S, Therasse P, Hamilton A, van de Vijver M, MacGrogan G, Shepherd L, Amaral N, Duval C, Drijkoningen R, Larsimont D, Piccart M: Locally advanced/inflammatory breast cancers treated with intensive epirubicin-based neoadjuvant chemotherapy: are there molecular markers in the primary tumour that predict for 5-year clinical outcome?. Ann Oncol. 2003, 14: 406-13. 10.1093/annonc/mdg108.CrossRefPubMed Bonnefoi H, Diebold-Berger S, Therasse P, Hamilton A, van de Vijver M, MacGrogan G, Shepherd L, Amaral N, Duval C, Drijkoningen R, Larsimont D, Piccart M: Locally advanced/inflammatory breast cancers treated with intensive epirubicin-based neoadjuvant chemotherapy: are there molecular markers in the primary tumour that predict for 5-year clinical outcome?. Ann Oncol. 2003, 14: 406-13. 10.1093/annonc/mdg108.CrossRefPubMed
15.
Zurück zum Zitat Recht A, Edge SB, Solin LJ, Robinson DS, Estabrook A, Fine RE, Fleming GF, Formenti S, Hudis C, Kirshner JJ, Krause DA, Kuske RR, Langer AS, Sledge GW, Whelan TJ, Pfister DG: Postmastectomy radiotherapy: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol. 2001, 19: 1539-69.PubMed Recht A, Edge SB, Solin LJ, Robinson DS, Estabrook A, Fine RE, Fleming GF, Formenti S, Hudis C, Kirshner JJ, Krause DA, Kuske RR, Langer AS, Sledge GW, Whelan TJ, Pfister DG: Postmastectomy radiotherapy: clinical practice guidelines of the American Society of Clinical Oncology. J Clin Oncol. 2001, 19: 1539-69.PubMed
16.
Zurück zum Zitat Han S, Kim SB, Kang SS, Noh WC, Paik NS, Chang ES, Kim JR, Lim SH, Park HS: A phase II study of neoadjuvant docetaxel plus doxorubicin (KBCS-01) in stage II, III breast cancer. Breast Cancer Res Treat. 2006, 98: 57-61. 10.1007/s10549-005-9131-6.CrossRefPubMed Han S, Kim SB, Kang SS, Noh WC, Paik NS, Chang ES, Kim JR, Lim SH, Park HS: A phase II study of neoadjuvant docetaxel plus doxorubicin (KBCS-01) in stage II, III breast cancer. Breast Cancer Res Treat. 2006, 98: 57-61. 10.1007/s10549-005-9131-6.CrossRefPubMed
17.
Zurück zum Zitat Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG: New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000, 92: 205-16. 10.1093/jnci/92.3.205.CrossRefPubMed Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG: New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000, 92: 205-16. 10.1093/jnci/92.3.205.CrossRefPubMed
18.
Zurück zum Zitat Greene FL, Page DL, Fleming ID, Fritz AG, Balch CM, Haller DG, Morrow M: AJCC cancer staging manual. 2002, New York: Springer, 6CrossRef Greene FL, Page DL, Fleming ID, Fritz AG, Balch CM, Haller DG, Morrow M: AJCC cancer staging manual. 2002, New York: Springer, 6CrossRef
19.
Zurück zum Zitat Elston CW, Ellis IO: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991, 19: 403-410. 10.1111/j.1365-2559.1991.tb00229.x.CrossRefPubMed Elston CW, Ellis IO: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991, 19: 403-410. 10.1111/j.1365-2559.1991.tb00229.x.CrossRefPubMed
20.
Zurück zum Zitat Hsu SM, Raine L, Fanger H: A comparative study of the peroxidase-antiperoxidase method and an avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am J Clin Pathol. 1981, 75: 734-8.CrossRefPubMed Hsu SM, Raine L, Fanger H: A comparative study of the peroxidase-antiperoxidase method and an avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am J Clin Pathol. 1981, 75: 734-8.CrossRefPubMed
21.
Zurück zum Zitat Lee KH, Im SA, Oh DY, Lee SH, Chie EK, Han W, Kim DW, Kim TY, Park IA, Noh DY, Heo DS, Ha SW, Bang YJ: Prognostic significance of bcl-2 expression in stage III breast cancer patients who had received doxorubicin and cyclophosphamide followed by paclitaxel as adjuvant chemotherapy. BMC Cancer. 2007, 12 (7): 63-10.1186/1471-2407-7-63.CrossRef Lee KH, Im SA, Oh DY, Lee SH, Chie EK, Han W, Kim DW, Kim TY, Park IA, Noh DY, Heo DS, Ha SW, Bang YJ: Prognostic significance of bcl-2 expression in stage III breast cancer patients who had received doxorubicin and cyclophosphamide followed by paclitaxel as adjuvant chemotherapy. BMC Cancer. 2007, 12 (7): 63-10.1186/1471-2407-7-63.CrossRef
22.
Zurück zum Zitat Perez EA, Roche PC, Jenkins RB, Reynolds CA, Halling KC, Ingle JN, Wold LE: HER2 testing in patients with breast cancer: Poor correlation between weak positivity by immunohistochemistry and gene amplification by fluorescence in situ hybridization. Mayo Clin Proc. 2002, 77: 148-54.CrossRefPubMed Perez EA, Roche PC, Jenkins RB, Reynolds CA, Halling KC, Ingle JN, Wold LE: HER2 testing in patients with breast cancer: Poor correlation between weak positivity by immunohistochemistry and gene amplification by fluorescence in situ hybridization. Mayo Clin Proc. 2002, 77: 148-54.CrossRefPubMed
23.
Zurück zum Zitat Alizadeh AA, Ross DT, Perou CM, van de Rijn M: Towards a novel classification of human malignancies based on gene expression patterns. J Pathol. 2001, 195: 41-52. 10.1002/path.889.CrossRefPubMed Alizadeh AA, Ross DT, Perou CM, van de Rijn M: Towards a novel classification of human malignancies based on gene expression patterns. J Pathol. 2001, 195: 41-52. 10.1002/path.889.CrossRefPubMed
24.
Zurück zum Zitat Chollet P, Amat S, Cure H, de Latour M, Le Bouedec G, Mouret-Reynier MA, Ferriere JP, Achard JL, Dauplat J, Penault-Llorca F: Prognostic significance of a complete pathological response after induction chemotherapy in operable breast cancer. Br J Cancer. 2002, 86: 1041-6. 10.1038/sj.bjc.6600210.CrossRefPubMedPubMedCentral Chollet P, Amat S, Cure H, de Latour M, Le Bouedec G, Mouret-Reynier MA, Ferriere JP, Achard JL, Dauplat J, Penault-Llorca F: Prognostic significance of a complete pathological response after induction chemotherapy in operable breast cancer. Br J Cancer. 2002, 86: 1041-6. 10.1038/sj.bjc.6600210.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Bottini A, Dogliotti L, Bersiga A, Brizzi MP, Berruti A: p53 but not bcl-2 immunostaining is predictive of poor clinical complete response to primary chemotherapy in breast cancer patients. Clin Cancer Res. 2000, 6: 2751-8.PubMed Bottini A, Dogliotti L, Bersiga A, Brizzi MP, Berruti A: p53 but not bcl-2 immunostaining is predictive of poor clinical complete response to primary chemotherapy in breast cancer patients. Clin Cancer Res. 2000, 6: 2751-8.PubMed
26.
Zurück zum Zitat Schneeweiss A, Katretchko J, Sinn HP, Unnebrink K, Rudlowski C, Geberth M, Beldermann F, Bastert G, Strittmatter HJ: Only grading has independent impact on breast cancer survival after adjustment for pathological response to preoperative chemotherapy. Anticancer Drugs. 2004, 15: 127-35. 10.1097/00001813-200402000-00005.CrossRefPubMed Schneeweiss A, Katretchko J, Sinn HP, Unnebrink K, Rudlowski C, Geberth M, Beldermann F, Bastert G, Strittmatter HJ: Only grading has independent impact on breast cancer survival after adjustment for pathological response to preoperative chemotherapy. Anticancer Drugs. 2004, 15: 127-35. 10.1097/00001813-200402000-00005.CrossRefPubMed
27.
Zurück zum Zitat van Slooten HJ, Clahsen PC, van Dierendonck JH, Duval C, Pallud C, Mandard AM, Delobelle-Deroide A, van de Velde CJ, van de Vijver MJ: Expression of Bcl-2 in node-negative breast cancer is associated with various prognostic factors, but does not predict response to one course of perioperative chemotherapy. Br J Cancer. 1996, 74: 78-85.CrossRefPubMedPubMedCentral van Slooten HJ, Clahsen PC, van Dierendonck JH, Duval C, Pallud C, Mandard AM, Delobelle-Deroide A, van de Velde CJ, van de Vijver MJ: Expression of Bcl-2 in node-negative breast cancer is associated with various prognostic factors, but does not predict response to one course of perioperative chemotherapy. Br J Cancer. 1996, 74: 78-85.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Yildirim E, Semerci E, Berberoglu U: The analysis of prognostic factors in stage III-B non-inflammatory breast cancer. Eur J Surg Oncol. 2000, 26: 34-8. 10.1053/ejso.1999.0737.CrossRefPubMed Yildirim E, Semerci E, Berberoglu U: The analysis of prognostic factors in stage III-B non-inflammatory breast cancer. Eur J Surg Oncol. 2000, 26: 34-8. 10.1053/ejso.1999.0737.CrossRefPubMed
29.
Zurück zum Zitat Ganem G, Tubiana-Hulin M, Fumoleau P, Combe M, Misset JL, Vannetzel JM, Bachelot T, De Ybarlucea LR, Lotz V, Bendahmane B, Dieras V: Phase II trial combining docetaxel and doxorubicin as neoadjuvant chemotherapy in patients with operable breast cancer. Ann Oncol. 2003, 14: 1623-28. 10.1093/annonc/mdg449.CrossRefPubMed Ganem G, Tubiana-Hulin M, Fumoleau P, Combe M, Misset JL, Vannetzel JM, Bachelot T, De Ybarlucea LR, Lotz V, Bendahmane B, Dieras V: Phase II trial combining docetaxel and doxorubicin as neoadjuvant chemotherapy in patients with operable breast cancer. Ann Oncol. 2003, 14: 1623-28. 10.1093/annonc/mdg449.CrossRefPubMed
30.
Zurück zum Zitat Bear HD, Anderson S, Brown A, Smith R, Mamounas EP, Fisher B, Margolese R, Theoret H, Soran A, Wickerham DL, Wolmark N: The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol. 2003, 21: 4165-74. 10.1200/JCO.2003.12.005.CrossRefPubMed Bear HD, Anderson S, Brown A, Smith R, Mamounas EP, Fisher B, Margolese R, Theoret H, Soran A, Wickerham DL, Wolmark N: The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol. 2003, 21: 4165-74. 10.1200/JCO.2003.12.005.CrossRefPubMed
31.
Zurück zum Zitat Maur M, Guarneri V, Frassoldati A, Conte PF: Primary systemic therapy in operable breast cancer: clinical data and biological fall-out. Ann Oncol. 2006, 17: v158-64. 10.1093/annonc/mdj973.CrossRefPubMed Maur M, Guarneri V, Frassoldati A, Conte PF: Primary systemic therapy in operable breast cancer: clinical data and biological fall-out. Ann Oncol. 2006, 17: v158-64. 10.1093/annonc/mdj973.CrossRefPubMed
32.
Zurück zum Zitat Carey LA, Metzger R, Dees EC, Collichio F, Sartor CI, Ollila DW, Klauber-DeMore N, Halle J, Sawyer L, Moore DT, Graham ML: American Joint Committee on Cancer tumor-node-metastasis stage after neoadjuvant chemotherapy and breast cancer outcome. J Natl Cancer Inst. 2005, 97: 1137-42.CrossRefPubMed Carey LA, Metzger R, Dees EC, Collichio F, Sartor CI, Ollila DW, Klauber-DeMore N, Halle J, Sawyer L, Moore DT, Graham ML: American Joint Committee on Cancer tumor-node-metastasis stage after neoadjuvant chemotherapy and breast cancer outcome. J Natl Cancer Inst. 2005, 97: 1137-42.CrossRefPubMed
33.
Zurück zum Zitat Chollet P, Amat S, Belembaogo E, Curé H, de Latour M, Dauplat J, Le Bouëdec G, Mouret-Reynier MA, Ferrière JP, Penault-Llorca F: Is Nottingham prognostic index useful after induction chemotherapy in operable breast cancer?. Br J Cancer. 2003, 89: 1185-91. 10.1038/sj.bjc.6601258.CrossRefPubMedPubMedCentral Chollet P, Amat S, Belembaogo E, Curé H, de Latour M, Dauplat J, Le Bouëdec G, Mouret-Reynier MA, Ferrière JP, Penault-Llorca F: Is Nottingham prognostic index useful after induction chemotherapy in operable breast cancer?. Br J Cancer. 2003, 89: 1185-91. 10.1038/sj.bjc.6601258.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Haffty BG, Yang Q, Reiss M, Kearney T, Higgins SA, Weidhaas J, Harris L, Hait W, Toppmeyer D: Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol. 2006, 24: 5652-7. 10.1200/JCO.2006.06.5664.CrossRefPubMed Haffty BG, Yang Q, Reiss M, Kearney T, Higgins SA, Weidhaas J, Harris L, Hait W, Toppmeyer D: Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol. 2006, 24: 5652-7. 10.1200/JCO.2006.06.5664.CrossRefPubMed
35.
Zurück zum Zitat Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, Ellis IO: Prognostic markers in triple-negative breast cancer. Cancer. 2007, 109: 25-32. 10.1002/cncr.22381.CrossRefPubMed Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, Ellis IO: Prognostic markers in triple-negative breast cancer. Cancer. 2007, 109: 25-32. 10.1002/cncr.22381.CrossRefPubMed
36.
Zurück zum Zitat Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM: The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007, 13: 2329-34. 10.1158/1078-0432.CCR-06-1109.CrossRefPubMed Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, Ollila DW, Sartor CI, Graham ML, Perou CM: The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007, 13: 2329-34. 10.1158/1078-0432.CCR-06-1109.CrossRefPubMed
37.
Zurück zum Zitat Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P, Morandi P, Fan C, Rabiul I, Ross JS, Hortobagyi GN, Pusztai L: Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res. 2005, 11: 5678-85. 10.1158/1078-0432.CCR-04-2421.CrossRefPubMed Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P, Morandi P, Fan C, Rabiul I, Ross JS, Hortobagyi GN, Pusztai L: Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res. 2005, 11: 5678-85. 10.1158/1078-0432.CCR-04-2421.CrossRefPubMed
38.
Zurück zum Zitat Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001, 98: 10869-74. 10.1073/pnas.191367098.CrossRefPubMedPubMedCentral Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001, 98: 10869-74. 10.1073/pnas.191367098.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Brenton JD, Carey LA, Ahmed AA, Caldas C: Molecular classification and molecular forecasting of breast cancer: ready for clinical application?. J Clin Oncol. 2005, 23: 7350-60. 10.1200/JCO.2005.03.3845.CrossRefPubMed Brenton JD, Carey LA, Ahmed AA, Caldas C: Molecular classification and molecular forecasting of breast cancer: ready for clinical application?. J Clin Oncol. 2005, 23: 7350-60. 10.1200/JCO.2005.03.3845.CrossRefPubMed
Metadaten
Titel
Prognostic impact of clinicopathologic parameters in stage II/III breast cancer treated with neoadjuvant docetaxel and doxorubicin chemotherapy: paradoxical features of the triple negative breast cancer
verfasst von
Bhumsuk Keam
Seock-Ah Im
Hee-Jun Kim
Do-Youn Oh
Jee Hyun Kim
Se-Hoon Lee
Eui Kyu Chie
Wonshik Han
Dong-Wan Kim
Woo Kyung Moon
Tae-You Kim
In Ae Park
Dong-Young Noh
Dae Seog Heo
Sung Whan Ha
Yung-Jue Bang
Publikationsdatum
01.12.2007
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2007
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-7-203

Weitere Artikel der Ausgabe 1/2007

BMC Cancer 1/2007 Zur Ausgabe

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Das sind die führenden Symptome junger Darmkrebspatienten

Darmkrebserkrankungen in jüngeren Jahren sind ein zunehmendes Problem, das häufig längere Zeit übersehen wird, gerade weil die Patienten noch nicht alt sind. Welche Anzeichen Ärzte stutzig machen sollten, hat eine Metaanalyse herausgearbeitet.

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.