Skip to main content
Erschienen in: Cardiovascular Diabetology 1/2014

Open Access 01.12.2014 | Original investigation

Impact of serum omentin-1 levels on cardiac prognosis in patients with heart failure

verfasst von: Taro Narumi, Tetsu Watanabe, Shinpei Kadowaki, Daisuke Kinoshita, Miyuki Yokoyama, Yuki Honda, Yoichiro Otaki, Satoshi Nishiyama, Hiroki Takahashi, Takanori Arimoto, Tetsuro Shishido, Takuya Miyamoto, Isao Kubota

Erschienen in: Cardiovascular Diabetology | Ausgabe 1/2014

Abstract

Background

Various adipokines are reported to be associated with the development of heart failure (HF) through insulin resistance and chronic inflammation. Omentin-1 is a novel adipokine and is associated with incident coronary artery disease. However, it remains unclear whether serum omentin-1 levels are associated with cardiac prognosis in patients with HF.

Methods

We measured serum omentin-1 levels at admission in 136 consecutive patients with HF, and 20 control subjects without signs of significant heart disease. We prospectively followed patients with HF to endpoints of cardiac death or re-hospitalization for worsening HF.

Results

Serum omentin-1 levels were markedly lower in HF patients with cardiac events compared with to without. The patients who were in New York Heart Association (NYHA) functional class IV showed significantly lower serum omentin-1 levels compared to those in class II and III, whereas serum omentin-1 levels did not correlate with serum brain natriuretic peptide levels (r = 0.217, P = 0.011). We divided the HF patients into three groups based on the tertiles of serum omentin-1 level (low T1, middle T2, and high T3). Multivariate Cox hazard analysis showed that the lowest serum omentin-1 level (T1) was independently associated with cardiac events after adjustment for confounding factors (hazard ratio 5.78, 95% confidence interval 1.20-12.79). We divided the HF patients into two groups according to the median serum omentin-1 levels. Kaplan-Meier analysis revealed that the patients with low serum omentin-1 levels had a higher risk of cardiac events compared with those with high serum omentin-1 levels (log-rank test p < 0.001).

Conclusion

Decreased serum omentin-1 levels were associated with a poor cardiac outcome in patients with HF.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1475-2840-13-84) contains supplementary material, which is available to authorized users.

Competing interests

The authors report that there is no duality of interest associated with this manuscript.

Authors’ contributions

TN, TW and IK contributed to discussions about study design and data analyses. SK, DK, MY, YO, and YH conceived and carried out experiments. TN and TW participated in the interpretation of the results and the writing of the manuscript. SN, HT, TA, TS, and TM helped with data collection. All authors have read and approved the final manuscript.
Abkürzungen
BMI
Body mass index
BNP
Brain natriuretic peptide
eGFR
Estimated glomerular filtration rate
ELISA
Sandwich enzyme-linked immunosorbent assay
HF
Heart failure
IDI
Integrated discrimination improvement
NRI
Net reclassification improvement
NYHA
New York heart association
SD
Standard deviation.

Background

Heart failure (HF) remain a major cause of death worldwide and has a poor prognosis despite advances in treatment [1]. Adipocytokines, such as tumor necrosis factor-alpha, interleukin-6, and plasminogen activator inhibitor-1, play a crucial role in the development of cardiovascular diseases through insulin resistance and chronic inflammation [25]. Adipokines, such as adiponectin, are also reported to have anti-inflammatory, anti-oxidant, and anti-apoptotic properties, and are decreased in patients with cardiovascular disease [69]. There has been a move to clarify the causal relationship between various adipokines and cardiovascular disease [10, 11].
Omentin-1 is a novel adipokine whose serum levels are decreased in obese individuals, and is associated with insulin resistance [1216]. Omentin-1 has been suggested to play a beneficial role in preventing atherosclerosis [17, 18], however, it remains unclear whether serum omentin-1 levels are associated with clinical outcome in patients with HF.
The purpose of this study was to clarify the impact of serum omentin-1 levels on cardiac prognosis in patients with HF.

Methods

Study population

We enrolled 136 consecutive patients who were admitted to the Yamagata University Hospital for treatment of worsening HF, diagnosis and pathophysiological investigations, or for therapeutic evaluation of HF. We also enrolled 20 control subjects without signs of significant heart disease.
A diagnosis of HF was based on a history of dyspnea and symptoms of exercise intolerance followed by pulmonary congestion, pleural effusion, or left ventricular enlargement by chest X-ray or echocardiography [19, 20]. Control subjects were excluded if they had significant coronary artery disease, systolic and diastolic dysfunction, valvular heart disease, or myocardial hypertrophy on echocardiography [21]. All patients gave written informed consent prior to their participation, and the protocol was approved by the institution’s Human Investigation Committee. The procedures were performed in accordance with the Helsinki Declaration.

Measurement of serum omentin-1 and brain natriuretic peptide levels

Blood samples were drawn at admission and centrifuged at 2,500 g for 15 minutes at 4°C within 30 minutes of collection. The serum was stored at -80°C until analysis. Serum omentin-1 concentrations were measured with a sandwich enzyme-linked immunosorbent assay (ELISA, Immuno-Biological Laboratories CO., Ltd., Gunma, Japan), according to the manufacturer’s instructions [22, 23]. The serum omentin-1 levels were measured in duplicate by an investigator unaware of the associated patients’ characteristics. Serum brain natriuretic peptide (BNP) concentrations were measured using a commercially available specific radio-immuno assay for human BNP (Shiono RIA BNP assay kit, Shionogi & Co., Ltd., Tokyo, Japan) [24].

Endpoints and follow-up

The patients were prospectively followed for a median duration of 399 ± 378 days. The end points were cardiac death, including death due to progressive HF, myocardial infarction, stroke and sudden cardiac death, and re-hospitalization for worsening HF. Sudden cardiac death was defined as death without definite premonitory symptoms or signs, and was confirmed by the attending physician. Two cardiologists who were blinded to the blood biomarker data reviewed the medical records and conducted telephone interviews to survey the incidence of cardiovascular events.

Statistical analysis

Data are presented as the mean ± standard deviation (SD). The Mann–Whitney U-test was used when the data were not distributed normally. If the data were not distributed normally, they were presented as medians with an interquartile range. The unpaired Student’s t-test and the chi-square test were used for comparisons of continuous and categorical variables, respectively. Comparison of data among three groups was performed by the Kruskal-Wallis test. Uni- and multivariate analyses with Cox proportional hazard regression were used to determine significant predictors of cardiovascular events. Cumulative overall and event-free survival rates were computed using the Kaplan-Meier method and were compared using the log-rank test. We calculated the net reclassification improvement (NRI) and the integrated discrimination improvement (IDI) to measure the quantity of improvement for the correct reclassification and sensitivity according to the addition of serum omentin-1 levels to the prediction model [25]. NRI and IDI are new statistical measures to assess and quantify the improvement in risk prediction offered by a new marker. A P value < 0.05 was considered statistically significant. All statistical analyses were performed with a standard statistical program package (JMP version 10; SAS Institute, Cary, North Carolina, USA), and the R-3.0.2 with additional packages (Rcmdr, Epi, pROC, and PredictABEL).

Results

Comparison between patients with and without heart failure

The patients with HF had a lower BMI and left ventricular ejection fraction, and lower serum total cholesterol, triglyceride levels, and higher serum BNP levels compared with control subjects (Table 1).
Table 1
Baseline clinical characteristics
 
Control (n=20)
Heart failure (n=136)
P value
Age, years
65 ± 16
72 ± 12
0.034
Male, n (%)
11 (55)
76 (56)
0.941
NYHA functional class, II/III/IV
-
71/46/19
-
Etiology, n (%)
  
-
Dilated cardiomyopathy
-
29 (21)
 
Valvular heart disease
-
38 (28)
 
Ischemic heart disease
-
30 (22)
 
Hypertensive heart disease
-
14 (10)
 
Hypertrophic cardiomyopathy
-
9 (7)
 
Others
-
16 (12)
 
Presentation profile
   
Systolic pressure, mmHg
119 ± 22
117 ± 18
0.772
Diastolic pressure, mmHg
77 ± 10
74 ± 10
0.209
Body mass index, kg/m2
23.3 ± 3.4
21.7 ± 3.9
0.049
eGFR, ml/min/1.73m2
70 ± 24
62 ± 26
0.197
Blood biomarkers
   
Albumin, g/dl
3.8 ± 0.5
3.5 ± 0.6
0.091
Total cholesterol, mg/dl
185 ± 34
166 ± 39
0.042
Triglyceride, mg/dl
143 ± 96
91 ± 47
<0.001
LDLc, mg/dl
111 ± 28
100 ± 37
0.213
HDLc, mg/dl
52 ± 15
53 ± 23
0.831
hsCRP, mg/dl (IQR)
0.121 (0.040-0.551)
0.198 (0.064-0.606)
0.279
BNP, pg/ml (IQR)
82 (50–152)
484 (215–1251)
<0.001
Omentin-1, ng/ml (IQR)
494 (351–630)
305 (35–473)
0.035
Echocardiographic data
   
LV end-diastolic diameter, mm
53 ± 8
55 ± 11
0.438
LV ejection fraction, %
65 ± 9
50 ± 18
<0.001
Medications, n (%)
   
ACE inhibitors and/or ARBs
15 (75)
102 (75)
0.999
β blockers
15 (75)
103 (76)
0.943
Statins
10 (50)
51 (38)
0.321
Ca channel blockers
5 (25)
37 (27)
0.778
Data are presented as mean±SD or % unless otherwise indicated; ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; BNP, brain natriuretic peptide; BUN, Blood urea nitrogen; eGFR, estimated glomerular filtration rate; HDLc, high density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein; IQR, interquartile range; LDLc, low density lipoprotein cholesterol; LV, left ventricular; NYHA, New York Heart Association.

Comparison between HF patients with and without cardiac events

There were 59 cardiac events including 17 deaths and 32 re-hospitalizations in patients with HF during the follow-up period (Table 2). The patients who experienced cardiac events were in a more severe New York Heart Association (NYHA) functional class, and had a lower estimated glomerular filtration rate, lower left ventricular ejection fraction, higher left ventricular end-diastolic diameter, and higher serum BNP levels compared with those who did not. Moreover, patients with cardiac events showed markedly lower serum omentin-1 levels compared with those without (Figure 1). There were no significant differences in etiologies of HF between patients with and without cardiac events (Table 2).
Table 2
Comparison of patients with or without cardiac event
 
Event (-) (n=77)
Event (+) (n=59)
P value
Age, years
71 ± 10
72 ± 14
0.687
Male, n (%)
40 (52)
36 (61)
0.480
NYHA functional class, II/III/IV
49/21/6
22/25/13
0.005
Etiology, n (%)
  
0.348
Dilated cardiomyopathy
12 (16)
17 (29)
-
Valvular heart disease
24 (31)
14 (24)
-
Ischemic heart disease
17 (22)
13 (22)
-
Hypertensive heart disease
8 (10)
6 (10)
-
Hypertrophic cardiomyopathy
6 (8)
3 (5)
-
Others
10 (13)
6 (10)
-
Presentation profile
   
Systolic pressure, mmHg
116 ± 18
118 ± 19
0.598
Diastolic pressure, mmHg
73 ± 9
74 ± 11
0.780
Body mass index, kg/m2
22.0 ± 4.4
21.4 ± 3.3
0.413
eGFR, ml/min/1.73m2
66 ± 27
57 ± 24
0.046
Blood biomarkers
   
Albumin, g/dl
3.5 ± 0.6
3.5 ± 0.6
0.539
Total cholesterol, mg/dl
169 ± 37
163 ± 42
0.398
Triglyceride, mg/dl
97 ± 48
84 ± 45
0.132
LDLc, mg/dl
101 ± 37
99 ± 37
0.731
HDLc, mg/dl
55 ± 29
52 ± 12
0.437
hsCRP, mg/dl (IQR)
0.174 (0.058-0.330)
0.267 (0.073-0.722)
0.308
BNP, pg/ml (IQR)
453 (248–1249)
512 (169–1255)
0.049
Omentin-1, ng/ml (IQR)
479 (323–661)
139 (57–402)
<0.001
Echocardiographic data
   
LV end-diastolic diameter, mm
53 ± 10
57 ± 10
0.011
LV ejection fraction, %
56 ± 17
45 ± 16
<0.001
Medications, n (%)
   
ACE inhibitors and/or ARBs
54 (70)
48 (81)
0.134
β blockers
52 (68)
51 (86)
0.029
Statins
23 (30)
28 (47)
0.460
Ca channel blockers
29 (3)
8 (14)
0.964
Data are presented as mean±SD or % unless otherwise indicated; ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; BNP, brain natriuretic peptide; BUN, Blood urea nitrogen; eGFR, estimated glomerular filtration rate; HDLc, high density lipoprotein cholesterol; hsCRP, high-sensitivity C-reactive protein; IQR, interquartile range; LDLc, low density lipoprotein cholesterol; LV, left ventricular; NYHA, New York Heart Association.

Serum omentin-1 levels and HF severity

The patients who were in NYHA functional class IV showed significantly lower serum omentin-1 levels compared to those in class II and III (P = 0.029 vs. class II and P = 0.041 vs. class III, Figure 2A). On the other hand, serum omentin-1 levels were not significantly different between the patients who were in NYHA functional class II and III (P = 0.582). Furthermore, there was no relationship between the serum omentin-1 levels and the serum BNP levels (r = 0.217, Figure 2B).

Association between serum omentin-1 levels and cardiac events

We divided patients with HF into three groups according to the tertiles of serum omentin-1 levels. Multivariate Cox hazard analysis showed that the lowest serum omentin-1 levels (T1) were independently associated with cardiac events after adjustment for age, gender, NYHA functional class, left ventricular ejection fraction, and serum brain natriuretic peptide levels (hazard ratio 5.65, 95% confidence interval 2.61-12.20; Figure 3, Table 3). We divided the patients into two groups according to the median serum omentin-1 levels. Kaplan-Meier analysis revealed that the patients with low serum omentin-1 levels had a higher risk of cardiac events compared to those with high serum omentin-1 levels (log-rank test p < 0.001, Figure 4).
Table 3
Univariate and multivariate analyses for cardiac events
 
Univariate Analysis
Multivariate Analysis
HR
95% CI
P value
Adjusted HR*
95% CI
P value
Omentin-1
      
T3
1
Reference
Reference
1
Reference
Reference
T2
5.56
2.85-10.87
<0.001
4.15
2.03-8.47
<0.001
T1
6.29
1.30-13.06
<0.001
5.65
2.61-12.20
<0.001
*Adjusted HR after adjustment for age, gender, body mass index, NYHA functional class, left ventricular ejection fraction, serum triglycerides, serum HDLc levels, and serum BNP levels.
BNP, brain natriuretic peptide; CI, confidence interval; HDLc, high density lipoprotein cholesterol; HR, hazard ratio; NYHA, New York Heart Association; SD, standard deviation.

Net reclassification improvement and integrated discrimination improvement

To measure the quantity of improvement for the correct reclassification and sensitivity according to the addition of serum omentin-1 levels to the prediction model, we calculated the NRI and the IDI. The inclusion of serum omentin-1 levels in the prediction model (includes age, gender, NYHA functional class, left ventricular ejection fraction, and serum BNP levels) for the prediction of cardiac events, improved the NRI and IDI values, suggesting effective reclassification and discrimination (Table 4).
Table 4
Statistics for model fit and improvement with addition of serum omentin-1 level predicted on the prediction of cardiac events
 
Prediction model
Prediction model + omentin-1
P value
NRI (95% CI)
Reference
0.375 (0.129-0.620)
0.002
IDI (95% CI)
Reference
0.149 (0.087-0.211)
<0.001
Prediction model includes age, gender, NYHA functional class, left ventricular ejection fraction, and serum BNP levels.
BNP, brain natriuretic peptide; CI, confidence interval; IDI, integrated discrimination improvement; NRI, net reclassification improvement; NYHA, New York Heart Association.

Discussion

The present study demonstrated that decreased serum omentin-1 levels predicted cardiac events in patients with HF. Serum omentin-1 level appears to be a novel prognostic marker for the risk stratification of patients with HF.
Various types of adipocytokines are reported to be a predictor of unfavorable cardiac outcomes in patients with HF [26]. In addition to their roles as predictors of cardiac outcome, a variety of adipocytokines have been associated with the development of HF through insulin resistance and chronic inflammation [14, 2729]. Serum adiponectin levels are reported to be correlated with BNP levels, and are associated with HF severity and unfavorable outcomes in patients with HF [30, 31]. Adiponectin has been suggested to play a role in the prevention of cardiovascular diseases via its anti-inflammatory, anti-oxidant, and anti-apoptotic properties [69]. Recently, reports have shown several adipokines to have beneficial effects on cardiovascular diseases [3234]. However, the precise role of these adipokines remains unclear.
Omentin-1 is a 38 kDa novel adipokine identified in 2004 from visceral adipose tissue [12, 13]. Shibata et al. reported that decreased plasma omentin-1 levels predict the prevalence of coronary artery disease [18]. Yang et al. reported that omentin-1 enhances insulin-stimulated glucose uptake in human adipocytes and may regulate insulin sensitivity [13]. Yamawaki et al. reported that omentin-1 modulates vascular function and attenuates cyclooxygenase-2 expression and c-jun N-terminal kinase (JNK) activation in cytokine-stimulated endothelial cells [35, 36]. These studies all suggest that omentin-1 may improve insulin resistance and suppress vascular inflammation. Interestingly, Pan et al. suggested that omentin-1 expression and production are decreased with elevated inflammatory adipokines, such as tumor necrosis factor-alpha and interleukin-6, in patients with impaired glucose intolerance and newly diagnosed type 2 diabetes mellitus [37].
Unlike to adiponectin, serum omentin-1 was reported to decrease with chronic inflammation and oxidative stress in patients with HF. The bioactivity of omentin-1 appears multifaceted and remains to be fully defined. The present study showed no correlation between serum omentin-1 and BNP levels unlike adiponectin [30], suggesting that these markers indicate different features of the pathophysiological process of HF. Serum omentin-1 levels may represent a promising biomarker for cardiac prognosis, irrespective of serum BNP levels. The inclusion of serum omentin-1 levels in the prediction model (includes age, gender, NYHA functional class, left ventricular ejection fraction, and serum BNP levels) for the prediction of cardiac events, improved the NRI and IDI values, suggesting effective reclassification and discrimination.
The present study has certain limitations. Firstly, the sample size was relatively small and it was a single center study. Nonetheless, there was a significant relationship between serum omentin-1 levels and cardiac events. In addition, the inclusion of serum omentin-1 levels in the prediction model with conventional risk factors, including serum BNP levels, for the prediction of cardiac events, improved the NRI and IDI values. Secondly, there were no data for other adipocytokines. Further study is needed to clarify the association between serum omentin-1 and other adipocytokines in a large HF population.
In conclusion, decreased serum omentin-1 levels were associated with cardiac events in patients with HF, irrespective of serum BNP levels. Serum omentin-1 level appears to represent a novel prognostic marker for the risk stratification of patients with HF.

Acknowledgements

The authors would like to express their gratitude to the staff at the Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan for their kind cooperation while conducting this study. Research described in this manuscript was supported in part by a grant-in-aid for Scientific Research (No. 24591033) from the Ministry of Education Culture, Sport, Science, and Technology.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors report that there is no duality of interest associated with this manuscript.

Authors’ contributions

TN, TW and IK contributed to discussions about study design and data analyses. SK, DK, MY, YO, and YH conceived and carried out experiments. TN and TW participated in the interpretation of the results and the writing of the manuscript. SN, HT, TA, TS, and TM helped with data collection. All authors have read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Jessup M, Brozena S: Heart failure. New Engl J Med. 2003, 348 (20): 2007-2018. 10.1056/NEJMra021498.CrossRefPubMed Jessup M, Brozena S: Heart failure. New Engl J Med. 2003, 348 (20): 2007-2018. 10.1056/NEJMra021498.CrossRefPubMed
2.
Zurück zum Zitat Bradham WS, Ormseth MJ, Oeser A, Solus JF, Gebretsadik T, Shintani A, Stein CM: Insulin Resistance is Associated with Increased Concentrations of NT-proBNP in Rheumatoid Arthritis: IL-6 as a Potential Mediator. Inflammation. 2014, DOI:10.1007/s10753-013-9799-4 Bradham WS, Ormseth MJ, Oeser A, Solus JF, Gebretsadik T, Shintani A, Stein CM: Insulin Resistance is Associated with Increased Concentrations of NT-proBNP in Rheumatoid Arthritis: IL-6 as a Potential Mediator. Inflammation. 2014, DOI:10.1007/s10753-013-9799-4
3.
Zurück zum Zitat Mohler ER, Sorensen LC, Ghali JK, Schocken DD, Willis PW, Bowers JA, Cropp AB, Pressler ML: Role of cytokines in the mechanism of action of amlodipine: the PRAISE Heart Failure Trial. Prospective Randomized Amlodipine Survival Evaluation. J Am Coll Cardiol. 1997, 30 (1): 35-41. 10.1016/S0735-1097(97)00145-9.CrossRefPubMed Mohler ER, Sorensen LC, Ghali JK, Schocken DD, Willis PW, Bowers JA, Cropp AB, Pressler ML: Role of cytokines in the mechanism of action of amlodipine: the PRAISE Heart Failure Trial. Prospective Randomized Amlodipine Survival Evaluation. J Am Coll Cardiol. 1997, 30 (1): 35-41. 10.1016/S0735-1097(97)00145-9.CrossRefPubMed
4.
Zurück zum Zitat Aispuru GR, Clavier MM, Cardone AJ, Gilberto DO, Barousse AP: Thrombotic biomarkers and left ventricle characteristics as short-term predictors of thrombotic events in patients hospitalized for acute decompensated heart failure. Eur J Intern Med. 2012, 23 (6): 545-551. 10.1016/j.ejim.2012.04.002.CrossRefPubMed Aispuru GR, Clavier MM, Cardone AJ, Gilberto DO, Barousse AP: Thrombotic biomarkers and left ventricle characteristics as short-term predictors of thrombotic events in patients hospitalized for acute decompensated heart failure. Eur J Intern Med. 2012, 23 (6): 545-551. 10.1016/j.ejim.2012.04.002.CrossRefPubMed
5.
Zurück zum Zitat Kim HM, Lee BW, Song YM, Kim WJ, Chang HJ, Choi DH, Yu HT, Kang E, Cha BS, Lee HC: Potential association between coronary artery disease and the inflammatory biomarker YKL-40 in asymptomatic patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2012, 11 (1): 84-10.1186/1475-2840-11-84.PubMedCentralCrossRefPubMed Kim HM, Lee BW, Song YM, Kim WJ, Chang HJ, Choi DH, Yu HT, Kang E, Cha BS, Lee HC: Potential association between coronary artery disease and the inflammatory biomarker YKL-40 in asymptomatic patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2012, 11 (1): 84-10.1186/1475-2840-11-84.PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y: Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999, 100 (25): 2473-2476. 10.1161/01.CIR.100.25.2473.CrossRefPubMed Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y: Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999, 100 (25): 2473-2476. 10.1161/01.CIR.100.25.2473.CrossRefPubMed
7.
Zurück zum Zitat von Eynatten M, Schneider JG, Humpert PM, Kreuzer J, Kuecherer H, Katus HA, Nawroth PP, Dugi KA: Serum adiponectin levels are an independent predictor of the extent of coronary artery disease in men. J Am Coll Cardiol. 2006, 47 (10): 2124-2126. 10.1016/j.jacc.2006.02.033.CrossRefPubMed von Eynatten M, Schneider JG, Humpert PM, Kreuzer J, Kuecherer H, Katus HA, Nawroth PP, Dugi KA: Serum adiponectin levels are an independent predictor of the extent of coronary artery disease in men. J Am Coll Cardiol. 2006, 47 (10): 2124-2126. 10.1016/j.jacc.2006.02.033.CrossRefPubMed
8.
Zurück zum Zitat Sun Y, Chen X: Effect of adiponectin on apoptosis: proapoptosis or antiapoptosis?. BioFactors (Oxford, England). 2010, 36 (3): 179-186. 10.1002/biof.83.CrossRef Sun Y, Chen X: Effect of adiponectin on apoptosis: proapoptosis or antiapoptosis?. BioFactors (Oxford, England). 2010, 36 (3): 179-186. 10.1002/biof.83.CrossRef
9.
Zurück zum Zitat Zhang Y, Wang XL, Zhao J, Wang YJ, Lau WB, Yuan YX, Gao EH, Koch WJ, Ma XL: Adiponectin inhibits oxidative/nitrative stress during myocardial ischemia and reperfusion via PKA signaling. Am J Physiol Endocrinol Metab. 2013, 305 (12): E1436-1443. 10.1152/ajpendo.00445.2013.PubMedCentralCrossRefPubMed Zhang Y, Wang XL, Zhao J, Wang YJ, Lau WB, Yuan YX, Gao EH, Koch WJ, Ma XL: Adiponectin inhibits oxidative/nitrative stress during myocardial ischemia and reperfusion via PKA signaling. Am J Physiol Endocrinol Metab. 2013, 305 (12): E1436-1443. 10.1152/ajpendo.00445.2013.PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Agra RM, Teijeira-Fernandez E, Pascual-Figal D, Sanchez-Mas J, Fernandez-Trasancos A, Gonzalez-Juanatey JR, Eiras S: Adiponectin and p53 mRNA in epicardial and subcutaneous fat from heart failure patients. Eur J Clin Invest. 2014, 44 (1): 29-37. 10.1111/eci.12186.CrossRefPubMed Agra RM, Teijeira-Fernandez E, Pascual-Figal D, Sanchez-Mas J, Fernandez-Trasancos A, Gonzalez-Juanatey JR, Eiras S: Adiponectin and p53 mRNA in epicardial and subcutaneous fat from heart failure patients. Eur J Clin Invest. 2014, 44 (1): 29-37. 10.1111/eci.12186.CrossRefPubMed
11.
Zurück zum Zitat Karas MG, Benkeser D, Arnold AM, Bartz TM, Djousse L, Mukamal KJ, Ix JH, Zieman SJ, Siscovick DS, Tracy RP, Mantzoros CS, Gottdiener JS, deFilippi CR, Kizer JR: Relations of Plasma Total and High-Molecular-Weight Adiponectin to New-Onset Heart Failure in Adults >/=65 Years of Age (from the Cardiovascular Health Study). Am J Cardiol. 2013, 113 (2): 328-334.PubMedCentralCrossRefPubMed Karas MG, Benkeser D, Arnold AM, Bartz TM, Djousse L, Mukamal KJ, Ix JH, Zieman SJ, Siscovick DS, Tracy RP, Mantzoros CS, Gottdiener JS, deFilippi CR, Kizer JR: Relations of Plasma Total and High-Molecular-Weight Adiponectin to New-Onset Heart Failure in Adults >/=65 Years of Age (from the Cardiovascular Health Study). Am J Cardiol. 2013, 113 (2): 328-334.PubMedCentralCrossRefPubMed
12.
Zurück zum Zitat Schaffler A, Neumeier M, Herfarth H, Furst A, Scholmerich J, Buchler C: Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim Biophys Acta. 2005, 1732 (1–3): 96-102.CrossRefPubMed Schaffler A, Neumeier M, Herfarth H, Furst A, Scholmerich J, Buchler C: Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim Biophys Acta. 2005, 1732 (1–3): 96-102.CrossRefPubMed
13.
Zurück zum Zitat Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC, Shuldiner AR, Fried SK, McLenithan JC, Gong DW: Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab. 2006, 290 (6): E1253-1261. 10.1152/ajpendo.00572.2004.CrossRefPubMed Yang RZ, Lee MJ, Hu H, Pray J, Wu HB, Hansen BC, Shuldiner AR, Fried SK, McLenithan JC, Gong DW: Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab. 2006, 290 (6): E1253-1261. 10.1152/ajpendo.00572.2004.CrossRefPubMed
14.
Zurück zum Zitat de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, Ndubuizu K, Patil S, Schwartz A, Kligman M, Fried SK, Gong DW, Shuldiner AR, Pollin TI, McLenithan JC: Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007, 56 (6): 1655-1661. 10.2337/db06-1506.CrossRefPubMed de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, Ndubuizu K, Patil S, Schwartz A, Kligman M, Fried SK, Gong DW, Shuldiner AR, Pollin TI, McLenithan JC: Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007, 56 (6): 1655-1661. 10.2337/db06-1506.CrossRefPubMed
15.
Zurück zum Zitat Tan BK, Adya R, Farhatullah S, Lewandowski KC, O'Hare P, Lehnert H, Randeva HS: Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome: ex vivo and in vivo regulation of omentin-1 by insulin and glucose. Diabetes. 2008, 57 (4): 801-808. 10.2337/db07-0990.CrossRefPubMed Tan BK, Adya R, Farhatullah S, Lewandowski KC, O'Hare P, Lehnert H, Randeva HS: Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome: ex vivo and in vivo regulation of omentin-1 by insulin and glucose. Diabetes. 2008, 57 (4): 801-808. 10.2337/db07-0990.CrossRefPubMed
16.
Zurück zum Zitat Liu R, Wang X, Bu P: Omentin-1 is associated with carotid atherosclerosis in patients with metabolic syndrome. Diabetes Res Clin Pract. 2011, 93 (1): 21-25. 10.1016/j.diabres.2011.03.001.CrossRefPubMed Liu R, Wang X, Bu P: Omentin-1 is associated with carotid atherosclerosis in patients with metabolic syndrome. Diabetes Res Clin Pract. 2011, 93 (1): 21-25. 10.1016/j.diabres.2011.03.001.CrossRefPubMed
17.
Zurück zum Zitat Yoo HJ, Hwang SY, Hong HC, Choi HY, Yang SJ, Seo JA, Kim SG, Kim NH, Choi KM, Choi DS, Baik SH: Association of circulating omentin-1 level with arterial stiffness and carotid plaque in type 2 diabetes. Cardiovasc Diabetol. 2011, 10: 103-10.1186/1475-2840-10-103.PubMedCentralCrossRefPubMed Yoo HJ, Hwang SY, Hong HC, Choi HY, Yang SJ, Seo JA, Kim SG, Kim NH, Choi KM, Choi DS, Baik SH: Association of circulating omentin-1 level with arterial stiffness and carotid plaque in type 2 diabetes. Cardiovasc Diabetol. 2011, 10: 103-10.1186/1475-2840-10-103.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Shibata R, Ouchi N, Kikuchi R, Takahashi R, Takeshita K, Kataoka Y, Ohashi K, Ikeda N, Kihara S, Murohara T: Circulating omentin is associated with coronary artery disease in men. Atherosclerosis. 2011, 219 (2): 811-814. 10.1016/j.atherosclerosis.2011.08.017.CrossRefPubMed Shibata R, Ouchi N, Kikuchi R, Takahashi R, Takeshita K, Kataoka Y, Ohashi K, Ikeda N, Kihara S, Murohara T: Circulating omentin is associated with coronary artery disease in men. Atherosclerosis. 2011, 219 (2): 811-814. 10.1016/j.atherosclerosis.2011.08.017.CrossRefPubMed
19.
Zurück zum Zitat McKee PA, Castelli WP, McNamara PM, Kannel WB: The natural history of congestive heart failure: the Framingham study. N Engl J Med. 1971, 285 (26): 1441-1446. 10.1056/NEJM197112232852601.CrossRefPubMed McKee PA, Castelli WP, McNamara PM, Kannel WB: The natural history of congestive heart failure: the Framingham study. N Engl J Med. 1971, 285 (26): 1441-1446. 10.1056/NEJM197112232852601.CrossRefPubMed
20.
Zurück zum Zitat Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, Konstam MA, Mancini DM, Rahko PS, Silver MA, Stevenson LW, Yancy CW: 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009, 119 (14): 1977-2016.CrossRefPubMed Jessup M, Abraham WT, Casey DE, Feldman AM, Francis GS, Ganiats TG, Konstam MA, Mancini DM, Rahko PS, Silver MA, Stevenson LW, Yancy CW: 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009, 119 (14): 1977-2016.CrossRefPubMed
21.
Zurück zum Zitat Funayama A, Shishido T, Netsu S, Ishino M, Sasaki T, Katoh S, Takahashi H, Arimoto T, Miyamoto T, Nitobe J, Watanabe T, Kubota I: Serum pregnancy-associated plasma protein a in patients with heart failure. J Card Fail. 2011, 17 (10): 819-826. 10.1016/j.cardfail.2011.05.011.CrossRefPubMed Funayama A, Shishido T, Netsu S, Ishino M, Sasaki T, Katoh S, Takahashi H, Arimoto T, Miyamoto T, Nitobe J, Watanabe T, Kubota I: Serum pregnancy-associated plasma protein a in patients with heart failure. J Card Fail. 2011, 17 (10): 819-826. 10.1016/j.cardfail.2011.05.011.CrossRefPubMed
22.
Zurück zum Zitat Tsuji S, Tsuura Y, Morohoshi T, Shinohara T, Oshita F, Yamada K, Kameda Y, Ohtsu T, Nakamura Y, Miyagi Y: Secretion of intelectin-1 from malignant pleural mesothelioma into pleural effusion. Br J Canc. 2010, 103 (4): 517-523. 10.1038/sj.bjc.6605786.CrossRef Tsuji S, Tsuura Y, Morohoshi T, Shinohara T, Oshita F, Yamada K, Kameda Y, Ohtsu T, Nakamura Y, Miyagi Y: Secretion of intelectin-1 from malignant pleural mesothelioma into pleural effusion. Br J Canc. 2010, 103 (4): 517-523. 10.1038/sj.bjc.6605786.CrossRef
23.
Zurück zum Zitat Tsuji S, Uehori J, Matsumoto M, Suzuki Y, Matsuhisa A, Toyoshima K, Seya T: Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J Biol Chem. 2001, 276 (26): 23456-23463. 10.1074/jbc.M103162200.CrossRefPubMed Tsuji S, Uehori J, Matsumoto M, Suzuki Y, Matsuhisa A, Toyoshima K, Seya T: Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J Biol Chem. 2001, 276 (26): 23456-23463. 10.1074/jbc.M103162200.CrossRefPubMed
24.
Zurück zum Zitat Narumi T, Arimoto T, Funayama A, Kadowaki S, Otaki Y, Nishiyama S, Takahashi H, Shishido T, Miyashita T, Miyamoto T, Watanabe T, Kubota I: The prognostic importance of objective nutritional indexes in patients with chronic heart failure. J Cardiol. 2013, 62 (5): 307-313. 10.1016/j.jjcc.2013.05.007.CrossRefPubMed Narumi T, Arimoto T, Funayama A, Kadowaki S, Otaki Y, Nishiyama S, Takahashi H, Shishido T, Miyashita T, Miyamoto T, Watanabe T, Kubota I: The prognostic importance of objective nutritional indexes in patients with chronic heart failure. J Cardiol. 2013, 62 (5): 307-313. 10.1016/j.jjcc.2013.05.007.CrossRefPubMed
25.
Zurück zum Zitat Pencina MJ, D'Agostino RB, D'Agostino RB, Vasan RS: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008, 27 (2): 157-172. 10.1002/sim.2929. discussion 207–112CrossRefPubMed Pencina MJ, D'Agostino RB, D'Agostino RB, Vasan RS: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008, 27 (2): 157-172. 10.1002/sim.2929. discussion 207–112CrossRefPubMed
26.
Zurück zum Zitat Frankel DS, Vasan RS, D'Agostino RB, Benjamin EJ, Levy D, Wang TJ, Meigs JB: Resistin, adiponectin, and risk of heart failure the Framingham offspring study. J Am Coll Cardiol. 2009, 53 (9): 754-762. 10.1016/j.jacc.2008.07.073.PubMedCentralCrossRefPubMed Frankel DS, Vasan RS, D'Agostino RB, Benjamin EJ, Levy D, Wang TJ, Meigs JB: Resistin, adiponectin, and risk of heart failure the Framingham offspring study. J Am Coll Cardiol. 2009, 53 (9): 754-762. 10.1016/j.jacc.2008.07.073.PubMedCentralCrossRefPubMed
27.
Zurück zum Zitat Shimizu I, Yoshida Y, Katsuno T, Tateno K, Okada S, Moriya J, Yokoyama M, Nojima A, Ito T, Zechner R, Komuro I, Kobayashi Y, Minamino T: p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure. Cell metabolism. 2012, 15 (1): 51-64. 10.1016/j.cmet.2011.12.006.CrossRefPubMed Shimizu I, Yoshida Y, Katsuno T, Tateno K, Okada S, Moriya J, Yokoyama M, Nojima A, Ito T, Zechner R, Komuro I, Kobayashi Y, Minamino T: p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure. Cell metabolism. 2012, 15 (1): 51-64. 10.1016/j.cmet.2011.12.006.CrossRefPubMed
28.
Zurück zum Zitat Lago F, Dieguez C, Gomez-Reino J, Gualillo O: Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract Rheumatol. 2007, 3 (12): 716-724. 10.1038/ncprheum0674.CrossRefPubMed Lago F, Dieguez C, Gomez-Reino J, Gualillo O: Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract Rheumatol. 2007, 3 (12): 716-724. 10.1038/ncprheum0674.CrossRefPubMed
29.
Zurück zum Zitat Aroor AR, Mandavia CH, Sowers JR: Insulin resistance and heart failure: molecular mechanisms. Heart Fail Clin. 2012, 8 (4): 609-617. 10.1016/j.hfc.2012.06.005.PubMedCentralCrossRefPubMed Aroor AR, Mandavia CH, Sowers JR: Insulin resistance and heart failure: molecular mechanisms. Heart Fail Clin. 2012, 8 (4): 609-617. 10.1016/j.hfc.2012.06.005.PubMedCentralCrossRefPubMed
30.
Zurück zum Zitat Tsutamoto T, Tanaka T, Sakai H, Ishikawa C, Fujii M, Yamamoto T, Horie M: Total and high molecular weight adiponectin, haemodynamics, and mortality in patients with chronic heart failure. Eur Heart J. 2007, 28 (14): 1723-1730. 10.1093/eurheartj/ehm154.CrossRefPubMed Tsutamoto T, Tanaka T, Sakai H, Ishikawa C, Fujii M, Yamamoto T, Horie M: Total and high molecular weight adiponectin, haemodynamics, and mortality in patients with chronic heart failure. Eur Heart J. 2007, 28 (14): 1723-1730. 10.1093/eurheartj/ehm154.CrossRefPubMed
31.
Zurück zum Zitat Baldasseroni S, Antenore A, Di Serio C, Orso F, Lonetto G, Bartoli N, Foschini A, Marella A, Pratesi A, Scarantino S: Adiponectin, diabetes and ischemic heart failure: a challenging relationship. Cardiovasc Diabetol. 2012, 11: 151-10.1186/1475-2840-11-151.PubMedCentralCrossRefPubMed Baldasseroni S, Antenore A, Di Serio C, Orso F, Lonetto G, Bartoli N, Foschini A, Marella A, Pratesi A, Scarantino S: Adiponectin, diabetes and ischemic heart failure: a challenging relationship. Cardiovasc Diabetol. 2012, 11: 151-10.1186/1475-2840-11-151.PubMedCentralCrossRefPubMed
32.
Zurück zum Zitat Adeghate E: Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Curr Med Chem. 2008, 15 (18): 1851-1862. 10.2174/092986708785133004.CrossRefPubMed Adeghate E: Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Curr Med Chem. 2008, 15 (18): 1851-1862. 10.2174/092986708785133004.CrossRefPubMed
33.
Zurück zum Zitat Hida K, Wada J, Eguchi J, Zhang H, Baba M, Seida A, Hashimoto I, Okada T, Yasuhara A, Nakatsuka A, Shikata K, Hourai S, Futami J, Watanabe E, Matsuki Y, Hiramatsu R, Akagi S, Makino H, Kanwar YS: Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci U S A. 2005, 102 (30): 10610-10615. 10.1073/pnas.0504703102.PubMedCentralCrossRefPubMed Hida K, Wada J, Eguchi J, Zhang H, Baba M, Seida A, Hashimoto I, Okada T, Yasuhara A, Nakatsuka A, Shikata K, Hourai S, Futami J, Watanabe E, Matsuki Y, Hiramatsu R, Akagi S, Makino H, Kanwar YS: Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci U S A. 2005, 102 (30): 10610-10615. 10.1073/pnas.0504703102.PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Christou GA, Tselepis AD, Kiortsis DN: The metabolic role of retinol binding protein 4: an update. Horm Metab Res. 2012, 44 (1): 6-14.CrossRefPubMed Christou GA, Tselepis AD, Kiortsis DN: The metabolic role of retinol binding protein 4: an update. Horm Metab Res. 2012, 44 (1): 6-14.CrossRefPubMed
35.
Zurück zum Zitat Yamawaki H, Tsubaki N, Mukohda M, Okada M, Hara Y: Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun. 2010, 393 (4): 668-672. 10.1016/j.bbrc.2010.02.053.CrossRefPubMed Yamawaki H, Tsubaki N, Mukohda M, Okada M, Hara Y: Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun. 2010, 393 (4): 668-672. 10.1016/j.bbrc.2010.02.053.CrossRefPubMed
36.
Zurück zum Zitat Yamawaki H, Kuramoto J, Kameshima S, Usui T, Okada M, Hara Y: Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun. 2011, 408 (2): 339-343. 10.1016/j.bbrc.2011.04.039.CrossRefPubMed Yamawaki H, Kuramoto J, Kameshima S, Usui T, Okada M, Hara Y: Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun. 2011, 408 (2): 339-343. 10.1016/j.bbrc.2011.04.039.CrossRefPubMed
37.
Zurück zum Zitat Pan HY, Guo L, Li Q: Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract. 2010, 88 (1): 29-33. 10.1016/j.diabres.2010.01.013.CrossRefPubMed Pan HY, Guo L, Li Q: Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract. 2010, 88 (1): 29-33. 10.1016/j.diabres.2010.01.013.CrossRefPubMed
Metadaten
Titel
Impact of serum omentin-1 levels on cardiac prognosis in patients with heart failure
verfasst von
Taro Narumi
Tetsu Watanabe
Shinpei Kadowaki
Daisuke Kinoshita
Miyuki Yokoyama
Yuki Honda
Yoichiro Otaki
Satoshi Nishiyama
Hiroki Takahashi
Takanori Arimoto
Tetsuro Shishido
Takuya Miyamoto
Isao Kubota
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Cardiovascular Diabetology / Ausgabe 1/2014
Elektronische ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-13-84

Weitere Artikel der Ausgabe 1/2014

Cardiovascular Diabetology 1/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.