Skip to main content
Erschienen in: Molecular Cancer 1/2004

Open Access 01.12.2004 | Review

Genetic alteration and gene expression modulation during cancer progression

verfasst von: Cathie Garnis, Timon PH Buys, Wan L Lam

Erschienen in: Molecular Cancer | Ausgabe 1/2004

Abstract

Cancer progresses through a series of histopathological stages. Progression is thought to be driven by the accumulation of genetic alterations and consequently gene expression pattern changes. The identification of genes and pathways involved will not only enhance our understanding of the biology of this process, it will also provide new targets for early diagnosis and facilitate treatment design. Genomic approaches have proven to be effective in detecting chromosomal alterations and identifying genes disrupted in cancer. Gene expression profiling has led to the subclassification of tumors. In this article, we will describe the current technologies used in cancer gene discovery, the model systems used to validate the significance of the genes and pathways, and some of the genes and pathways implicated in the progression of preneoplastic and early stage cancer.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-4598-3-9) contains supplementary material, which is available to authorized users.

Authors' contributions

C. G., the corresponding author, organized manuscript production. C. G. and T. P. H. B. contributed equally in literature review and the generation of early drafts. All authors participated in the development of concepts and framework for the review, the generation of figures, multiple rounds of text editing, and fact checking.

Using genomic approaches to understand cancer progression

The accumulation of genetic alterations is thought to drive the progression of normal cells through hyperplastic and dysplastic stages to invasive cancer and, finally, metastatic disease. Since the initial efforts to link histopathological changes to the mutation of specific genes in colorectal cancer [1], progression models have been developed for many tumor types, including lung, breast, head and neck, and prostate [25]. Mutational and gene expression analysis of known tumor suppressors and oncogenes in the context of early tumorigenesis has provided insight into the role of these genes in cancer progression [6, 7]. Gene discovery has been greatly facilitated by molecular cytogenetic technologies identifying chromosomal regions associated with various stages and outcomes. Furthermore, high throughput, genome-wide approaches and the complete sequencing of the human genome have accelerated the large-scale discovery of cancer-related genes and pathways [8].
While genetic alterations in tumors are common, changes found in premalignant stages are more likely to represent causal events initiating and promoting cancer development. These events may be masked by the complex pattern of genetic alterations often associated with genetic instability in later stages of disease. For this reason all stages of progression have to be considered in order to fully understand how malignant tissues develop. To date, genomic and proteomic efforts have been primarily directed at the study of tumors. The relatively limited literature on genetic studies of earlier stage cancers is attributable to challenges associated with accessing premalignant specimens and the fact that genome-wide analysis would require quantities of material far exceeding the size of the minute specimens obtained. Recent advances in cell isolation techniques and miniaturization of genomic technologies have enabled comprehensive molecular profiling of selected cell types and high resolution mapping of gene disruption associated with specific disease phenotypes. This review article describes the current genomic technologies used for analysis of cancer, the model systems used to corroborate the significance of candidate cancer genes and pathways, and the genetic progression models for common types of cancer.

Tissue heterogeneity

Tumors and precancerous lesions are heterogeneous cell populations harboring normal stromal and inflammatory cells. The presence of these cells could mask the detection of genetic and gene expression alterations in the cancer cells. The development of laser-assisted microdissection techniques addresses this problem by enabling selective isolation of cell populations, for example normal epithelium and hyperplastic cells [911] (Fig. 1).
Three commonly used microdissection techniques are laser capture microdissection (LCM), laser microbeam microdissection (LMM), and laser pressure catapult (LPC) [11]. LCM involves the capture of cells by adhering them to a thermoplastic membrane activated by a near-infrared low power laser [10]. The relatively low intensity of the laser does not damage DNA, RNA, or proteins in the captured cells, while the remaining tissue section is left intact on the glass slide [11]. LMM uses a focused laser beam to cut out target cells and to photoablate unwanted adjacent tissue [12]. LMM is often used in conjunction with LPC, a technique that involves the build up of laser-generated high-photon density under a given specimen, causing the selected cells of interest to catapult up along the path of the beam and become available for collection [13].

Identification of genetic alterations

Current methods for genome-wide detection of genetic alterations fall into three main categories: (1) molecular cytogenetic evaluation of chromosomal aberrations and re-arrangements, (2) DNA polymorphism analysis for detecting loss of heterozygosity (LOH) or allelic imbalance, and (3) comparative genomic hybridization (CGH) approaches for identifying segmental copy number changes.

Molecular cytogenetics

Cytogenetic approaches are designed to detect aberrations and rearrangements under direct examination of chromosomes and chromosomal targets. G-banding, fluorescence in situ hybridization (FISH), and spectral karyotyping (SKY) are the commonly used methods [14, 15]. G-banding is often used in clinical settings for the analysis of leukaemia and is best suited to detect large chromosomal aberrations, namely structural or numeric changes [16]. This method evaluates stained metaphase chromosome spreads to identify rearrangements and gain or loss of chromosome bands. One of the most comprehensive databases of cytogenetic information for various tumor types is the Mitelman Database of Chromosome Aberrations in Cancer [17]. This and other cytogenetic databases are listed in Table 1.
Table 1
On-line Resources
1. Sequence Databases
Nucleotide Sequence
NCBI – GenBank
 
EMBL-EBI – Nucleotide Sequence Database
 
DNA Data Bank of Japan
Transcript
NCBI – UniGene
 
The Exon-Intron Database
 
NCBI – Reference Sequence
 
UC – Santa Cruz – Genome Bioinformatics
Protein
NCBI – Entrez-Protein
 
Protein Information Resource
 
Swiss-Prot
 
PROSITE
 
EMBL-EBI – Proteome Analysis
 
Swiss-2DPAGE
2. Signalling Pathways
 
Gene Ontology Consortium
 
Kyoto Encyclopedia of Genes and Genomes
 
BioCarta
3. Human and non-human vertebrate genomes
 
The Institute for Genomic Research Gene Indices
 
UC – Santa Cruz – Genome Bioinformatics
 
The Sanger Institute: Human Genome Project
 
Ensembl Genome Browser
 
Washington U St. Louis Genome Sequencing Center
 
NCBI – LocusLink
 
The Genome Database
 
NCBI – Single Nucleotide Polymorphism database
 
GeneLynx
 
NCBI – Acembly/AceView
 
NCI-CGAP – Comprehensive SNP Imagemaps
 
Mouse Genome Informatics
 
Rat Genome Database
 
Doe Joint Genome Institute (Fugu genome resource)
4. Human Genes and Diseases
 
GeneCards™
 
NCBI – Online Mendelian Inheritance in Man
5. Microarray and Gene Expression Databases
SAGE
SAGEnet
 
NCBI – SAGEmap
 
NCI-CGAP – SAGE Genie
Microarray
EMBL-EBI – ArrayExpress
 
BODYMAP
 
Human Gene Expression Index
 
Stanford Microarray Database
 
Longhorn Array Database
6. Cytogenetics
 
Mitelman's Catalog of Chromosome Aberrations in Cancer
 
NCBI – SKY/M-FISH GH Database
 
Charité – Comparative Genomic Hybridization
 
Atlas Chromosomes in Cancer
 
Progenetix – Online CGH Database
 
Laboratory of Cytomolecular Genetics (CMG)
7. Molecular Cancer Sites
 
NCI-CGAP (Cancer Genome Anatomy Project)
  
The Tumor Gene Database
FISH has helped bridge the gap between molecular genetics and classical cytogenetics. This technology uses specific DNA probes of known chromosomal location to evaluate alterations at a specific locus on a cell-by-cell basis (Fig 2a) [18]. Gain, loss, and splitting of hybridization signals on metaphase or interphase chromosomes reflect duplication, deletion, and translocation events respectively [19]. FISH is useful in fine mapping genetic alterations in very small specimens such as premalignant lesions since it does not require microdissection. With the development of fluorochromes that fluoresce at different wavelengths, multicolor FISH (M-FISH) has enabled the examination of multiple loci in the same experiment [20].
SKY uses 24 different probe sets to virtually paint each chromosome a different color. This technique involves the simultaneous excitation of multiple fluorochromes and the use of an interferometer to determine the profile at each pixel [15] (Fig 2b).
Although whole genome cytogenetic techniques are limited to the identification of intrachromosomal rearrangements and breakpoint determination, they have been the preferred techniques for detailed karyotypic assessment of structural chromosome aberrations [15].

Assessing LOH using polymorphic markers

Microsatellite analysis uses simple sequence repeat (SSR) polymorphisms as markers for detecting LOH. A polymerase chain reaction (PCR) using primers flanking a repeat should yield two signals corresponding to the two heterozygous alleles. When the signal intensity ratio of the tumor alleles differs from that of the normal alleles, allelic imbalance or LOH is inferred. An example of mapping of LOH at the chromosome scale was the use of 28 markers spanning chromosome 3p to determine three distinct regions of alteration in non-small cell lung cancer [21]. In addition, microsatellite analysis is commonly used for fine mapping minimal regions of LOH. However, this approach is limited by the availability of polymorphic SSR markers in the chromosomal regions of interest. For microdissected, minute premalignant specimens, DNA yield is an additional limitation since each marker requires at least 5 nanograms of DNA per assay [22]. Therefore, although whole-genome allelotyping has been applied to early stage cancer [2326], efforts have been largely focused on tumors and cell lines where material is not limiting.
Single nucleotide polymorphisms (SNPs) are another source of DNA markers used in identifying LOH. SNPs are common in the human genome and in some instances their variation can be correlated to disease behaviour [27, 28]. The through-put of this approach is greatly enhanced by parallel analysis of multiple loci on microarrays. For example, GeneChip® arrays from Affymetrix® have enabled simultaneous tracking of approximately 1,500 SNPs [29]. The large number of SNPs examined would compensate for the fact that not all loci will be informative (heterozygous). The recently released "Mapping 10 K Array" tracks greater than 10,000 SNPs distributed throughout the genome should increase the information content of an array hybridization experiment.
Unlike microsatellite or SNP analyses, amplified fragment length polymorphism (AFLP)-based approaches require no previous knowledge of polymorphisms. Fingerprinting techniques such as random amplification of polymorphic DNA (RAPD) or arbitrarily primed PCR (AP-PCR) use short primers of 10 to 20 nucleotides to amplify multiple fragments randomly distributed throughout the genome (Fig 3). The PCR products are then separated by electrophoresis to display up to dozens of anonymous DNA polymorphisms [3032]. It has been applied to a variety of tumor types to study genomic instability, identify novel DNA amplifications and deletions, and to assess changes in methylation state [3342]. The recently developed methylation-sensitive AFLP (MS-AFLP) technology allows for an unbiased assessment of epigenetic changes in a subset of methylation sites throughout the genome [43, 44]. However, the use of RAPD patterns in predicting prognosis has not yet been widely used.

Comparative genomic hybridization

Comparative Genomic Hybridization (CGH) detects segmental DNA copy number changes. Differentially labeled tumor DNA and control normal DNA are co-hybridized to a metaphase chromosome spread, producing an average fluorescence ratio profile at approximately 20 Mbp resolution [45]. Copy number changes in a variety of cancers – and to a lesser extent, premalignant lesions – have been detected using this method [4656]. While CGH provides a profile of the entire genome, the resolution is limited and therefore it is difficult to determine the identity of specific gene alterations. CGH is often used in conjunction with FISH in order to fine map alterations to the gene level. As CGH has become a more widely used method, profile databases have been assembled for public access (see Table 1).

Array-based CGH

Until recently, localized deletion mapping using microsatellite markers has represented the highest resolution method available to identify potential tumor suppressor genes. However, new approaches based on the use of genomic microarrays have been developed. To achieve higher resolution, Pollack et al. made use of cDNA microarrays for analyzing genomic DNA derived probes [57, 58]. However this approach is hampered by suboptimal hybridization which arises because the genomic DNA probe that is used has introns that are absent in the spotted cDNA target. As mentioned above, the recent development of SNP arrays has greatly facilitated deletion detection, though the resolution of SNP arrays is currently limited to approximately 10,000 SNPs. One would expect that only a subset of these loci will be informative (heterozygous). Another technology called representational oligonucleotide microarray analysis (ROMA) provides a means of detecting genetic alterations in cancer tissue using a high density oligonucleotide array to profile subtractive hybridization products generated through representational differential analysis [59, 60].
Complementary to these array-based CGH techniques, bacterial artificial chromosome (BAC) array CGH allows the detection of segmental copy number changes [45, 61]. BAC array CGH is similar to conventional chromosomal CGH except that it uses segments of human DNA as hybridization targets instead of a metaphase spread of chromosomes [45, 61, 62] (Fig 4). Hybridization onto such arrays overcomes the low resolution that limits conventional CGH. As with conventional CGH, total genomic DNA from a tumor and a normal cell population are differentially labeled and co-hybridized onto an array. The ratio of the fluorescence intensities on each DNA spot on the array is proportional to the copy number of the corresponding sequence.
High resolution arrays allow for the delineation of amplification and deletion boundaries in a single experiment. These arrays have been instrumental in detailed analysis of specific chromosomal regions [42, 6368]. High resolution analysis of entire chromosome arm for segmental copy number alterations is made possible with whole chromosome or chromosome arm BAC arrays [6971].
The application of this technology for genome-wide profiling was first described by Snijders et al., who used 2460 marker BACs and P1 clones to generate an array with clones positioned at ~1.4 Mbp intervals [72]. Arrays of similar resolution have been reported by other groups [73, 74]. This technology has been applied to analyze cell lines and tumors from lymphoma, bladder, breast, prostate, and kidney [7580].
Further advancement of this technology to tiling resolution of the whole genome has eliminated the need for inferring continuity between marker BACs. This was achieved by using an ordered set of 32,433 BAC clones that provide full coverage of the genome, allowing the profiling of the entire genome in a single experiment [61, 81, 82] (Fig 5).

Digital karyotyping

Digital karyotyping is a genome wide approach for identifying copy number alterations [83]. This technique involves the isolation and enumeration of short sequence tags from specific genomic loci, namely tags adjacent to Sac I restriction enzyme cut sites throughout the genome. Digital enumeration of the tags at intervals along each chromosome reflects DNA content. The concept behind this DNA profiling technique is analogous to that of serial analysis of gene expression (SAGE) described below [84], except that the DNA tags concatenated for sequence analysis are derived from fragmented genomic DNA rather than from a cDNA population. The sensitivity and specificity of digital karyotyping depends on the combination of mapping and fragmenting enzymes employed as well as the number of tags sampled. The identification of high-copy-number amplifications can be detected with fewer tag counts.

Expression profiling

Ultimately, the genome-wide search for oncogenes and tumor suppressors will require the integration of both genomic and expression analysis approaches. Integration of genetic and gene expression data will validate the candidate genes in regions of DNA alteration as well as highlight the downstream effects.

Microarrays

The two main types of microarrays are cDNA microarrays and oligonucleotide microarrays [85, 86]. cDNA microarrays have PCR-generated "target" cDNAs deposited onto glass whereas oligonucleotide microarrays are manufactured using either a photolithographic process that directly synthesizes them on the glass slide or deposition of oligonucleotides onto glass slides [87, 88]. Both types of microarray are hybridized with cDNA samples derived from tissues of interest to assess changes in expression levels. After competitive hybridization of the cDNA samples, differentially labeled with dyes such as Cyanine 3 and Cyanine 5, the slides are washed to remove unspecific binding and then scanned to determine the relative intensities of each channel. Normalization of the samples allows for differences in labeling and detection efficiencies so that the two datasets can be compared [89].
Approximately a quarter of microarray-related literature pertains to cancer, with tumor and cell line transcriptome profiling providing numerous insights into disease [90]. The development of the "lymphochip" cDNA microarray and other cDNA and oligonucleotide arrays has allowed the subclassification of many disease types including lymphoma, leukaemia, and cancers of the breast and lung [91100]. Analysis of small specimens, such as those derived from premalignant tissue, has been facilitated by the introduction of RNA amplification methods where cDNA is linearly amplified, thus preserving the composition of the original RNA population [101, 102]. This analysis of premalignant lesions has led to the discovery of new biomarkers for determining prognosis and new targets for treatment. Frequently used microarray databases are listed in Table 1.

Serial analysis of gene expression

Unlike microarray technology, which focuses analysis to only those cDNAs represented on a chip, Serial Analysis of Gene Expression (SAGE) provides an unbiased profile of the transcriptome by taking a raw count of sequence tags, each representing a transcript in an RNA population [84]. The tag count is accomplished through the creation and quantification of concatenated tags generated from tissue mRNAs [103]. (Figure 6 summarizes the steps of SAGE library construction) Absolute quantification of the transcriptome allows the creation of gene expression profiles that can subsequently be compared against profiles from other cell types. The longSAGE variation of the SAGE protocol allows more specific tag mapping, notably to cDNAs but also to genomic sequence [104]. The microSAGE protocol, on the other hand, reduces the amount of RNA required for library construction and therefore facilitates examination of the early stages in carcinogenesis [105, 106]. There are a number of web resources for SAGE (see Table 1). SAGEnet provides multiple protocols, while SAGEmap and SAGE Genie provide analysis tools and databases [107, 108].
SAGE-based research to identify cancer markers has been conducted for a variety of primary cancers and cell lines, including breast, kidney, prostate, liver, lung, gastric, colorectal, and pancreatic cancer [109128]. In a few of these instances, such as the work on breast cancer by Porter et al., libraries have been generated for early histopathological stages of cancer that demonstrate expression profiles distinct to each stage [108, 114, 127]. These authors suggested that some of the observed gene expression changes tied to progression through the in situ stages of disease were likely involved with cell growth, differentiation, and survival.

Quantitative PCR

Whole genome profiling approaches, such as SAGE and microarrays, yield candidate genes that require verification. Given that biological specimens are often limited in size, traditional Northern blot analysis may not always be possible. Reverse-transcriptase polymerase chain reaction (RT-PCR) provides semi-quantitative assessment of relative abundance of specific transcripts using gene-specific primers [129]. Real time RT-PCR measures product amount after each cycle of amplification based on association of fluorescence to the amount of DNA accumulated during the PCR [130133]. Three common real-time approaches are SYBR Green® staining, the TaqMan® system, and the molecular beacon system [134]. In the SYBR Green® method, fluorescent DNA dye that is bound non-specifically to double-stranded DNA is measured to quantify the accumulation of PCR products. In the Taqman® system, a fluorescence resonance energy transfer (FRET) oligonucleotide probe complementary to the target sequence is used as the reporter system. The fluorescence of the reporter molecule at the 5' end of the oligonucleotide is interfered with by a quencher molecule at the 3' end. When strand synthesis occurs in PCR, the nuclease activity of Taq polymerase degrades the FRET probe and releases the reporter from the quencher, producing fluorescence. In the Molecular Beacon method, the 3' quencher and 5' reporter of FRET probes initially exhibit no fluorescence because the oligonucleotide forms a hairpin loop that brings these two factors into close proximity. Binding of the probe at a target sequence separates the two fluorochromes, allowing the reporter to fluoresce.

Immunohistochemistry, tissue microarrays, and proteomic approaches

Basic immunohistochemical (IHC) techniques, when applied to tissue microarrays (TMA), allow for high throughput analysis of multiple tissues [135137]. In the construction of TMAs, core samples taken from multiple archival specimens are re-embedded in a paraffin block so that each section of the TMA would contain multiple samples for parallel analysis [138]. Similarly, cytology microarrays, with cell suspensions spotted in an array format, facilitate parallel analysis of intact cells [139].
While IHC examines individual targets, proteomic approaches aim to assess global changes at the protein level [8, 140]. For more than a quarter century, two-dimensional polyacrylamide gel electrophoresis has been a commonly used method for displaying the proteome [141]. This approach separates proteins based on isoelectric focusing (pI) and size (polyacrylamide gel electrophoresis). A recently developed method for resolving proteins is isotope-coded affinity tagging (ICAT) which allows quantitative analysis of paired protein samples through the use of stable isotope labeling [142]. Isotopic tags covalently bind cysteine residues within a protein. Tagged proteins are separated and identified by liquid chromatography and mass spectrometry. An assessment of these two methodologies was provided by Patton et al. [143].
In contrast to gel electrophoresis, mass spectrometry assesses protein size by time of flight (TOF) analysis [144, 145]. A technique that incorporates this approach is surface-enhanced laser desorption/ionization (SELDI)-TOF, an affinity-based method in which proteins adsorb to a given chemically modified surface and, subsequently, the bound proteins are resolved by TOF analysis [146, 147]. This technique is commonly used for detecting disease-associated proteins in cell lysates as well as serum.
Recently, high throughput proteomic approaches have been used for identifying protein interactions with other proteins, nucleic acids, lipids, antibodies, and drugs. These approaches include protein array-based and phage display-based methodologies. Cell lysates or protein samples are differentially labeled and competitively hybridized to individual protein targets arrayed on a small surface. Signal intensity ratios are used to calculate the relative abundance of a given molecule. Commercially available antibody microarrays have immobilized selected antibodies targeted against components of known cellular pathways such as signal transduction, cell cycle regulation, gene transcription, or apoptosis [148].
Proteins may also be displayed on the surface of bacteriophage, serving as an alternative to protein arrays for high throughput screening [149151]. In this system, cDNA libraries are inserted into vectors that generate fusion products with a bacterial phage coat protein. These recombinant proteins are expressed on the surface of the bacteriophage and can be screened for interactions with proteins of interest.

Gene silencing and overexpression

Methylation

Epigenetic changes may alter gene expression. In general, they are heritable and do not arise due to alterations of DNA sequence [152]. Methylation is the best characterized epigenetic change, typically occurring at CpG dinucleotides within the mammalian genome [153]. CpG dinucleotides are commonly found in promoter regions, in "CpG islands" which are long portions of DNA with high GC content. With the exception of the X chromosome, CpG residues in promoter regions are typically unmethylated [154, 155]. Methylation occurs by the attachment of a methyl group to C5 of the cytosine residue after DNA replication has occurred, resulting in the loss of gene expression. The relative amount of methylation can vary, a decrease termed hypomethylation and an increase known as hypermethylation.
Methylated DNA can be distinguished from unmethylated DNA by virtue of resistance to 1) methylation sensitive restriction enzyme digestion and 2) bisulfite treatment. In the first case, isoschizimers such as Hpa II and Msp I (which recognize CCGG) and Xma I and Sma I (which recognize CCCGGG) are often used to detect methylation, since cleavage by Hpa II and Xma I are impaired by internal cytosine methylation of the recognition sequence. This distinguishing feature is the basis of global methylation detection methods such as restriction landmark genomic scanning (RLGS) of CpG island methylation and methylation target arrays [154, 156159]. In methylation target arrays a multitude of CpG islands are spotted onto an array and hybridized with probes generated by linker-mediated PCR-amplification of sample DNA pre-digested with a methylation-specific enzyme [160162]. Methyl-CpG binding proteins can be used to identify the unique distribution of CpG islands by using chromatin immunoprecipitation [163]. Methylated DNA bound to these proteins serves to identify novel targets of epigenetic inactivation in human cancer. Localization of these targets can be achieved by hybridization to CpG island microarrays or through CGH. Bisulfite treatment of DNA causes selective deamination of cytosine to uracil [164]. However, in contrast to cytosine, 5-methyl-cytosine does not react with bisulfite, hence oligonucleotide primers can be tailored to recognize altered or unaltered sequence in order to distinguish unmethylated and methylated targets in a methylation-specific PCR assay.
With respect to the progression of cancer, the genetic changes associated with disease development are often accompanied by significant changes in methylation state [152]. The idea that epigenetic changes can be a mechanism for altering gene expression and driving tumorigenesis has been supported by recent work, examples including work on 14-3-3σ and CCND2 in breast cancer, p16INK4A and RASSF1A in lung cancer, and HPP1 and SFRP1 in colorectal cancer [165170].

Deducing function of novel genes

Cell models

Cell culture models are often used to deduce gene function through the introduction of a foreign gene or by disruption of endogenous gene function, thereby creating a new phenotype or altering cell behaviour.
A new approach for disrupting gene function is RNA interference (RNAi). This method targets specific genes by way of post-transcriptional gene silencing. The natural function of RNAi is thought to be protection of the genome against invasion by mobile genetic elements such as transposons and viruses, which produce aberrant RNA or dsRNA in the host cell when they become active [171]. Efforts to develop an RNAi microarray will ultimately allow for knockdown analysis of gene function to be undertaken on a genome-wide scale [172, 173].

Animal models

Animal models serve two broad functions in terms of identifying and characterizing genes involved in cancer and cancer progression. First, sequence homology between known animal genes and previously unidentified human genes allows for speculation as to the gene's function in humans. This is possible because there are an increasing number of whole genome sequences available for a variety of animals (e.g. Fugu, Drosophila, mouse, chimpanzee) [174177]. Second, animals serve as functional models for cancer, allowing researchers to assess the effects of gene disruption, treatment regimes, and disease progression. Mammalian models are expected to more closely mimic the intricacies of human conditions [178]. The expansive body of literature pertaining to murine malignancy and the completion of the mouse genome sequence makes the mouse the leading model for cancer gene discovery [179, 180].
Initial efforts to examine cancer genetics in the mouse involved incorporation of embryonic stem (ES) cells containing mutated forms of a gene of interest into a developing mouse [181, 182]. Conditional mutants allow spatial and temporal control over the expression of the introduced genotypic alteration, an example being the Cre-lox system [182, 183]. Briefly, this system involves the generation of parallel lines of mice, one having been manipulated to have the gene of interest flanked by P1 bacteriophage loxP sites and the other having the Cre recombinase expressed under the control of a tissue-specific promoter. When these lines are crossed, the gene book-ended by loxP sites is excised in that tissue where Cre is expressed, thereby disrupting expression of the gene of interest and allowing researchers to assess its role in tumor development in that tissue. There are numerous variations on this technique currently in use and the Cre-lox system has been widely applied in cancer progression research [184, 185].

Current cancer progression models

The use of genome-wide analysis has resulted in the discovery of genes involved in cancer progression. This section summarizes the cumulative information pertaining to the genetic alterations and gene expression changes associated with the progressional stages in four major cancer types.

Breast cancer

Histopathological stages of the most common form of breast cancer include atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS), and invasive ductal carcinoma [3]. Inherited alterations at the BRCA1 or BRCA2 loci can predispose individuals to breast cancer, the histology in these cases differing from that seen in sporadic disease [186, 187]. Altered expression of the FHIT tumor suppressor locus is common in many breast cancer types, especially in individuals carrying BRCA2 mutations [188]. Recent gene expression profiling studies have served to identify a genetic basis for the disease stages listed above [3, 53, 100, 114, 127, 189, 190]. SAGE and microarray data have demonstrated that relative expression of genes within the transcriptome vary from stage to stage, with some of the genes being expressed solely in a specific stage. Correlation of expression changes between multiple cases has led to the characterization of prognostic biomarkers [97, 98, 187, 191195]. Furthermore, proteomic studies have identified additional changes in DCIS not detected by nucleic acid-based assays [140, 196]. Methylation changes driving breast cancer progression have been identified using both high throughput techniques and more established techniques (e.g. methylation-specific PCR) [113, 162, 166, 167, 197200]. This has lead to the discovery of epigenetic changes that correlate to disease outcome and therefore have strong prognostic value. Figure 7 provides a summary of those genes and chromosomal regions implicated in breast cancer progression.

Prostate cancer

Prostate cancer is multifocal and heterogeneous, meaning that benign, premalignant, and malignant tissues coexist within the same patient [5]. The prostate cancer progression model suggests that normal prostatic epithelium changes to prostatic intraepithelial neoplasm (PIN), which in turn becomes localized invasive cancer, metastatic, and, finally, hormone refractory disease with increasing severity reflected in a higher Gleason grade [201, 202]. The hormone refractory stage occurs after metastasis, when patients cease to respond to hormone therapy and quickly succumb to the disease [203]. Both conventional and high throughput techniques have been employed to assess the progression of prostate cancer in terms of chromosomal instability and methylation [203210]. Most genes that have been implicated in prostate cancer development have been identified through linkage analysis. Brothmann et al. summarized cytogenetic and molecular genetic alterations associated with hereditary and sporadic prostate cancer, as well as epigenetic changes [201]. With new technology, such as LCM, it is now possible to procure isolated populations of cells to deduce somatic events. In addition, cDNA microarray and SAGE technologies have elucidated gene expression changes tied to prostate cancer progression at each histopathological stage [202, 211214]. These same technologies have been used to identify potential biomarkers, taking advantage of correlation between the expression of specific genes and Gleason score to generate a prognostic model for patients that have undergone prostatectomy based solely on gene expression data [215]. Integration of gene expression profiles with tissue microarray data has allowed multiplex assessment of biomarkers for diagnostics and prognostics in prostate cancer [216, 217]. Those genetic, epigenetic, and chromosomal alterations that have been characterized for prostate cancer are shown in Figure 8.

Lung cancer

Pathogenesis of lung cancer is thought to differ for small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) [218]. Classification of lung cancer subtypes is possible based solely on differential expression patterns [9496, 219223]. Analysis of gene expression, methylation, and chromosomal changes in lung cancer have served to better shape the existing lung cancer progression model [37, 167, 219, 220, 224236]. Disease progression is best characterized in bronchial squamous cell carcinoma, a NSCLC subtype where normal epithelium develops hyperplasia or metaplasia, followed by varying degrees of dysplasia, and then carcinoma in situ and invasive cancer [2, 237241]. Alterations on chromosome 3p followed by alterations on 9p are believed to be the earliest genetic events to occur in the progression of the disease [242]. Analysis of the early stages of squamous cell carcinoma has been facilitated by the development of fluorescence bronchoscopy technology (e.g. the LIFE-Lung device) allowing the detection and capture of minute lesions [243, 244] (Fig 9). hTERT, located on chromosome 5p, has also been studied extensively in lung cancer [226]. The expression pattern for hTERT has been reported to be slightly increased in the early premalignant stages of development and gradually increase as the lesion becomes more severe [226, 245]. Figure 10 shows the genetic alterations understood to drive progression.

Colorectal cancer

Colorectal cancer typically progresses from normal epithelium through dysplasia and adenoma stages to carcinoma in situ and finally to invasive cancer [246, 247]. Genetic instability is a hallmark of colorectal cancer; microsatellite instability (MIN) is attributed to DNA mismatch repair genes, whereas chromosomal instability (CIN) is characterized by gross chromosomal changes arising during cell division and commonly involves APC and β-catenin mutations [248250]. cDNA microarray analysis has revealed different gene expression patterns for cell cycle regulation and DNA repair genes in colorectal cancer cell lines characterized by CIN or MIN [251]. Furthermore, gene expression profiling with SAGE, oligonucleotide arrays, and cDNA microarrays has been applied to identify staging and prognostic markers [112, 118, 252259]. Those genes implicated are typically involved with cell cycle control, apoptosis, angiogenesis, and transcription machinery. Figure 11 details those alterations understood to drive tumorigenesis in the colorectal region.

Conclusion

Advances in technology have provided the means for a global look at an increased resolution. Using a global approach, identification of genetic alterations and gene expression changes at the early and late stages of cancer progression is possible. Through the integration of analysis at the level of the genome, transcriptome, and proteome, key pathways and functions can be defined. This will give a better understanding of the critical steps driving disease progression.
Knowledge of causal events driving progression will allow for a mechanistic basis for subclassification of disease and provide novel targets for early diagnosis and the creation of more specific treatment regimens [260].

Acknowledgements

We wish to acknowledge J. R. Vielkind, J. Fee, J. Squire, S. Lam, and K. Lonergan for providing pictures. We would also like to thank L. J. Henderson, J. J. Davies, B. P. Coe, and other members of the Lam Lab for useful discussion and critical evaluation of this manuscript. This work was supported by funds from the Canadian Institute of Health Research and National Cancer Institute of Canada. C. G. is supported by a scholarship from the Natural Sciences and Engineering Research Council of Canada.

Authors' contributions

C. G., the corresponding author, organized manuscript production. C. G. and T. P. H. B. contributed equally in literature review and the generation of early drafts. All authors participated in the development of concepts and framework for the review, the generation of figures, multiple rounds of text editing, and fact checking.
Literatur
1.
Zurück zum Zitat Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL: Genetic alterations during colorectal-tumor development. N Engl J Med. 1988, 319: 525-532.PubMedCrossRef Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL: Genetic alterations during colorectal-tumor development. N Engl J Med. 1988, 319: 525-532.PubMedCrossRef
3.
Zurück zum Zitat Polyak K: Molecular alterations in ductal carcinoma in situ of the breast. Curr Opin Oncol. 2002, 14: 92-96.PubMedCrossRef Polyak K: Molecular alterations in ductal carcinoma in situ of the breast. Curr Opin Oncol. 2002, 14: 92-96.PubMedCrossRef
4.
Zurück zum Zitat Califano J, van der Riet P, Westra W, Nawroz H, Clayman G, Piantadosi S, Corio R, Lee D, Greenberg B, Koch W, Sidransky D: Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996, 56: 2488-2492.PubMed Califano J, van der Riet P, Westra W, Nawroz H, Clayman G, Piantadosi S, Corio R, Lee D, Greenberg B, Koch W, Sidransky D: Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996, 56: 2488-2492.PubMed
5.
Zurück zum Zitat Abate-Shen C, Shen MM: Molecular genetics of prostate cancer. Genes Dev. 2000, 14: 2410-2434.PubMedCrossRef Abate-Shen C, Shen MM: Molecular genetics of prostate cancer. Genes Dev. 2000, 14: 2410-2434.PubMedCrossRef
6.
Zurück zum Zitat Hahn WC, Weinberg RA: Rules for making human tumor cells. N Engl J Med. 2002, 347: 1593-1603.PubMedCrossRef Hahn WC, Weinberg RA: Rules for making human tumor cells. N Engl J Med. 2002, 347: 1593-1603.PubMedCrossRef
8.
Zurück zum Zitat Baak JP, Path FR, Hermsen MA, Meijer G, Schmidt J, Janssen EA: Genomics and proteomics in cancer. Eur J Cancer. 2003, 39: 1199-1215.PubMedCrossRef Baak JP, Path FR, Hermsen MA, Meijer G, Schmidt J, Janssen EA: Genomics and proteomics in cancer. Eur J Cancer. 2003, 39: 1199-1215.PubMedCrossRef
9.
Zurück zum Zitat Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA: Laser capture microdissection. Science. 1996, 274: 998-1001.PubMedCrossRef Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, Weiss RA, Liotta LA: Laser capture microdissection. Science. 1996, 274: 998-1001.PubMedCrossRef
10.
Zurück zum Zitat Bonner RF, Emmert-Buck M, Cole K, Pohida T, Chuaqui R, Goldstein S, Liotta LA: Laser capture microdissection: molecular analysis of tissue. Science. 1997, 278: 1481, 1483-PubMedCrossRef Bonner RF, Emmert-Buck M, Cole K, Pohida T, Chuaqui R, Goldstein S, Liotta LA: Laser capture microdissection: molecular analysis of tissue. Science. 1997, 278: 1481, 1483-PubMedCrossRef
11.
Zurück zum Zitat Eltoum IA, Siegal GP, Frost AR: Microdissection of histologic sections: past, present, and future. Adv Anat Pathol. 2002, 9: 316-322.PubMedCrossRef Eltoum IA, Siegal GP, Frost AR: Microdissection of histologic sections: past, present, and future. Adv Anat Pathol. 2002, 9: 316-322.PubMedCrossRef
12.
Zurück zum Zitat Bohm M, Wieland I, Schutze K, Rubben H: Microbeam MOMeNT: non-contact laser microdissection of membrane-mounted native tissue. Am J Pathol. 1997, 151: 63-67.PubMedCentralPubMed Bohm M, Wieland I, Schutze K, Rubben H: Microbeam MOMeNT: non-contact laser microdissection of membrane-mounted native tissue. Am J Pathol. 1997, 151: 63-67.PubMedCentralPubMed
13.
Zurück zum Zitat Schutze K, Posl H, Lahr G: Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine. Cell Mol Biol (Noisy-le-grand). 1998, 44: 735-746. Schutze K, Posl H, Lahr G: Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine. Cell Mol Biol (Noisy-le-grand). 1998, 44: 735-746.
15.
Zurück zum Zitat Bayani JM, Squire JA: Applications of SKY in cancer cytogenetics. Cancer Invest. 2002, 20: 373-386.PubMedCrossRef Bayani JM, Squire JA: Applications of SKY in cancer cytogenetics. Cancer Invest. 2002, 20: 373-386.PubMedCrossRef
16.
Zurück zum Zitat Zhao L, Hayes K, Khan Z, Glassman A: Spectral karyotyping study of chromosome abnormalities in human leukemia. Cancer Genet Cytogenet. 2001, 127: 143-147.PubMedCrossRef Zhao L, Hayes K, Khan Z, Glassman A: Spectral karyotyping study of chromosome abnormalities in human leukemia. Cancer Genet Cytogenet. 2001, 127: 143-147.PubMedCrossRef
18.
Zurück zum Zitat Macoska JA, Beheshti B, Rhim JS, Hukku B, Lehr J, Pienta KJ, Squire JA: Genetic characterization of immortalized human prostate epithelial cell cultures. Evidence for structural rearrangements of chromosome 8 and i(8q) chromosome formation in primary tumor-derived cells. Cancer Genet Cytogenet. 2000, 120: 50-57.PubMedCrossRef Macoska JA, Beheshti B, Rhim JS, Hukku B, Lehr J, Pienta KJ, Squire JA: Genetic characterization of immortalized human prostate epithelial cell cultures. Evidence for structural rearrangements of chromosome 8 and i(8q) chromosome formation in primary tumor-derived cells. Cancer Genet Cytogenet. 2000, 120: 50-57.PubMedCrossRef
19.
Zurück zum Zitat Trask BJ: Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet. 1991, 7: 149-154.PubMedCrossRef Trask BJ: Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends Genet. 1991, 7: 149-154.PubMedCrossRef
20.
Zurück zum Zitat Gray JW, Lucas J, Kallioniemi O, Kallioniemi A, Kuo WL, Straume T, Tkachuk D, Tenjin T, Weier HU, Pinkel D: Applications of fluorescence in situ hybridization in biological dosimetry and detection of disease-specific chromosome aberrations. Prog Clin Biol Res. 1991, 372: 399-411.PubMed Gray JW, Lucas J, Kallioniemi O, Kallioniemi A, Kuo WL, Straume T, Tkachuk D, Tenjin T, Weier HU, Pinkel D: Applications of fluorescence in situ hybridization in biological dosimetry and detection of disease-specific chromosome aberrations. Prog Clin Biol Res. 1991, 372: 399-411.PubMed
21.
Zurück zum Zitat Wistuba , II, Berry J, Behrens C, Maitra A, Shivapurkar N, Milchgrub S, Mackay B, Minna JD, Gazdar AF: Molecular changes in the bronchial epithelium of patients with small cell lung cancer. Clin Cancer Res. 2000, 6: 2604-2610.PubMed Wistuba , II, Berry J, Behrens C, Maitra A, Shivapurkar N, Milchgrub S, Mackay B, Minna JD, Gazdar AF: Molecular changes in the bronchial epithelium of patients with small cell lung cancer. Clin Cancer Res. 2000, 6: 2604-2610.PubMed
22.
Zurück zum Zitat Zhang L, Michelsen C, Cheng X, Zeng T, Priddy R, Rosin MP: Molecular analysis of oral lichen planus. A premalignant lesion?. Am J Pathol. 1997, 151: 323-327.PubMedCentralPubMed Zhang L, Michelsen C, Cheng X, Zeng T, Priddy R, Rosin MP: Molecular analysis of oral lichen planus. A premalignant lesion?. Am J Pathol. 1997, 151: 323-327.PubMedCentralPubMed
23.
Zurück zum Zitat Maitra A, Wistuba , II, Washington C, Virmani AK, Ashfaq R, Milchgrub S, Gazdar AF, Minna JD: High-resolution chromosome 3p allelotyping of breast carcinomas and precursor lesions demonstrates frequent loss of heterozygosity and a discontinuous pattern of allele loss. Am J Pathol. 2001, 159: 119-130.PubMedCentralPubMedCrossRef Maitra A, Wistuba , II, Washington C, Virmani AK, Ashfaq R, Milchgrub S, Gazdar AF, Minna JD: High-resolution chromosome 3p allelotyping of breast carcinomas and precursor lesions demonstrates frequent loss of heterozygosity and a discontinuous pattern of allele loss. Am J Pathol. 2001, 159: 119-130.PubMedCentralPubMedCrossRef
24.
Zurück zum Zitat Li Z, Meng ZH, Sayeed A, Shalaby R, Ljung BM, Dairkee SH: Genome-wide allelotyping of a new in vitro model system reveals early events in breast cancer progression. Cancer Res. 2002, 62: 5980-5987.PubMed Li Z, Meng ZH, Sayeed A, Shalaby R, Ljung BM, Dairkee SH: Genome-wide allelotyping of a new in vitro model system reveals early events in breast cancer progression. Cancer Res. 2002, 62: 5980-5987.PubMed
25.
Zurück zum Zitat Wistuba , II, Maitra A, Carrasco R, Tang M, Troncoso P, Minna JD, Gazdar AF: High resolution chromosome 3p, 8p, 9q and 22q allelotyping analysis in the pathogenesis of gallbladder carcinoma. Br J Cancer. 2002, 87: 432-440.PubMedCentralPubMedCrossRef Wistuba , II, Maitra A, Carrasco R, Tang M, Troncoso P, Minna JD, Gazdar AF: High resolution chromosome 3p, 8p, 9q and 22q allelotyping analysis in the pathogenesis of gallbladder carcinoma. Br J Cancer. 2002, 87: 432-440.PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Simpson DJ, Bicknell EJ, Buch HN, Cutty SJ, Clayton RN, Farrell WE: Genome-wide amplification and allelotyping of sporadic pituitary adenomas identify novel regions of genetic loss. Genes, Chromosomes Cancer. 2003, 37: 225-236.PubMedCrossRef Simpson DJ, Bicknell EJ, Buch HN, Cutty SJ, Clayton RN, Farrell WE: Genome-wide amplification and allelotyping of sporadic pituitary adenomas identify novel regions of genetic loss. Genes, Chromosomes Cancer. 2003, 37: 225-236.PubMedCrossRef
27.
Zurück zum Zitat Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lander ES, : Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998, 280: 1077-1082.PubMedCrossRef Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lander ES, : Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998, 280: 1077-1082.PubMedCrossRef
28.
29.
Zurück zum Zitat Lindblad-Toh K, Tanenbaum DM, Daly MJ, Winchester E, Lui WO, Villapakkam A, Stanton SE, Larsson C, Hudson TJ, Johnson BE, Lander ES, Meyerson M: Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nat Biotechnol. 2000, 18: 1001-1005.PubMedCrossRef Lindblad-Toh K, Tanenbaum DM, Daly MJ, Winchester E, Lui WO, Villapakkam A, Stanton SE, Larsson C, Hudson TJ, Johnson BE, Lander ES, Meyerson M: Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nat Biotechnol. 2000, 18: 1001-1005.PubMedCrossRef
31.
Zurück zum Zitat Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV: DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18: 6531-6535.PubMedCentralPubMedCrossRef Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV: DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990, 18: 6531-6535.PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat Siwoski A, Ishkanian A, Garnis C, Zhang L, Rosin M, Lam WL: An efficient method for the assessment of DNA quality of archival microdissected specimens. Mod Path. 2002, 15: 889-892. 10.1097/01.MP.0000024288.63070.4F.CrossRef Siwoski A, Ishkanian A, Garnis C, Zhang L, Rosin M, Lam WL: An efficient method for the assessment of DNA quality of archival microdissected specimens. Mod Path. 2002, 15: 889-892. 10.1097/01.MP.0000024288.63070.4F.CrossRef
33.
Zurück zum Zitat Arribas R, Capella G, Tortola S, Masramon L, Grizzle WE, Perucho M, Peinado MA: Assessment of genomic damage in colorectal cancer by DNA fingerprinting: prognostic applications. J Clin Oncol. 1997, 15: 3230-3240.PubMed Arribas R, Capella G, Tortola S, Masramon L, Grizzle WE, Perucho M, Peinado MA: Assessment of genomic damage in colorectal cancer by DNA fingerprinting: prognostic applications. J Clin Oncol. 1997, 15: 3230-3240.PubMed
34.
Zurück zum Zitat de Juan C, Iniesta P, Vega FJ, Peinado MA, Fernandez C, Caldes T, Massa MJ, Lopez JA, Sanchez A, Torres AJ, Balibrea JL, Benito M: Prognostic value of genomic damage in non-small-cell lung cancer. Br J Cancer. 1998, 77: 1971-1977.PubMedCentralPubMedCrossRef de Juan C, Iniesta P, Vega FJ, Peinado MA, Fernandez C, Caldes T, Massa MJ, Lopez JA, Sanchez A, Torres AJ, Balibrea JL, Benito M: Prognostic value of genomic damage in non-small-cell lung cancer. Br J Cancer. 1998, 77: 1971-1977.PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat de Juan C, Iniesta P, Cruces J, Sanchez A, Massa MJ, Gonzalez-Quevedo R, Torres AJ, Balibrea JL, Benito M: DNA amplification on chromosome 6p12 in non small cell lung cancer detected by arbitrarily primed polymerase chain reaction. Int J Cancer. 1999, 84: 344-349.PubMedCrossRef de Juan C, Iniesta P, Cruces J, Sanchez A, Massa MJ, Gonzalez-Quevedo R, Torres AJ, Balibrea JL, Benito M: DNA amplification on chromosome 6p12 in non small cell lung cancer detected by arbitrarily primed polymerase chain reaction. Int J Cancer. 1999, 84: 344-349.PubMedCrossRef
36.
Zurück zum Zitat Navarro JM, Jorcano JL: The use of arbitrarily primed polymerase chain reaction in cancer research. Electrophoresis. 1999, 20: 283-290.PubMedCrossRef Navarro JM, Jorcano JL: The use of arbitrarily primed polymerase chain reaction in cancer research. Electrophoresis. 1999, 20: 283-290.PubMedCrossRef
37.
Zurück zum Zitat Yamada T, Kohno T, Navarro JM, Ohwada S, Perucho M, Yokota J: Frequent chromosome 8q gains in human small cell lung carcinoma detected by arbitrarily primed-PCR genomic fingerprinting. Cancer Genet Cytogenet. 2000, 120: 11-17.PubMedCrossRef Yamada T, Kohno T, Navarro JM, Ohwada S, Perucho M, Yokota J: Frequent chromosome 8q gains in human small cell lung carcinoma detected by arbitrarily primed-PCR genomic fingerprinting. Cancer Genet Cytogenet. 2000, 120: 11-17.PubMedCrossRef
38.
Zurück zum Zitat Scarpa A, Moore PS, Rigaud G, Menestrina F: Genetic alterations in primary mediastinal B-cell lymphoma: an update. Leukemia & Lymphoma. 2001, 41: 47-53.CrossRef Scarpa A, Moore PS, Rigaud G, Menestrina F: Genetic alterations in primary mediastinal B-cell lymphoma: an update. Leukemia & Lymphoma. 2001, 41: 47-53.CrossRef
39.
Zurück zum Zitat Odero MD, Soto JL, Matutes E, Martin-Subero JI, Zudaire I, Rao PH, Cigudosa JC, Ardanaz MT, Chaganti RS, Perucho M, Calasanz MJ: Comparative genomic hybridization and amplotyping by arbitrarily primed PCR in stage A B-CLL. Cancer Genet Cytogenet. 2001, 130: 8-13.PubMedCrossRef Odero MD, Soto JL, Matutes E, Martin-Subero JI, Zudaire I, Rao PH, Cigudosa JC, Ardanaz MT, Chaganti RS, Perucho M, Calasanz MJ: Comparative genomic hybridization and amplotyping by arbitrarily primed PCR in stage A B-CLL. Cancer Genet Cytogenet. 2001, 130: 8-13.PubMedCrossRef
40.
Zurück zum Zitat Papadopoulos S, Benter T, Anastassiou G, Pape M, Gerhard S, Bornfeld N, Ludwig WD, Dorken B: Assessment of genomic instability in breast cancer and uveal melanoma by random amplified polymorphic DNA analysis. Int J Cancer. 2002, 99: 193-200.PubMedCrossRef Papadopoulos S, Benter T, Anastassiou G, Pape M, Gerhard S, Bornfeld N, Ludwig WD, Dorken B: Assessment of genomic instability in breast cancer and uveal melanoma by random amplified polymorphic DNA analysis. Int J Cancer. 2002, 99: 193-200.PubMedCrossRef
41.
Zurück zum Zitat Viswanathan M, Sangiliyandi G, Vinod SS, Mohanprasad BK, Shanmugam G: Genomic Instability and Tumor-specific Alterations in Oral Squamous Cell Carcinomas Assessed by Inter- (Simple Sequence Repeat) PCR. Clin Cancer Res. 2003, 9: 1057-1062.PubMed Viswanathan M, Sangiliyandi G, Vinod SS, Mohanprasad BK, Shanmugam G: Genomic Instability and Tumor-specific Alterations in Oral Squamous Cell Carcinomas Assessed by Inter- (Simple Sequence Repeat) PCR. Clin Cancer Res. 2003, 9: 1057-1062.PubMed
42.
Zurück zum Zitat Garnis C, Coe BP, Ishkanian A, Zhang L, Rosin MP, Lam WL: Novel regions of amplification on 8q distinct from the MYC locus and frequently altered in oral dysplasia and cancer. Genes, Chromosomes Cancer. 2004, 39: 93-98.PubMedCrossRef Garnis C, Coe BP, Ishkanian A, Zhang L, Rosin MP, Lam WL: Novel regions of amplification on 8q distinct from the MYC locus and frequently altered in oral dysplasia and cancer. Genes, Chromosomes Cancer. 2004, 39: 93-98.PubMedCrossRef
43.
Zurück zum Zitat Yamamoto F, Yamamoto M, Soto JL, Kojima E, Wang EN, Perucho M, Sekiya T, Yamanaka H: Notl-Msell methylation-sensitive amplied fragment length polymorhism for DNA methylation analysis of human cancers. Electrophoresis. 2001, 22: 1946-1956.PubMedCrossRef Yamamoto F, Yamamoto M, Soto JL, Kojima E, Wang EN, Perucho M, Sekiya T, Yamanaka H: Notl-Msell methylation-sensitive amplied fragment length polymorhism for DNA methylation analysis of human cancers. Electrophoresis. 2001, 22: 1946-1956.PubMedCrossRef
44.
Zurück zum Zitat Yamashita K, Dai T, Dai Y, Yamamoto F, Perucho M: Genetics supersedes epigenetics in colon cancer phenotype. Cancer Cell. 2003, 4: 121-131.PubMedCrossRef Yamashita K, Dai T, Dai Y, Yamamoto F, Perucho M: Genetics supersedes epigenetics in colon cancer phenotype. Cancer Cell. 2003, 4: 121-131.PubMedCrossRef
45.
Zurück zum Zitat Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y, Dairkee SH, Ljung BM, Gray JW, Albertson DG: High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998, 20: 207-211.PubMedCrossRef Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y, Dairkee SH, Ljung BM, Gray JW, Albertson DG: High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998, 20: 207-211.PubMedCrossRef
46.
Zurück zum Zitat Kirchhoff M, Rose H, Petersen BL, Maahr J, Gerdes T, Lundsteen C, Bryndorf T, Kryger-Baggesen N, Christensen L, Engelholm SA, Philip J: Comparative genomic hybridization reveals a recurrent pattern of chromosomal aberrations in severe dysplasia/carcinoma in situ of the cervix and in advanced-stage cervical carcinoma. Genes, Chromosomes Cancer. 1999, 24: 144-150.PubMedCrossRef Kirchhoff M, Rose H, Petersen BL, Maahr J, Gerdes T, Lundsteen C, Bryndorf T, Kryger-Baggesen N, Christensen L, Engelholm SA, Philip J: Comparative genomic hybridization reveals a recurrent pattern of chromosomal aberrations in severe dysplasia/carcinoma in situ of the cervix and in advanced-stage cervical carcinoma. Genes, Chromosomes Cancer. 1999, 24: 144-150.PubMedCrossRef
47.
Zurück zum Zitat Kiechle M, Hinrichs M, Jacobsen A, Luttges J, Pfisterer J, Kommoss F, Arnold N: Genetic imbalances in precursor lesions of endometrial cancer detected by comparative genomic hybridization. Am J Pathol. 2000, 156: 1827-1833.PubMedCentralPubMedCrossRef Kiechle M, Hinrichs M, Jacobsen A, Luttges J, Pfisterer J, Kommoss F, Arnold N: Genetic imbalances in precursor lesions of endometrial cancer detected by comparative genomic hybridization. Am J Pathol. 2000, 156: 1827-1833.PubMedCentralPubMedCrossRef
48.
Zurück zum Zitat Kashiwagi H, Uchida K: Genome-wide profiling of gene amplification and deletion in cancer. Human Cell. 2000, 13: 135-141.PubMed Kashiwagi H, Uchida K: Genome-wide profiling of gene amplification and deletion in cancer. Human Cell. 2000, 13: 135-141.PubMed
49.
Zurück zum Zitat Tachdjian G, Aboura A, Lapierre JM, Viguie F: Cytogenetic analysis from DNA by comparative genomic hybridization. Ann Genet. 2000, 43: 147-154.PubMedCrossRef Tachdjian G, Aboura A, Lapierre JM, Viguie F: Cytogenetic analysis from DNA by comparative genomic hybridization. Ann Genet. 2000, 43: 147-154.PubMedCrossRef
50.
Zurück zum Zitat Kirchhoff M, Rose H, Petersen BL, Maahr J, Gerdes T, Philip J, Lundsteen C: Comparative genomic hybridization reveals non-random chromosomal aberrations in early preinvasive cervical lesions. Cancer Genet Cytogenet. 2001, 129: 47-51.PubMedCrossRef Kirchhoff M, Rose H, Petersen BL, Maahr J, Gerdes T, Philip J, Lundsteen C: Comparative genomic hybridization reveals non-random chromosomal aberrations in early preinvasive cervical lesions. Cancer Genet Cytogenet. 2001, 129: 47-51.PubMedCrossRef
51.
Zurück zum Zitat Marchio A, Terris B, Meddeb M, Pineau P, Duverger A, Tiollais P, Bernheim A, Dejean A: Chromosomal abnormalities in liver cell dysplasia detected by comparative genomic hybridisation. Mol Pathol. 2001, 54: 270-274.PubMedCentralPubMedCrossRef Marchio A, Terris B, Meddeb M, Pineau P, Duverger A, Tiollais P, Bernheim A, Dejean A: Chromosomal abnormalities in liver cell dysplasia detected by comparative genomic hybridisation. Mol Pathol. 2001, 54: 270-274.PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat Oga A, Kawauchi S, Izumi H, Ping LX, Furuya T, Sasaki K: New perspectives for tumor pathology provided by comparative genomic hybridization. Int J Clin Oncol. 2002, 7: 133-137.PubMedCrossRef Oga A, Kawauchi S, Izumi H, Ping LX, Furuya T, Sasaki K: New perspectives for tumor pathology provided by comparative genomic hybridization. Int J Clin Oncol. 2002, 7: 133-137.PubMedCrossRef
53.
54.
Zurück zum Zitat Alcock HE, Stephenson TJ, Royds JA, Hammond DW: Analysis of colorectal tumor progression by microdissection and comparative genomic hybridization. Genes, Chromosomes Cancer. 2003, 37: 369-380.PubMedCrossRef Alcock HE, Stephenson TJ, Royds JA, Hammond DW: Analysis of colorectal tumor progression by microdissection and comparative genomic hybridization. Genes, Chromosomes Cancer. 2003, 37: 369-380.PubMedCrossRef
55.
Zurück zum Zitat Ullmann R, Bongiovanni M, Halbwedl I, Petzmann S, Gogg-Kammerer M, Sapino A, Papotti M, Bussolati G, Popper HH: Bronchiolar columnar cell dysplasia--genetic analysis of a novel preneoplastic lesion of peripheral lung. Virchows Archiv. 2003, 442: 429-436.PubMed Ullmann R, Bongiovanni M, Halbwedl I, Petzmann S, Gogg-Kammerer M, Sapino A, Papotti M, Bussolati G, Popper HH: Bronchiolar columnar cell dysplasia--genetic analysis of a novel preneoplastic lesion of peripheral lung. Virchows Archiv. 2003, 442: 429-436.PubMed
56.
Zurück zum Zitat Brieger J, Jacob R, Riazimand HS, Essig E, Heinrich UR, Bittinger F, Mann WJ: Chromosomal aberrations in premalignant and malignant squamous epithelium. Cancer Genet Cytogenet. 2003, 144: 148-155.PubMedCrossRef Brieger J, Jacob R, Riazimand HS, Essig E, Heinrich UR, Bittinger F, Mann WJ: Chromosomal aberrations in premalignant and malignant squamous epithelium. Cancer Genet Cytogenet. 2003, 144: 148-155.PubMedCrossRef
57.
Zurück zum Zitat Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO: Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genet. 1999, 23: 41-46.PubMedCrossRef Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO: Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genet. 1999, 23: 41-46.PubMedCrossRef
58.
Zurück zum Zitat Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, Tibshirani R, Botstein D, Borresen-Dale AL, Brown PO: Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA. 2002, 99: 12963-12968.PubMedCentralPubMedCrossRef Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, Tibshirani R, Botstein D, Borresen-Dale AL, Brown PO: Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci USA. 2002, 99: 12963-12968.PubMedCentralPubMedCrossRef
59.
Zurück zum Zitat Lisitsyn N, Wigler M: Cloning the differences between two complex genomes. Science. 1993, 259: 946-951.PubMedCrossRef Lisitsyn N, Wigler M: Cloning the differences between two complex genomes. Science. 1993, 259: 946-951.PubMedCrossRef
60.
Zurück zum Zitat Lucito R, Healy J, Alexander J, Reiner A, Esposito D, Chi M, Rodgers L, Brady A, Sebat J, Troge J, West JA, Rostan S, Nguyen KC, Powers S, Ye KQ, Olshen A, Venkatraman E, Norton L, Wigler M: Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 2003, 13: 2291-2305.PubMedCentralPubMedCrossRef Lucito R, Healy J, Alexander J, Reiner A, Esposito D, Chi M, Rodgers L, Brady A, Sebat J, Troge J, West JA, Rostan S, Nguyen KC, Powers S, Ye KQ, Olshen A, Venkatraman E, Norton L, Wigler M: Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res. 2003, 13: 2291-2305.PubMedCentralPubMedCrossRef
61.
Zurück zum Zitat Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP, Snijders A, Albertson DG, Pinkel D, Marra MA, Ling V, MacAulay C, Lam WL: A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet. 2004, 36: 299-303.PubMedCrossRef Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP, Snijders A, Albertson DG, Pinkel D, Marra MA, Ling V, MacAulay C, Lam WL: A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet. 2004, 36: 299-303.PubMedCrossRef
62.
Zurück zum Zitat Albertson DG, Pinkel D: Genomic microarrays in human genetic disease and cancer. Hum Mol Genet. 2003, 12 Spec No 2: R145-52.PubMedCrossRef Albertson DG, Pinkel D: Genomic microarrays in human genetic disease and cancer. Hum Mol Genet. 2003, 12 Spec No 2: R145-52.PubMedCrossRef
63.
Zurück zum Zitat Albertson DG, Ylstra B, Segraves R, Collins C, Dairkee SH, Kowbel D, Kuo WL, Gray JW, Pinkel D: Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet. 2000, 25: 144-146.PubMedCrossRef Albertson DG, Ylstra B, Segraves R, Collins C, Dairkee SH, Kowbel D, Kuo WL, Gray JW, Pinkel D: Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet. 2000, 25: 144-146.PubMedCrossRef
64.
Zurück zum Zitat Garnis C, Coe BP, Zhang L, Rosin MP, Lam WL: Overexpression of LRP12, a gene contained within an 8q22 amplicon identified by high-resolution array CGH analysis of oral squamous cell carcinomas. Oncogene. 2004, 23: 2582-2586-PubMedCrossRef Garnis C, Coe BP, Zhang L, Rosin MP, Lam WL: Overexpression of LRP12, a gene contained within an 8q22 amplicon identified by high-resolution array CGH analysis of oral squamous cell carcinomas. Oncogene. 2004, 23: 2582-2586-PubMedCrossRef
65.
Zurück zum Zitat Garnis C, MacAulay C, Lam S, Lam WL: Genetic Alteration On 8q Distinct From MYC In Bronchial Carcinoma In Situ Lesions. Lung Cancer. in press: Garnis C, MacAulay C, Lam S, Lam WL: Genetic Alteration On 8q Distinct From MYC In Bronchial Carcinoma In Situ Lesions. Lung Cancer. in press:
66.
Zurück zum Zitat Bruder CE, Hirvela C, Tapia-Paez I, Fransson I, Segraves R, Hamilton G, Zhang XX, Evans DG, Wallace AJ, Baser ME, Zucman-Rossi J, Hergersberg M, Boltshauser E, Papi L, Rouleau GA, Poptodorov G, Jordanova A, Rask-Andersen H, Kluwe L, Mautner V, Sainio M, Hung G, Mathiesen T, Moller C, Pulst SM, Harder H, Heiberg A, Honda M, Niimura M, Sahlen S, Blennow E, Albertson DG, Pinkel D, Dumanski JP: High resolution deletion analysis of constitutional DNA from neurofibromatosis type 2 (NF2) patients using microarray-CGH. Hum Mol Genet. 2001, 10: 271-282.PubMedCrossRef Bruder CE, Hirvela C, Tapia-Paez I, Fransson I, Segraves R, Hamilton G, Zhang XX, Evans DG, Wallace AJ, Baser ME, Zucman-Rossi J, Hergersberg M, Boltshauser E, Papi L, Rouleau GA, Poptodorov G, Jordanova A, Rask-Andersen H, Kluwe L, Mautner V, Sainio M, Hung G, Mathiesen T, Moller C, Pulst SM, Harder H, Heiberg A, Honda M, Niimura M, Sahlen S, Blennow E, Albertson DG, Pinkel D, Dumanski JP: High resolution deletion analysis of constitutional DNA from neurofibromatosis type 2 (NF2) patients using microarray-CGH. Hum Mol Genet. 2001, 10: 271-282.PubMedCrossRef
67.
Zurück zum Zitat Monni O, Hyman E, Mousses S, Barlund M, Kallioniemi A, Kallioniemi OP: From chromosomal alterations to target genes for therapy: integrating cytogenetic and functional genomic views of the breast cancer genome. Sem Cancer Biol. 2001, 11: 395-401. 10.1006/scbi.2001.0395.CrossRef Monni O, Hyman E, Mousses S, Barlund M, Kallioniemi A, Kallioniemi OP: From chromosomal alterations to target genes for therapy: integrating cytogenetic and functional genomic views of the breast cancer genome. Sem Cancer Biol. 2001, 11: 395-401. 10.1006/scbi.2001.0395.CrossRef
68.
Zurück zum Zitat Massion PP, Kuo WL, Stokoe D, Olshen AB, Treseler PA, Chin K, Chen C, Polikoff D, Jain AN, Pinkel D, Albertson DG, Jablons DM, Gray JW: Genomic copy number analysis of non-small cell lung cancer using array comparative genomic hybridization: implications of the phosphatidylinositol 3-kinase pathway. Cancer Res. 2002, 62: 3636-3640.PubMed Massion PP, Kuo WL, Stokoe D, Olshen AB, Treseler PA, Chin K, Chen C, Polikoff D, Jain AN, Pinkel D, Albertson DG, Jablons DM, Gray JW: Genomic copy number analysis of non-small cell lung cancer using array comparative genomic hybridization: implications of the phosphatidylinositol 3-kinase pathway. Cancer Res. 2002, 62: 3636-3640.PubMed
69.
Zurück zum Zitat Buckley PG, Mantripragada KK, Benetkiewicz M, Tapia-Paez I, Diaz De Stahl T, Rosenquist M, Ali H, Jarbo C, De Bustos C, Hirvela C, Sinder Wilen B, Fransson I, Thyr C, Johnsson BI, Bruder CE, Menzel U, Hergersberg M, Mandahl N, Blennow E, Wedell A, Beare DM, Collins JE, Dunham I, Albertson D, Pinkel D, Bastian BC, Faruqi AF, Lasken RS, Ichimura K, Collins VP, Dumanski JP: A full-coverage, high-resolution human chromosome 22 genomic microarray for clinical and research applications. Hum Mol Genet. 2002, 11: 3221-3229.PubMedCrossRef Buckley PG, Mantripragada KK, Benetkiewicz M, Tapia-Paez I, Diaz De Stahl T, Rosenquist M, Ali H, Jarbo C, De Bustos C, Hirvela C, Sinder Wilen B, Fransson I, Thyr C, Johnsson BI, Bruder CE, Menzel U, Hergersberg M, Mandahl N, Blennow E, Wedell A, Beare DM, Collins JE, Dunham I, Albertson D, Pinkel D, Bastian BC, Faruqi AF, Lasken RS, Ichimura K, Collins VP, Dumanski JP: A full-coverage, high-resolution human chromosome 22 genomic microarray for clinical and research applications. Hum Mol Genet. 2002, 11: 3221-3229.PubMedCrossRef
70.
Zurück zum Zitat Garnis C, Baldwin C, Zhang L, Rosin MP, Lam WL: Use of complete coverage array comparative genomic hybridization to define copy number alterations on chromosome 3p in oral squamous cell carcinomas. Cancer Res. 2003, 63: 8582-8585.PubMed Garnis C, Baldwin C, Zhang L, Rosin MP, Lam WL: Use of complete coverage array comparative genomic hybridization to define copy number alterations on chromosome 3p in oral squamous cell carcinomas. Cancer Res. 2003, 63: 8582-8585.PubMed
71.
Zurück zum Zitat Garnis C, Campbell J, Zhang L, Rosin MP, Lam WL: OCGR Array, an oral cancer genomic regional array for comparative genomic hybridization analysis. Oral Oncol. : Garnis C, Campbell J, Zhang L, Rosin MP, Lam WL: OCGR Array, an oral cancer genomic regional array for comparative genomic hybridization analysis. Oral Oncol. :
72.
Zurück zum Zitat Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J, Hamilton G, Hindle AK, Huey B, Kimura K, Law S, Myambo K, Palmer J, Ylstra B, Yue JP, Gray JW, Jain AN, Pinkel D, Albertson DG: Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet. 2001, 29: 263-264.PubMedCrossRef Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J, Hamilton G, Hindle AK, Huey B, Kimura K, Law S, Myambo K, Palmer J, Ylstra B, Yue JP, Gray JW, Jain AN, Pinkel D, Albertson DG: Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet. 2001, 29: 263-264.PubMedCrossRef
73.
Zurück zum Zitat Chung YJ, Jonkers J, Kitson H, Fiegler H, Humphray S, Scott C, Hunt S, Yu Y, Nishijima I, Velds A, Holstege H, Carter N, Bradley A: A whole-genome mouse BAC microarray with 1-Mb resolution for analysis of DNA copy number changes by array comparative genomic hybridization. Genome Res. 2004, 14: 188-196.PubMedCentralPubMedCrossRef Chung YJ, Jonkers J, Kitson H, Fiegler H, Humphray S, Scott C, Hunt S, Yu Y, Nishijima I, Velds A, Holstege H, Carter N, Bradley A: A whole-genome mouse BAC microarray with 1-Mb resolution for analysis of DNA copy number changes by array comparative genomic hybridization. Genome Res. 2004, 14: 188-196.PubMedCentralPubMedCrossRef
74.
Zurück zum Zitat Greshock J, Naylor TL, Margolin A, Diskin S, Cleaver SH, Futreal PA, deJong PJ, Zhao S, Liebman M, Weber BL: 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis. Genome Res. 2004, 14: 179-187.PubMedCentralPubMedCrossRef Greshock J, Naylor TL, Margolin A, Diskin S, Cleaver SH, Futreal PA, deJong PJ, Zhao S, Liebman M, Weber BL: 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis. Genome Res. 2004, 14: 179-187.PubMedCentralPubMedCrossRef
75.
Zurück zum Zitat Wilhelm M, Veltman JA, Olshen AB, Jain AN, Moore DH, Presti J. C., Jr., Kovacs G, Waldman FM: Array-based comparative genomic hybridization for the differential diagnosis of renal cell cancer. Cancer Res. 2002, 62: 957-960.PubMed Wilhelm M, Veltman JA, Olshen AB, Jain AN, Moore DH, Presti J. C., Jr., Kovacs G, Waldman FM: Array-based comparative genomic hybridization for the differential diagnosis of renal cell cancer. Cancer Res. 2002, 62: 957-960.PubMed
76.
Zurück zum Zitat Sanchez-Izquierdo D, Buchonnet G, Siebert R, Gascoyne RD, Climent J, Karran L, Marin M, Blesa D, Horsman D, Rosenwald A, Staudt LM, Albertson DG, Du MQ, Ye H, Marynen P, Garcia-Conde J, Pinkel D, Dyer MJ, Martinez-Climent JA: MALT1 is deregulated by both chromosomal translocation and amplification in B-cell non-Hodgkin lymphoma. Blood. 2003, 101: 4539-4546.PubMedCrossRef Sanchez-Izquierdo D, Buchonnet G, Siebert R, Gascoyne RD, Climent J, Karran L, Marin M, Blesa D, Horsman D, Rosenwald A, Staudt LM, Albertson DG, Du MQ, Ye H, Marynen P, Garcia-Conde J, Pinkel D, Dyer MJ, Martinez-Climent JA: MALT1 is deregulated by both chromosomal translocation and amplification in B-cell non-Hodgkin lymphoma. Blood. 2003, 101: 4539-4546.PubMedCrossRef
77.
Zurück zum Zitat Veltman JA, Fridlyand J, Pejavar S, Olshen AB, Korkola JE, DeVries S, Carroll P, Kuo WL, Pinkel D, Albertson D, Cordon-Cardo C, Jain AN, Waldman FM: Array-based Comparative Genomic Hybridization for Genome-Wide Screening of DNA Copy Number in Bladder Tumors. Cancer Res. 2003, 63: 2872-2880.PubMed Veltman JA, Fridlyand J, Pejavar S, Olshen AB, Korkola JE, DeVries S, Carroll P, Kuo WL, Pinkel D, Albertson D, Cordon-Cardo C, Jain AN, Waldman FM: Array-based Comparative Genomic Hybridization for Genome-Wide Screening of DNA Copy Number in Bladder Tumors. Cancer Res. 2003, 63: 2872-2880.PubMed
78.
Zurück zum Zitat Albertson DG: Profiling breast cancer by array CGH. Breast Cancer Res Treat. 2003, 78: 289-298.PubMedCrossRef Albertson DG: Profiling breast cancer by array CGH. Breast Cancer Res Treat. 2003, 78: 289-298.PubMedCrossRef
79.
Zurück zum Zitat Paris PL, Albertson DG, Alers JC, Andaya A, Carroll P, Fridlyand J, Jain AN, Kamkar S, Kowbel D, Krijtenburg PJ, Pinkel D, Schroder FH, Vissers KJ, Watson VJ, Wildhagen MF, Collins C, Van Dekken H: High-resolution analysis of paraffin-embedded and formalin-fixed prostate tumors using comparative genomic hybridization to genomic microarrays. Am J Pathol. 2003, 162: 763-770.PubMedCentralPubMedCrossRef Paris PL, Albertson DG, Alers JC, Andaya A, Carroll P, Fridlyand J, Jain AN, Kamkar S, Kowbel D, Krijtenburg PJ, Pinkel D, Schroder FH, Vissers KJ, Watson VJ, Wildhagen MF, Collins C, Van Dekken H: High-resolution analysis of paraffin-embedded and formalin-fixed prostate tumors using comparative genomic hybridization to genomic microarrays. Am J Pathol. 2003, 162: 763-770.PubMedCentralPubMedCrossRef
80.
Zurück zum Zitat Kraus J, Pantel K, Pinkel D, Albertson DG, Speicher MR: High-resolution genomic profiling of occult micrometastatic tumor cells. Genes, Chromosomes Cancer. 2003, 36: 159-166.PubMedCrossRef Kraus J, Pantel K, Pinkel D, Albertson DG, Speicher MR: High-resolution genomic profiling of occult micrometastatic tumor cells. Genes, Chromosomes Cancer. 2003, 36: 159-166.PubMedCrossRef
81.
Zurück zum Zitat Watson SK, Deleeuw RJ, Ishkanian AS, Malloff CA, Lam WL: Methods for high throughput validation of amplified fragment pools of BAC DNA for constructing high resolution CGH arrays. BMC Genomics. 2004, 5: 6-PubMedCentralPubMedCrossRef Watson SK, Deleeuw RJ, Ishkanian AS, Malloff CA, Lam WL: Methods for high throughput validation of amplified fragment pools of BAC DNA for constructing high resolution CGH arrays. BMC Genomics. 2004, 5: 6-PubMedCentralPubMedCrossRef
82.
Zurück zum Zitat Chi B, deLeeuw RJ, Coe BP, MacAulay C, Lam WL: SeeGH - A Software Tool for Visualization of Whole Genome Array Comparative Genomic Hybridization Data. BMC Bioinformatics. 2004, 5 (13):PubMedCentralPubMedCrossRef Chi B, deLeeuw RJ, Coe BP, MacAulay C, Lam WL: SeeGH - A Software Tool for Visualization of Whole Genome Array Comparative Genomic Hybridization Data. BMC Bioinformatics. 2004, 5 (13):PubMedCentralPubMedCrossRef
83.
Zurück zum Zitat Wang TL, Maierhofer C, Speicher MR, Lengauer C, Vogelstein B, Kinzler KW, Velculescu VE: Digital karyotyping. Proc Natl Acad Sci U S A. 2002, 99: 16156-16161.PubMedCentralPubMedCrossRef Wang TL, Maierhofer C, Speicher MR, Lengauer C, Vogelstein B, Kinzler KW, Velculescu VE: Digital karyotyping. Proc Natl Acad Sci U S A. 2002, 99: 16156-16161.PubMedCentralPubMedCrossRef
84.
Zurück zum Zitat Velculescu VE, Zhang L, Vogelstein B, Kinzler KW: Serial analysis of gene expression. Science. 1995, 270: 484-487.PubMedCrossRef Velculescu VE, Zhang L, Vogelstein B, Kinzler KW: Serial analysis of gene expression. Science. 1995, 270: 484-487.PubMedCrossRef
85.
Zurück zum Zitat DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA, Trent JM: Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet. 1996, 14: 457-460.PubMedCrossRef DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su YA, Trent JM: Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet. 1996, 14: 457-460.PubMedCrossRef
86.
Zurück zum Zitat Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP: Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA. 1994, 91: 5022-5026.PubMedCentralPubMedCrossRef Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP: Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA. 1994, 91: 5022-5026.PubMedCentralPubMedCrossRef
87.
Zurück zum Zitat Yeatman TJ: The future of cancer management: translating the genome, transcriptome, and proteome. Ann Surg Oncol. 2003, 10: 7-14.PubMedCrossRef Yeatman TJ: The future of cancer management: translating the genome, transcriptome, and proteome. Ann Surg Oncol. 2003, 10: 7-14.PubMedCrossRef
88.
Zurück zum Zitat Relogio A, Schwager C, Richter A, Ansorge W, Valcarcel J: Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Res. 2002, 30: e51-PubMedCentralPubMedCrossRef Relogio A, Schwager C, Richter A, Ansorge W, Valcarcel J: Optimization of oligonucleotide-based DNA microarrays. Nucleic Acids Res. 2002, 30: e51-PubMedCentralPubMedCrossRef
89.
Zurück zum Zitat Quackenbush J: Microarray data normalization and transformation. Nature Genet. 2002, 32: 496-501.PubMedCrossRef Quackenbush J: Microarray data normalization and transformation. Nature Genet. 2002, 32: 496-501.PubMedCrossRef
90.
Zurück zum Zitat Mohr S, Leikauf GD, Keith G, Rihn BH: Microarrays as cancer keys: an array of possibilities. J Clin Oncol. 2002, 20: 3165-3175.PubMedCrossRef Mohr S, Leikauf GD, Keith G, Rihn BH: Microarrays as cancer keys: an array of possibilities. J Clin Oncol. 2002, 20: 3165-3175.PubMedCrossRef
91.
Zurück zum Zitat Alizadeh A, Eisen M, Davis RE, Ma C, Sabet H, Tran T, Powell JI, Yang L, Marti GE, Moore DT, Hudson J. R., Jr., Chan WC, Greiner T, Weisenburger D, Armitage JO, Lossos I, Levy R, Botstein D, Brown PO, Staudt LM: The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb Symp Quant Biol. 1999, 64: 71-78.PubMedCrossRef Alizadeh A, Eisen M, Davis RE, Ma C, Sabet H, Tran T, Powell JI, Yang L, Marti GE, Moore DT, Hudson J. R., Jr., Chan WC, Greiner T, Weisenburger D, Armitage JO, Lossos I, Levy R, Botstein D, Brown PO, Staudt LM: The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb Symp Quant Biol. 1999, 64: 71-78.PubMedCrossRef
92.
Zurück zum Zitat Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999, 286: 531-537.PubMedCrossRef Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999, 286: 531-537.PubMedCrossRef
93.
Zurück zum Zitat Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J., Jr., Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Staudt LM, : Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000, 403: 503-511.PubMedCrossRef Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J., Jr., Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Staudt LM, : Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000, 403: 503-511.PubMedCrossRef
94.
Zurück zum Zitat Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA. 2001, 98: 13790-13795.PubMedCentralPubMedCrossRef Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, Loda M, Weber G, Mark EJ, Lander ES, Wong W, Johnson BE, Golub TR, Sugarbaker DJ, Meyerson M: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA. 2001, 98: 13790-13795.PubMedCentralPubMedCrossRef
95.
Zurück zum Zitat Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI, Altman RB, Brown PO, Botstein D, Petersen I: Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA. 2001, 98: 13784-13789.PubMedCentralPubMedCrossRef Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI, Altman RB, Brown PO, Botstein D, Petersen I: Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA. 2001, 98: 13784-13789.PubMedCentralPubMedCrossRef
96.
Zurück zum Zitat Wigle DA, Jurisica I, Radulovich N, Pintilie M, Rossant J, Liu N, Lu C, Woodgett J, Seiden I, Johnston M, Keshavjee S, Darling G, Winton T, Breitkreutz BJ, Jorgenson P, Tyers M, Shepherd FA, Tsao MS: Molecular profiling of non-small cell lung cancer and correlation with disease-free survival. Cancer Res. 2002, 62: 3005-3008.PubMed Wigle DA, Jurisica I, Radulovich N, Pintilie M, Rossant J, Liu N, Lu C, Woodgett J, Seiden I, Johnston M, Keshavjee S, Darling G, Winton T, Breitkreutz BJ, Jorgenson P, Tyers M, Shepherd FA, Tsao MS: Molecular profiling of non-small cell lung cancer and correlation with disease-free survival. Cancer Res. 2002, 62: 3005-3008.PubMed
97.
Zurück zum Zitat Hedenfalk IA, Ringner M, Trent JM, Borg A: Gene expression in inherited breast cancer. Adv Cancer Res. 2002, 84: 1-34.PubMedCrossRef Hedenfalk IA, Ringner M, Trent JM, Borg A: Gene expression in inherited breast cancer. Adv Cancer Res. 2002, 84: 1-34.PubMedCrossRef
98.
Zurück zum Zitat van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH: Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002, 415: 530-536.PubMedCrossRef van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH: Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002, 415: 530-536.PubMedCrossRef
99.
Zurück zum Zitat Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002, 8: 68-74.PubMedCrossRef Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002, 8: 68-74.PubMedCrossRef
100.
Zurück zum Zitat Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, Sgroi DC: Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA. 2003, 100: 5974-5979.PubMedCentralPubMedCrossRef Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, Sgroi DC: Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA. 2003, 100: 5974-5979.PubMedCentralPubMedCrossRef
101.
Zurück zum Zitat Wang E, Miller LD, Ohnmacht GA, Liu ET, Marincola FM: High-fidelity mRNA amplification for gene profiling. Nat Biotechnol. 2000, 18: 457-459.PubMedCrossRef Wang E, Miller LD, Ohnmacht GA, Liu ET, Marincola FM: High-fidelity mRNA amplification for gene profiling. Nat Biotechnol. 2000, 18: 457-459.PubMedCrossRef
102.
Zurück zum Zitat Zhao H, Hastie T, Whitfield ML, Borresen-Dale AL, Jeffrey SS: Optimization and evaluation of T7 based RNA linear amplification protocols for cDNA microarray analysis. BMC Genomics. 2002, 3: 31-PubMedCentralPubMedCrossRef Zhao H, Hastie T, Whitfield ML, Borresen-Dale AL, Jeffrey SS: Optimization and evaluation of T7 based RNA linear amplification protocols for cDNA microarray analysis. BMC Genomics. 2002, 3: 31-PubMedCentralPubMedCrossRef
103.
Zurück zum Zitat Hermeking H: Serial analysis of gene expression and cancer. Curr Opin Oncol. 2003, 15: 44-49.PubMedCrossRef Hermeking H: Serial analysis of gene expression and cancer. Curr Opin Oncol. 2003, 15: 44-49.PubMedCrossRef
104.
Zurück zum Zitat Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE: Using the transcriptome to annotate the genome. Nat Biotechnol. 2002, 20: 508-512.PubMedCrossRef Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE: Using the transcriptome to annotate the genome. Nat Biotechnol. 2002, 20: 508-512.PubMedCrossRef
105.
Zurück zum Zitat Datson NA, van der Perk-de Jong J, van den Berg MP, de Kloet ER, Vreugdenhil E: MicroSAGE: a modified procedure for serial analysis of gene expression in limited amounts of tissue. Nucleic Acids Res. 1999, 27: 1300-1307.PubMedCentralPubMedCrossRef Datson NA, van der Perk-de Jong J, van den Berg MP, de Kloet ER, Vreugdenhil E: MicroSAGE: a modified procedure for serial analysis of gene expression in limited amounts of tissue. Nucleic Acids Res. 1999, 27: 1300-1307.PubMedCentralPubMedCrossRef
106.
Zurück zum Zitat Vilain C, Libert F, Venet D, Costagliola S, Vassart G: Small amplified RNA-SAGE: an alternative approach to study transcriptome from limiting amount of mRNA. Nucleic Acids Res. 2003, 31: e24.-PubMedCentralPubMedCrossRef Vilain C, Libert F, Venet D, Costagliola S, Vassart G: Small amplified RNA-SAGE: an alternative approach to study transcriptome from limiting amount of mRNA. Nucleic Acids Res. 2003, 31: e24.-PubMedCentralPubMedCrossRef
107.
Zurück zum Zitat Lash AE, Tolstoshev CM, Wagner L, Schuler GD, Strausberg RL, Riggins GJ, Altschul SF: SAGEmap: a public gene expression resource. Genome Res. 2000, 10: 1051-1060.PubMedCentralPubMedCrossRef Lash AE, Tolstoshev CM, Wagner L, Schuler GD, Strausberg RL, Riggins GJ, Altschul SF: SAGEmap: a public gene expression resource. Genome Res. 2000, 10: 1051-1060.PubMedCentralPubMedCrossRef
108.
Zurück zum Zitat Boon K, Osorio EC, Greenhut SF, Schaefer CF, Shoemaker J, Polyak K, Morin PJ, Buetow KH, Strausberg RL, De Souza SJ, Riggins GJ: An anatomy of normal and malignant gene expression. Proc Natl Acad Sci USA. 2002, 99: 11287-11292.PubMedCentralPubMedCrossRef Boon K, Osorio EC, Greenhut SF, Schaefer CF, Shoemaker J, Polyak K, Morin PJ, Buetow KH, Strausberg RL, De Souza SJ, Riggins GJ: An anatomy of normal and malignant gene expression. Proc Natl Acad Sci USA. 2002, 99: 11287-11292.PubMedCentralPubMedCrossRef
109.
Zurück zum Zitat Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW: Gene expression profiles in normal and cancer cells. Science. 1997, 276: 1268-1272.PubMedCrossRef Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW: Gene expression profiles in normal and cancer cells. Science. 1997, 276: 1268-1272.PubMedCrossRef
110.
Zurück zum Zitat Hibi K, Liu Q, Beaudry GA, Madden SL, Westra WH, Wehage SL, Yang SC, Heitmiller RF, Bertelsen AH, Sidransky D, Jen J: Serial analysis of gene expression in non-small cell lung cancer. Cancer Res. 1998, 58: 5690-5694.PubMed Hibi K, Liu Q, Beaudry GA, Madden SL, Westra WH, Wehage SL, Yang SC, Heitmiller RF, Bertelsen AH, Sidransky D, Jen J: Serial analysis of gene expression in non-small cell lung cancer. Cancer Res. 1998, 58: 5690-5694.PubMed
111.
Zurück zum Zitat Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA, Hermeking H, Marks JR, Lambers AR, Futreal PA, Stampfer MR, Sukumar S: High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA. 2000, 97: 6049-6054.PubMedCentralPubMedCrossRef Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA, Hermeking H, Marks JR, Lambers AR, Futreal PA, Stampfer MR, Sukumar S: High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA. 2000, 97: 6049-6054.PubMedCentralPubMedCrossRef
112.
Zurück zum Zitat St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW: Genes expressed in human tumor endothelium. Science. 2000, 289: 1197-1202.PubMedCrossRef St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW: Genes expressed in human tumor endothelium. Science. 2000, 289: 1197-1202.PubMedCrossRef
113.
Zurück zum Zitat Krop IE, Sgroi D, Porter DA, Lunetta KL, LeVangie R, Seth P, Kaelin CM, Rhei E, Bosenberg M, Schnitt S, Marks JR, Pagon Z, Belina D, Razumovic J, Polyak K: HIN-1, a putative cytokine highly expressed in normal but not cancerous mammary epithelial cells. Proc Natl Acad Sci USA. 2001, 98: 9796-9801.PubMedCentralPubMedCrossRef Krop IE, Sgroi D, Porter DA, Lunetta KL, LeVangie R, Seth P, Kaelin CM, Rhei E, Bosenberg M, Schnitt S, Marks JR, Pagon Z, Belina D, Razumovic J, Polyak K: HIN-1, a putative cytokine highly expressed in normal but not cancerous mammary epithelial cells. Proc Natl Acad Sci USA. 2001, 98: 9796-9801.PubMedCentralPubMedCrossRef
114.
Zurück zum Zitat Porter DA, Krop IE, Nasser S, Sgroi D, Kaelin CM, Marks JR, Riggins G, Polyak K: A SAGE (serial analysis of gene expression) view of breast tumor progression. Cancer Res. 2001, 61: 5697-5702.PubMed Porter DA, Krop IE, Nasser S, Sgroi D, Kaelin CM, Marks JR, Riggins G, Polyak K: A SAGE (serial analysis of gene expression) view of breast tumor progression. Cancer Res. 2001, 61: 5697-5702.PubMed
115.
Zurück zum Zitat Argani P, Iacobuzio-Donahue C, Ryu B, Rosty C, Goggins M, Wilentz RE, Murugesan SR, Leach SD, Jaffee E, Yeo CJ, Cameron JL, Kern SE, Hruban RH: Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res. 2001, 7: 3862-3868.PubMed Argani P, Iacobuzio-Donahue C, Ryu B, Rosty C, Goggins M, Wilentz RE, Murugesan SR, Leach SD, Jaffee E, Yeo CJ, Cameron JL, Kern SE, Hruban RH: Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res. 2001, 7: 3862-3868.PubMed
116.
Zurück zum Zitat Argani P, Rosty C, Reiter RE, Wilentz RE, Murugesan SR, Leach SD, Ryu B, Skinner HG, Goggins M, Jaffee EM, Yeo CJ, Cameron JL, Kern SE, Hruban RH: Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res. 2001, 61: 4320-4324.PubMed Argani P, Rosty C, Reiter RE, Wilentz RE, Murugesan SR, Leach SD, Ryu B, Skinner HG, Goggins M, Jaffee EM, Yeo CJ, Cameron JL, Kern SE, Hruban RH: Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res. 2001, 61: 4320-4324.PubMed
117.
Zurück zum Zitat Nacht M, Dracheva T, Gao Y, Fujii T, Chen Y, Player A, Akmaev V, Cook B, Dufault M, Zhang M, Zhang W, Guo M, Curran J, Han S, Sidransky D, Buetow K, Madden SL, Jen J: Molecular characteristics of non-small cell lung cancer. Proc Natl Acad Sci USA. 2001, 98: 15203-15208.PubMedCentralPubMedCrossRef Nacht M, Dracheva T, Gao Y, Fujii T, Chen Y, Player A, Akmaev V, Cook B, Dufault M, Zhang M, Zhang W, Guo M, Curran J, Han S, Sidransky D, Buetow K, Madden SL, Jen J: Molecular characteristics of non-small cell lung cancer. Proc Natl Acad Sci USA. 2001, 98: 15203-15208.PubMedCentralPubMedCrossRef
118.
Zurück zum Zitat Buckhaults P, Rago C, St Croix B, Romans KE, Saha S, Zhang L, Vogelstein B, Kinzler KW: Secreted and cell surface genes expressed in benign and malignant colorectal tumors. Cancer Res. 2001, 61: 6996-7001.PubMed Buckhaults P, Rago C, St Croix B, Romans KE, Saha S, Zhang L, Vogelstein B, Kinzler KW: Secreted and cell surface genes expressed in benign and malignant colorectal tumors. Cancer Res. 2001, 61: 6996-7001.PubMed
119.
Zurück zum Zitat Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St Croix B, Romans KE, Choti MA, Lengauer C, Kinzler KW, Vogelstein B: A phosphatase associated with metastasis of colorectal cancer. Science. 2001, 294: 1343-1346.PubMedCrossRef Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St Croix B, Romans KE, Choti MA, Lengauer C, Kinzler KW, Vogelstein B: A phosphatase associated with metastasis of colorectal cancer. Science. 2001, 294: 1343-1346.PubMedCrossRef
120.
Zurück zum Zitat Waghray A, Schober M, Feroze F, Yao F, Virgin J, Chen YQ: Identification of differentially expressed genes by serial analysis of gene expression in human prostate cancer. Cancer Res. 2001, 61: 4283-4286.PubMed Waghray A, Schober M, Feroze F, Yao F, Virgin J, Chen YQ: Identification of differentially expressed genes by serial analysis of gene expression in human prostate cancer. Cancer Res. 2001, 61: 4283-4286.PubMed
121.
Zurück zum Zitat Yamashita T, Kaneko S, Hashimoto S, Sato T, Nagai S, Toyoda N, Suzuki T, Kobayashi K, Matsushima K: Serial analysis of gene expression in chronic hepatitis C and hepatocellular carcinoma. Biochem Biophys Res Commun. 2001, 282: 647-654.PubMedCrossRef Yamashita T, Kaneko S, Hashimoto S, Sato T, Nagai S, Toyoda N, Suzuki T, Kobayashi K, Matsushima K: Serial analysis of gene expression in chronic hepatitis C and hepatocellular carcinoma. Biochem Biophys Res Commun. 2001, 282: 647-654.PubMedCrossRef
122.
Zurück zum Zitat Caldwell MC, Hough C, Furer S, Linehan WM, Morin PJ, Gorospe M: Serial analysis of gene expression in renal carcinoma cells reveals VHL- dependent sensitivity to TNFalpha cytotoxicity. Oncogene. 2002, 21: 929-936.PubMedCrossRef Caldwell MC, Hough C, Furer S, Linehan WM, Morin PJ, Gorospe M: Serial analysis of gene expression in renal carcinoma cells reveals VHL- dependent sensitivity to TNFalpha cytotoxicity. Oncogene. 2002, 21: 929-936.PubMedCrossRef
123.
Zurück zum Zitat Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL, van Heek T, Ashfaq R, Meyer R, Walter K, Berg K, Hollingsworth MA, Cameron JL, Yeo CJ, Kern SE, Goggins M, Hruban RH: Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol. 2002, 160: 1239-1249.PubMedCentralPubMedCrossRef Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL, van Heek T, Ashfaq R, Meyer R, Walter K, Berg K, Hollingsworth MA, Cameron JL, Yeo CJ, Kern SE, Goggins M, Hruban RH: Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol. 2002, 160: 1239-1249.PubMedCentralPubMedCrossRef
124.
Zurück zum Zitat Untergasser G, Koch HB, Menssen A, Hermeking H: Characterization of epithelial senescence by serial analysis of gene expression: identification of genes potentially involved in prostate cancer. Cancer Res. 2002, 62: 6255-6262.PubMed Untergasser G, Koch HB, Menssen A, Hermeking H: Characterization of epithelial senescence by serial analysis of gene expression: identification of genes potentially involved in prostate cancer. Cancer Res. 2002, 62: 6255-6262.PubMed
125.
Zurück zum Zitat Lee JY, Eom EM, Kim DS, Ha-Lee YM, Lee DH: Analysis of gene expression profiles of gastric normal and cancer tissues by SAGE. Genomics. 2003, 82: 78-85.PubMedCrossRef Lee JY, Eom EM, Kim DS, Ha-Lee YM, Lee DH: Analysis of gene expression profiles of gastric normal and cancer tissues by SAGE. Genomics. 2003, 82: 78-85.PubMedCrossRef
126.
Zurück zum Zitat Lonergan KM, Shadeo A, Kim JC, Chi B, LeRiche J, Jones S, Tsao MS, Marra MA, MacAulay C, Lam S, Lam WL: Gene Expression Profiles of Developmental Stages of Non-small Cell Lung Carcinoma [abstract]. Lung Cancer. 2003, 41: S123-CrossRef Lonergan KM, Shadeo A, Kim JC, Chi B, LeRiche J, Jones S, Tsao MS, Marra MA, MacAulay C, Lam S, Lam WL: Gene Expression Profiles of Developmental Stages of Non-small Cell Lung Carcinoma [abstract]. Lung Cancer. 2003, 41: S123-CrossRef
127.
Zurück zum Zitat Porter D, Lahti-Domenici J, Keshaviah A, Bae YK, Argani P, Marks J, Richardson A, Cooper A, Strausberg R, Riggins GJ, Schnitt S, Gabrielson E, Gelman R, Polyak K: Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res. 2003, 1: 362-375.PubMed Porter D, Lahti-Domenici J, Keshaviah A, Bae YK, Argani P, Marks J, Richardson A, Cooper A, Strausberg R, Riggins GJ, Schnitt S, Gabrielson E, Gelman R, Polyak K: Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res. 2003, 1: 362-375.PubMed
128.
Zurück zum Zitat Zhou M, Chinnaiyan AM, Kleer CG, Lucas PC, Rubin MA: Alpha-Methylacyl-CoA racemase: a novel tumor marker over-expressed in several human cancers and their precursor lesions. Am J Surg Pathol. 2002, 26: 926-931.PubMedCrossRef Zhou M, Chinnaiyan AM, Kleer CG, Lucas PC, Rubin MA: Alpha-Methylacyl-CoA racemase: a novel tumor marker over-expressed in several human cancers and their precursor lesions. Am J Surg Pathol. 2002, 26: 926-931.PubMedCrossRef
129.
Zurück zum Zitat Freeman WM, Walker SJ, Vrana KE: Quantitative RT-PCR: pitfalls and potential. Biotechniques. 1999, 26: 112-22, 124-5..PubMed Freeman WM, Walker SJ, Vrana KE: Quantitative RT-PCR: pitfalls and potential. Biotechniques. 1999, 26: 112-22, 124-5..PubMed
130.
Zurück zum Zitat Higuchi R, Fockler C, Dollinger G, Watson R: Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y). 1993, 11: 1026-1030.CrossRef Higuchi R, Fockler C, Dollinger G, Watson R: Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y). 1993, 11: 1026-1030.CrossRef
131.
Zurück zum Zitat Heid CA, Stevens J, Livak KJ, Williams PM: Real time quantitative PCR. Genome Res. 1996, 6: 986-994.PubMedCrossRef Heid CA, Stevens J, Livak KJ, Williams PM: Real time quantitative PCR. Genome Res. 1996, 6: 986-994.PubMedCrossRef
132.
Zurück zum Zitat Gibson UE, Heid CA, Williams PM: A novel method for real time quantitative RT-PCR. Genome Res. 1996, 6: 995-1001.PubMedCrossRef Gibson UE, Heid CA, Williams PM: A novel method for real time quantitative RT-PCR. Genome Res. 1996, 6: 995-1001.PubMedCrossRef
133.
Zurück zum Zitat Bustin SA: Quantification of mRNA using real-time reverse transcription PCR (RT- PCR): trends and problems. J Mol Endocrinol. 2002, 29: 23-39.PubMedCrossRef Bustin SA: Quantification of mRNA using real-time reverse transcription PCR (RT- PCR): trends and problems. J Mol Endocrinol. 2002, 29: 23-39.PubMedCrossRef
134.
135.
Zurück zum Zitat Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP: Tissue microarrays for high-throughput molecular profiling of tumor specimens.[comment]. Nature Medicine. 1998, 4: 844-847.PubMedCrossRef Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S, Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP: Tissue microarrays for high-throughput molecular profiling of tumor specimens.[comment]. Nature Medicine. 1998, 4: 844-847.PubMedCrossRef
136.
Zurück zum Zitat Kallioniemi OP, Wagner U, Kononen J, Sauter G: Tissue microarray technology for high-throughput molecular profiling of cancer. Hum Mol Genet. 2001, 10: 657-662.PubMedCrossRef Kallioniemi OP, Wagner U, Kononen J, Sauter G: Tissue microarray technology for high-throughput molecular profiling of cancer. Hum Mol Genet. 2001, 10: 657-662.PubMedCrossRef
137.
Zurück zum Zitat Simon R, Sauter G: Tissue microarrays for miniaturized high-throughput molecular profiling of tumors. Exp Hematol. 2002, 30: 1365-1372.PubMedCrossRef Simon R, Sauter G: Tissue microarrays for miniaturized high-throughput molecular profiling of tumors. Exp Hematol. 2002, 30: 1365-1372.PubMedCrossRef
138.
Zurück zum Zitat Mousses S, Kallioniemi A, Kauraniemi P, Elkahloun A, Kallioniemi OP: Clinical and functional target validation using tissue and cell microarrays. Curr Opin Chem Biol. 2002, 6: 97-101.PubMedCrossRef Mousses S, Kallioniemi A, Kauraniemi P, Elkahloun A, Kallioniemi OP: Clinical and functional target validation using tissue and cell microarrays. Curr Opin Chem Biol. 2002, 6: 97-101.PubMedCrossRef
139.
Zurück zum Zitat MacAulay C, Korbelik J, Matisic J: Cytology Microarrays [abstract]. International Conference on Applied Genomics Proceedings. 2003, 9th ESACP/16th ISDQP Meeting (ICAG-2003): O42- MacAulay C, Korbelik J, Matisic J: Cytology Microarrays [abstract]. International Conference on Applied Genomics Proceedings. 2003, 9th ESACP/16th ISDQP Meeting (ICAG-2003): O42-
140.
Zurück zum Zitat Wulfkuhle JD, Liotta LA, Petricoin EF: Proteomic applications for the early detection of cancer. Nat Rev Cancer. 2003, 3: 267-275.PubMedCrossRef Wulfkuhle JD, Liotta LA, Petricoin EF: Proteomic applications for the early detection of cancer. Nat Rev Cancer. 2003, 3: 267-275.PubMedCrossRef
141.
142.
Zurück zum Zitat Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999, 17: 994-999.PubMedCrossRef Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999, 17: 994-999.PubMedCrossRef
143.
Zurück zum Zitat Patton WF, Schulenberg B, Steinberg TH: Two-dimensional gel electrophoresis; better than a poke in the ICAT?. Curr Opin Biotechnol. 2002, 13: 321-328.PubMedCrossRef Patton WF, Schulenberg B, Steinberg TH: Two-dimensional gel electrophoresis; better than a poke in the ICAT?. Curr Opin Biotechnol. 2002, 13: 321-328.PubMedCrossRef
144.
Zurück zum Zitat Wiley WC, Mclaren IH: Time-of-fight mass spectrometer with improved resolution. Review of Scientific Instruments. 1955, 26: 1150-1157.CrossRef Wiley WC, Mclaren IH: Time-of-fight mass spectrometer with improved resolution. Review of Scientific Instruments. 1955, 26: 1150-1157.CrossRef
145.
Zurück zum Zitat Guilhaus M, Selby D, Mlynski V: Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom Rev. 2000, 19: 65-107.PubMedCrossRef Guilhaus M, Selby D, Mlynski V: Orthogonal acceleration time-of-flight mass spectrometry. Mass Spectrom Rev. 2000, 19: 65-107.PubMedCrossRef
146.
Zurück zum Zitat Hutchens TW, Yip TT: New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom. 1993, 7: 576-580.CrossRef Hutchens TW, Yip TT: New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom. 1993, 7: 576-580.CrossRef
147.
Zurück zum Zitat Merchant M, Weinberger SR: Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis. 2000, 21: 1164-1177.PubMedCrossRef Merchant M, Weinberger SR: Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis. 2000, 21: 1164-1177.PubMedCrossRef
148.
Zurück zum Zitat de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM: Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol. 2000, 18: 989-994.PubMedCrossRef de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM: Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol. 2000, 18: 989-994.PubMedCrossRef
149.
Zurück zum Zitat Smith GP: Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985, 228: 1315-1317.PubMedCrossRef Smith GP: Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985, 228: 1315-1317.PubMedCrossRef
150.
Zurück zum Zitat Benhar I: Biotechnological applications of phage and cell display. Biotechnol Adv. 2001, 19: 1-33.PubMedCrossRef Benhar I: Biotechnological applications of phage and cell display. Biotechnol Adv. 2001, 19: 1-33.PubMedCrossRef
151.
Zurück zum Zitat Giordano RJ, Cardo-Vila M, Lahdenranta J, Pasqualini R, Arap W: Biopanning and rapid analysis of selective interactive ligands. Nat Med. 2001, 7: 1249-1253.PubMedCrossRef Giordano RJ, Cardo-Vila M, Lahdenranta J, Pasqualini R, Arap W: Biopanning and rapid analysis of selective interactive ligands. Nat Med. 2001, 7: 1249-1253.PubMedCrossRef
152.
Zurück zum Zitat Nephew KP, Huang TH: Epigenetic gene silencing in cancer initiation and progression. Cancer Lett. 2003, 190: 125-133.PubMedCrossRef Nephew KP, Huang TH: Epigenetic gene silencing in cancer initiation and progression. Cancer Lett. 2003, 190: 125-133.PubMedCrossRef
153.
154.
Zurück zum Zitat Smiraglia DJ, Plass C: The development of CpG island methylation biomarkers using restriction landmark genomic scanning. Ann N Y Acad Sci. 2003, 983: 110-119.PubMedCrossRef Smiraglia DJ, Plass C: The development of CpG island methylation biomarkers using restriction landmark genomic scanning. Ann N Y Acad Sci. 2003, 983: 110-119.PubMedCrossRef
155.
Zurück zum Zitat Brown CJ, Greally JM: A stain upon the silence: genes escaping X inactivation. Trends Genet. 2003, 19: 432-438.PubMedCrossRef Brown CJ, Greally JM: A stain upon the silence: genes escaping X inactivation. Trends Genet. 2003, 19: 432-438.PubMedCrossRef
156.
Zurück zum Zitat Hayashizaki Y, Hirotsune S, Okazaki Y, Hatada I, Shibata H, Kawai J, Hirose K, Watanabe S, Fushiki S, Wada S, : Restriction landmark genomic scanning method and its various applications. Electrophoresis. 1993, 14: 251-258.PubMedCrossRef Hayashizaki Y, Hirotsune S, Okazaki Y, Hatada I, Shibata H, Kawai J, Hirose K, Watanabe S, Fushiki S, Wada S, : Restriction landmark genomic scanning method and its various applications. Electrophoresis. 1993, 14: 251-258.PubMedCrossRef
157.
Zurück zum Zitat Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC, Schuller DE, Yu L, Bloomfield CD, Caligiuri MA, Yates A, Nishikawa R, Su Huang H, Petrelli NJ, Zhang X, O'Dorisio MS, Held WA, Cavenee WK, Plass C: Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet. 2000, 24: 132-138.PubMedCrossRef Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC, Schuller DE, Yu L, Bloomfield CD, Caligiuri MA, Yates A, Nishikawa R, Su Huang H, Petrelli NJ, Zhang X, O'Dorisio MS, Held WA, Cavenee WK, Plass C: Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet. 2000, 24: 132-138.PubMedCrossRef
158.
Zurück zum Zitat Costello JF, Smiraglia DJ, Plass C: Restriction landmark genome scanning. Methods. 2002, 27: 144-149.PubMedCrossRef Costello JF, Smiraglia DJ, Plass C: Restriction landmark genome scanning. Methods. 2002, 27: 144-149.PubMedCrossRef
159.
Zurück zum Zitat Zardo G, Tiirikainen MI, Hong C, Misra A, Feuerstein BG, Volik S, Collins CC, Lamborn KR, Bollen A, Pinkel D, Albertson DG, Costello JF: Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat Genet. 2002, 32: 453-458.PubMedCrossRef Zardo G, Tiirikainen MI, Hong C, Misra A, Feuerstein BG, Volik S, Collins CC, Lamborn KR, Bollen A, Pinkel D, Albertson DG, Costello JF: Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat Genet. 2002, 32: 453-458.PubMedCrossRef
160.
Zurück zum Zitat Weinmann AS, Yan PS, Oberley MJ, Huang TH, Farnham PJ: Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev. 2002, 16: 235-244.PubMedCentralPubMedCrossRef Weinmann AS, Yan PS, Oberley MJ, Huang TH, Farnham PJ: Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev. 2002, 16: 235-244.PubMedCentralPubMedCrossRef
161.
Zurück zum Zitat Yan PS, Efferth T, Chen HL, Lin J, Rodel F, Fuzesi L, Huang TH: Use of CpG island microarrays to identify colorectal tumors with a high degree of concurrent methylation. Methods. 2002, 27: 162-169.PubMedCrossRef Yan PS, Efferth T, Chen HL, Lin J, Rodel F, Fuzesi L, Huang TH: Use of CpG island microarrays to identify colorectal tumors with a high degree of concurrent methylation. Methods. 2002, 27: 162-169.PubMedCrossRef
162.
Zurück zum Zitat Chen CM, Chen HL, Hsiau TH, Hsiau AH, Shi H, Brock GJ, Wei SH, Caldwell CW, Yan PS, Huang TH: Methylation target array for rapid analysis of CpG island hypermethylation in multiple tissue genomes. Am J Pathol. 2003, 163: 37-45.PubMedCentralPubMedCrossRef Chen CM, Chen HL, Hsiau TH, Hsiau AH, Shi H, Brock GJ, Wei SH, Caldwell CW, Yan PS, Huang TH: Methylation target array for rapid analysis of CpG island hypermethylation in multiple tissue genomes. Am J Pathol. 2003, 163: 37-45.PubMedCentralPubMedCrossRef
163.
Zurück zum Zitat Ballestar E, Paz MF, Valle L, Wei S, Fraga MF, Espada J, Cigudosa JC, Huang TH, Esteller M: Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J. 2003, 22: 6335-6345.PubMedCentralPubMedCrossRef Ballestar E, Paz MF, Valle L, Wei S, Fraga MF, Espada J, Cigudosa JC, Huang TH, Esteller M: Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J. 2003, 22: 6335-6345.PubMedCentralPubMedCrossRef
164.
Zurück zum Zitat Grunau C, Clark SJ, Rosenthal A: Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001, 29: E65-5.PubMedCentralPubMedCrossRef Grunau C, Clark SJ, Rosenthal A: Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001, 29: E65-5.PubMedCentralPubMedCrossRef
165.
Zurück zum Zitat Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, Baylin SB, Herman JG: Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA. 1998, 95: 11891-11896.PubMedCentralPubMedCrossRef Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E, Baylin SB, Herman JG: Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA. 1998, 95: 11891-11896.PubMedCentralPubMedCrossRef
166.
Zurück zum Zitat Umbricht CB, Evron E, Gabrielson E, Ferguson A, Marks J, Sukumar S: Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer. Oncogene. 2001, 20: 3348-3353.PubMedCrossRef Umbricht CB, Evron E, Gabrielson E, Ferguson A, Marks J, Sukumar S: Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer. Oncogene. 2001, 20: 3348-3353.PubMedCrossRef
167.
Zurück zum Zitat Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, Sekido Y, Latif F, Milchgrub S, Toyooka S, Gazdar AF, Lerman MI, Zabarovsky E, White M, Minna JD: Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 2001, 93: 691-699.PubMedCentralPubMedCrossRef Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, Sekido Y, Latif F, Milchgrub S, Toyooka S, Gazdar AF, Lerman MI, Zabarovsky E, White M, Minna JD: Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 2001, 93: 691-699.PubMedCentralPubMedCrossRef
168.
Zurück zum Zitat Young J, Biden KG, Simms LA, Huggard P, Karamatic R, Eyre HJ, Sutherland GR, Herath N, Barker M, Anderson GJ, Fitzpatrick DR, Ramm GA, Jass JR, Leggett BA: HPP1: a transmembrane protein-encoding gene commonly methylated in colorectal polyps and cancers. Proc Natl Acad Sci USA. 2001, 98: 265-270.PubMedCentralPubMedCrossRef Young J, Biden KG, Simms LA, Huggard P, Karamatic R, Eyre HJ, Sutherland GR, Herath N, Barker M, Anderson GJ, Fitzpatrick DR, Ramm GA, Jass JR, Leggett BA: HPP1: a transmembrane protein-encoding gene commonly methylated in colorectal polyps and cancers. Proc Natl Acad Sci USA. 2001, 98: 265-270.PubMedCentralPubMedCrossRef
169.
Zurück zum Zitat Lehmann U, Langer F, Feist H, Glockner S, Hasemeier B, Kreipe H: Quantitative assessment of promoter hypermethylation during breast cancer development. Am J Pathol. 2002, 160: 605-612.PubMedCentralPubMedCrossRef Lehmann U, Langer F, Feist H, Glockner S, Hasemeier B, Kreipe H: Quantitative assessment of promoter hypermethylation during breast cancer development. Am J Pathol. 2002, 160: 605-612.PubMedCentralPubMedCrossRef
170.
Zurück zum Zitat Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP, Herman JG, Baylin SB: A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet. 2002, 31: 141-149.PubMedCrossRef Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP, Herman JG, Baylin SB: A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet. 2002, 31: 141-149.PubMedCrossRef
171.
Zurück zum Zitat Tijsterman M, Ketting RF, Plasterk RH: The genetics of RNA silencing. Annu Rev Genet. 2002, 36: 489-519.PubMedCrossRef Tijsterman M, Ketting RF, Plasterk RH: The genetics of RNA silencing. Annu Rev Genet. 2002, 36: 489-519.PubMedCrossRef
172.
Zurück zum Zitat Mousses S, Caplen NJ, Cornelison R, Weaver D, Basik M, Hautaniemi S, Elkahloun AG, Lotufo RA, Choudary A, Dougherty ER, Suh E, Kallioniemi O: RNAi Microarray Analysis in Cultured Mammalian Cells. Genome Res. 2003, 13: 2341-2347.PubMedCentralPubMedCrossRef Mousses S, Caplen NJ, Cornelison R, Weaver D, Basik M, Hautaniemi S, Elkahloun AG, Lotufo RA, Choudary A, Dougherty ER, Suh E, Kallioniemi O: RNAi Microarray Analysis in Cultured Mammalian Cells. Genome Res. 2003, 13: 2341-2347.PubMedCentralPubMedCrossRef
173.
174.
Zurück zum Zitat Dieterich C, Cusack B, Wang H, Rateitschak K, Krause A, Vingron M: Annotating regulatory DNA based on man-mouse genomic comparison. Bioinformatics. 2002, 18 Suppl 2: S84-90.PubMedCrossRef Dieterich C, Cusack B, Wang H, Rateitschak K, Krause A, Vingron M: Annotating regulatory DNA based on man-mouse genomic comparison. Bioinformatics. 2002, 18 Suppl 2: S84-90.PubMedCrossRef
175.
Zurück zum Zitat Modrek B, Lee CJ: Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet. 2003, 34: 177-180.PubMedCrossRef Modrek B, Lee CJ: Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet. 2003, 34: 177-180.PubMedCrossRef
176.
Zurück zum Zitat Guigo R, Dermitzakis ET, Agarwal P, Ponting CP, Parra G, Reymond A, Abril JF, Keibler E, Lyle R, Ucla C, Antonarakis SE, Brent MR: Comparison of mouse and human genomes followed by experimental verification yields an estimated 1, 019 additional genes. Proc Natl Acad Sci USA. 2003, 100: 1140-1145.PubMedCentralPubMedCrossRef Guigo R, Dermitzakis ET, Agarwal P, Ponting CP, Parra G, Reymond A, Abril JF, Keibler E, Lyle R, Ucla C, Antonarakis SE, Brent MR: Comparison of mouse and human genomes followed by experimental verification yields an estimated 1, 019 additional genes. Proc Natl Acad Sci USA. 2003, 100: 1140-1145.PubMedCentralPubMedCrossRef
177.
Zurück zum Zitat Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, Todd MA, Tanenbaum DM, Civello D, Lu F, Murphy B, Ferriera S, Wang G, Zheng X, White TJ, Sninsky JJ, Adams MD, Cargill M: Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science. 2003, 302: 1960-1963.PubMedCrossRef Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, Todd MA, Tanenbaum DM, Civello D, Lu F, Murphy B, Ferriera S, Wang G, Zheng X, White TJ, Sninsky JJ, Adams MD, Cargill M: Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science. 2003, 302: 1960-1963.PubMedCrossRef
178.
179.
Zurück zum Zitat Hogan B, Beddington R, Constantini F, Lacy E: Manipulating the Mouse Embryo: A Laboratory Manual. 1994, 500-Cold Spring Harbor Laboratory Press, 2nd Hogan B, Beddington R, Constantini F, Lacy E: Manipulating the Mouse Embryo: A Laboratory Manual. 1994, 500-Cold Spring Harbor Laboratory Press, 2nd
180.
Zurück zum Zitat Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O'Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES: Initial sequencing and comparative analysis of the mouse genome. Nature. 2002, 420: 520-562.PubMedCrossRef Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigo R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O'Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES: Initial sequencing and comparative analysis of the mouse genome. Nature. 2002, 420: 520-562.PubMedCrossRef
181.
182.
Zurück zum Zitat Macleod KF, Jacks T: Insights into cancer from transgenic mouse models. J Pathol. 1999, 187: 43-60.PubMedCrossRef Macleod KF, Jacks T: Insights into cancer from transgenic mouse models. J Pathol. 1999, 187: 43-60.PubMedCrossRef
183.
Zurück zum Zitat Lakso M, Sauer B, Mosinger B, Jr., Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H: Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA. 1992, 89: 6232-6236.PubMedCentralPubMedCrossRef Lakso M, Sauer B, Mosinger B, Jr., Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H: Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci USA. 1992, 89: 6232-6236.PubMedCentralPubMedCrossRef
184.
Zurück zum Zitat Sauer B: Inducible gene targeting in mice using the Cre/lox system. Methods. 1998, 14: 381-392.PubMedCrossRef Sauer B: Inducible gene targeting in mice using the Cre/lox system. Methods. 1998, 14: 381-392.PubMedCrossRef
185.
Zurück zum Zitat Metzger D, Chambon P: Site- and time-specific gene targeting in the mouse. Methods. 2001, 24: 71-80.PubMedCrossRef Metzger D, Chambon P: Site- and time-specific gene targeting in the mouse. Methods. 2001, 24: 71-80.PubMedCrossRef
186.
Zurück zum Zitat Popescu NC, Zimonjic DB: Chromosome and gene alterations in breast cancer as markers for diagnosis and prognosis as well as pathogenetic targets for therapy. Am J Med Genet. 2002, 115: 142-149.PubMedCrossRef Popescu NC, Zimonjic DB: Chromosome and gene alterations in breast cancer as markers for diagnosis and prognosis as well as pathogenetic targets for therapy. Am J Med Genet. 2002, 115: 142-149.PubMedCrossRef
187.
Zurück zum Zitat Miyakis S, Spandidos DA: Allelic loss in breast cancer. Cancer Detect Prevent. 2002, 26: 426-434.PubMedCrossRef Miyakis S, Spandidos DA: Allelic loss in breast cancer. Cancer Detect Prevent. 2002, 26: 426-434.PubMedCrossRef
188.
Zurück zum Zitat Huebner K, Hadaczek P, Siprashvili Z, Druck T, Croce CM: The FHIT gene, a multiple tumor suppressor gene encompassing the carcinogen sensitive chromosome fragile site, FRA3B. Biochim Biophys Acta. 1997, 1332: M65-70.PubMed Huebner K, Hadaczek P, Siprashvili Z, Druck T, Croce CM: The FHIT gene, a multiple tumor suppressor gene encompassing the carcinogen sensitive chromosome fragile site, FRA3B. Biochim Biophys Acta. 1997, 1332: M65-70.PubMed
189.
Zurück zum Zitat Porter PL: Molecular markers of tumor initiation and progression. Curr Opin Genet Dev. 2001, 11: 60-63.PubMedCrossRef Porter PL: Molecular markers of tumor initiation and progression. Curr Opin Genet Dev. 2001, 11: 60-63.PubMedCrossRef
190.
Zurück zum Zitat Polyak K, Riggins GJ: Gene discovery using the serial analysis of gene expression technique: implications for cancer research. J Clin Oncol. 2001, 19: 2948-2958.PubMed Polyak K, Riggins GJ: Gene discovery using the serial analysis of gene expression technique: implications for cancer research. J Clin Oncol. 2001, 19: 2948-2958.PubMed
191.
Zurück zum Zitat Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature. 2000, 406: 747-752.PubMedCrossRef Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D: Molecular portraits of human breast tumours. Nature. 2000, 406: 747-752.PubMedCrossRef
192.
Zurück zum Zitat Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, Meltzer P, Gusterson B, Esteller M, Kallioniemi OP, Wilfond B, Borg A, Trent J: Gene-expression profiles in hereditary breast cancer. N Engl J Med. 2001, 344: 539-548.PubMedCrossRef Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, Meltzer P, Gusterson B, Esteller M, Kallioniemi OP, Wilfond B, Borg A, Trent J: Gene-expression profiles in hereditary breast cancer. N Engl J Med. 2001, 344: 539-548.PubMedCrossRef
193.
Zurück zum Zitat Chinnaiyan AM, Rubin MA: Gene-expression profiles in hereditary breast cancer. Adv Anat Pathol. 2002, 9: 1-6.PubMedCrossRef Chinnaiyan AM, Rubin MA: Gene-expression profiles in hereditary breast cancer. Adv Anat Pathol. 2002, 9: 1-6.PubMedCrossRef
194.
Zurück zum Zitat Domchek SM, Weber BL: Recent advances in breast cancer biology. Curr Opin Oncol. 2002, 14: 589-593.PubMedCrossRef Domchek SM, Weber BL: Recent advances in breast cancer biology. Curr Opin Oncol. 2002, 14: 589-593.PubMedCrossRef
195.
Zurück zum Zitat Dillon DA: Molecular markers in the diagnosis and staging of breast cancer. Semin Radiat Oncol. 2002, 12: 305-318.PubMedCrossRef Dillon DA: Molecular markers in the diagnosis and staging of breast cancer. Semin Radiat Oncol. 2002, 12: 305-318.PubMedCrossRef
196.
Zurück zum Zitat Wulfkuhle JD, Sgroi DC, Krutzsch H, McLean K, McGarvey K, Knowlton M, Chen S, Shu H, Sahin A, Kurek R, Wallwiener D, Merino MJ, Petricoin E. F., 3rd, Zhao Y, Steeg PS: Proteomics of human breast ductal carcinoma in situ. Cancer Res. 2002, 62: 6740-6749.PubMed Wulfkuhle JD, Sgroi DC, Krutzsch H, McLean K, McGarvey K, Knowlton M, Chen S, Shu H, Sahin A, Kurek R, Wallwiener D, Merino MJ, Petricoin E. F., 3rd, Zhao Y, Steeg PS: Proteomics of human breast ductal carcinoma in situ. Cancer Res. 2002, 62: 6740-6749.PubMed
197.
Zurück zum Zitat Yang X, Yan L, Davidson NE: DNA methylation in breast cancer. Endocrine-Related Cancer. 2001, 8: 115-127.PubMedCrossRef Yang X, Yan L, Davidson NE: DNA methylation in breast cancer. Endocrine-Related Cancer. 2001, 8: 115-127.PubMedCrossRef
198.
Zurück zum Zitat Evron E, Umbricht CB, Korz D, Raman V, Loeb DM, Niranjan B, Buluwela L, Weitzman SA, Marks J, Sukumar S: Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res. 2001, 61: 2782-2787.PubMed Evron E, Umbricht CB, Korz D, Raman V, Loeb DM, Niranjan B, Buluwela L, Weitzman SA, Marks J, Sukumar S: Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res. 2001, 61: 2782-2787.PubMed
199.
Zurück zum Zitat Evron E, Dooley WC, Umbricht CB, Rosenthal D, Sacchi N, Gabrielson E, Soito AB, Hung DT, Ljung B, Davidson NE, Sukumar S: Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet. 2001, 357: 1335-1336.PubMedCrossRef Evron E, Dooley WC, Umbricht CB, Rosenthal D, Sacchi N, Gabrielson E, Soito AB, Hung DT, Ljung B, Davidson NE, Sukumar S: Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet. 2001, 357: 1335-1336.PubMedCrossRef
200.
Zurück zum Zitat Lehmann U, Celikkaya G, Hasemeier B, Langer F, Kreipe H: Promoter hypermethylation of the death-associated protein kinase gene in breast cancer is associated with the invasive lobular subtype. Cancer Res. 2002, 62: 6634-6638.PubMed Lehmann U, Celikkaya G, Hasemeier B, Langer F, Kreipe H: Promoter hypermethylation of the death-associated protein kinase gene in breast cancer is associated with the invasive lobular subtype. Cancer Res. 2002, 62: 6634-6638.PubMed
201.
Zurück zum Zitat Brothman AR: Cytogenetics and molecular genetics of cancer of the prostate. Am J Med Genet. 2002, 115: 150-156.PubMedCrossRef Brothman AR: Cytogenetics and molecular genetics of cancer of the prostate. Am J Med Genet. 2002, 115: 150-156.PubMedCrossRef
202.
Zurück zum Zitat DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI: Pathological and molecular aspects of prostate cancer. Lancet. 2003, 361: 955-964.PubMedCrossRef DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI: Pathological and molecular aspects of prostate cancer. Lancet. 2003, 361: 955-964.PubMedCrossRef
203.
Zurück zum Zitat Nupponen N, Visakorpi T: Molecular biology of progression of prostate cancer. Eur Urol. 1999, 35: 351-354.PubMedCrossRef Nupponen N, Visakorpi T: Molecular biology of progression of prostate cancer. Eur Urol. 1999, 35: 351-354.PubMedCrossRef
204.
Zurück zum Zitat Lou W, Krill D, Dhir R, Becich MJ, Dong JT, Frierson H. F., Jr., Isaacs WB, Isaacs JT, Gao AC: Methylation of the CD44 metastasis suppressor gene in human prostate cancer. Cancer Res. 1999, 59: 2329-2331.PubMed Lou W, Krill D, Dhir R, Becich MJ, Dong JT, Frierson H. F., Jr., Isaacs WB, Isaacs JT, Gao AC: Methylation of the CD44 metastasis suppressor gene in human prostate cancer. Cancer Res. 1999, 59: 2329-2331.PubMed
205.
Zurück zum Zitat Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM: The polycomb group protein EZH2 is involved in progression of prostate cancer.[comment]. Nature. 2002, 419: 624-629.PubMedCrossRef Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, Rubin MA, Chinnaiyan AM: The polycomb group protein EZH2 is involved in progression of prostate cancer.[comment]. Nature. 2002, 419: 624-629.PubMedCrossRef
206.
Zurück zum Zitat Yamanaka M, Watanabe M, Yamada Y, Takagi A, Murata T, Takahashi H, Suzuki H, Ito H, Tsukino H, Katoh T, Sugimura Y, Shiraishi T: Altered methylation of multiple genes in carcinogenesis of the prostate. Int J Cancer. 2003, 106: 382-387.PubMedCrossRef Yamanaka M, Watanabe M, Yamada Y, Takagi A, Murata T, Takahashi H, Suzuki H, Ito H, Tsukino H, Katoh T, Sugimura Y, Shiraishi T: Altered methylation of multiple genes in carcinogenesis of the prostate. Int J Cancer. 2003, 106: 382-387.PubMedCrossRef
207.
Zurück zum Zitat Vanaja DK, Cheville JC, Iturria SJ, Young CY: Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res. 2003, 63: 3877-3882.PubMed Vanaja DK, Cheville JC, Iturria SJ, Young CY: Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res. 2003, 63: 3877-3882.PubMed
208.
Zurück zum Zitat Dumur CI, Dechsukhum C, Ware JL, Cofield SS, Best AM, Wilkinson DS, Garrett CT, Ferreira-Gonzalez A: Genome-wide detection of LOH in prostate cancer using human SNP microarray technology. Genomics. 2003, 81: 260-269.PubMedCrossRef Dumur CI, Dechsukhum C, Ware JL, Cofield SS, Best AM, Wilkinson DS, Garrett CT, Ferreira-Gonzalez A: Genome-wide detection of LOH in prostate cancer using human SNP microarray technology. Genomics. 2003, 81: 260-269.PubMedCrossRef
209.
Zurück zum Zitat Karan D, Lin MF, Johansson SL, Batra SK: Current status of the molecular genetics of human prostatic adenocarcinomas. Int J Cancer. 2003, 103: 285-293.PubMedCrossRef Karan D, Lin MF, Johansson SL, Batra SK: Current status of the molecular genetics of human prostatic adenocarcinomas. Int J Cancer. 2003, 103: 285-293.PubMedCrossRef
210.
Zurück zum Zitat Matsuyama H, Pan Y, Yoshihiro S, Kudren D, Naito K, Bergerheim US, Ekman P: Clinical significance of chromosome 8p, 10q, and 16q deletions in prostate cancer. Prostate. 2003, 54: 103-111.PubMedCrossRef Matsuyama H, Pan Y, Yoshihiro S, Kudren D, Naito K, Bergerheim US, Ekman P: Clinical significance of chromosome 8p, 10q, and 16q deletions in prostate cancer. Prostate. 2003, 54: 103-111.PubMedCrossRef
211.
Zurück zum Zitat Bubendorf L, Kolmer M, Kononen J, Koivisto P, Mousses S, Chen Y, Mahlamaki E, Schraml P, Moch H, Willi N, Elkahloun AG, Pretlow TG, Gasser TC, Mihatsch MJ, Sauter G, Kallioniemi OP: Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J Natl Cancer Inst. 1999, 91: 1758-1764.PubMedCrossRef Bubendorf L, Kolmer M, Kononen J, Koivisto P, Mousses S, Chen Y, Mahlamaki E, Schraml P, Moch H, Willi N, Elkahloun AG, Pretlow TG, Gasser TC, Mihatsch MJ, Sauter G, Kallioniemi OP: Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. J Natl Cancer Inst. 1999, 91: 1758-1764.PubMedCrossRef
212.
Zurück zum Zitat Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, Emmert-Buck MR, Roth MJ, Petricoin Iii Ef, Liotta LA: Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene. 2001, 20: 1981-1989.PubMedCrossRef Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, Emmert-Buck MR, Roth MJ, Petricoin Iii Ef, Liotta LA: Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene. 2001, 20: 1981-1989.PubMedCrossRef
213.
Zurück zum Zitat Luo JH, Yu YP, Cieply K, Lin F, Deflavia P, Dhir R, Finkelstein S, Michalopoulos G, Becich M: Gene expression analysis of prostate cancers. Mol Carcinog. 2002, 33: 25-35.PubMedCrossRef Luo JH, Yu YP, Cieply K, Lin F, Deflavia P, Dhir R, Finkelstein S, Michalopoulos G, Becich M: Gene expression analysis of prostate cancers. Mol Carcinog. 2002, 33: 25-35.PubMedCrossRef
214.
Zurück zum Zitat Brooks JD: Microarray analysis in prostate cancer research. Curr Opin Urol. 2002, 12: 395-399.PubMedCrossRef Brooks JD: Microarray analysis in prostate cancer research. Curr Opin Urol. 2002, 12: 395-399.PubMedCrossRef
215.
Zurück zum Zitat Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D'Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW, Golub TR, Sellers WR: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002, 1: 203-209.PubMedCrossRef Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D'Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW, Golub TR, Sellers WR: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002, 1: 203-209.PubMedCrossRef
216.
Zurück zum Zitat Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM: Delineation of prognostic biomarkers in prostate cancer. Nature. 2001, 412: 822-826.PubMedCrossRef Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM: Delineation of prognostic biomarkers in prostate cancer. Nature. 2001, 412: 822-826.PubMedCrossRef
217.
Zurück zum Zitat Rhodes DR, Sanda MG, Otte AP, Chinnaiyan AM, Rubin MA: Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer. J Natl Cancer Inst. 2003, 95: 661-668.PubMedCrossRef Rhodes DR, Sanda MG, Otte AP, Chinnaiyan AM, Rubin MA: Multiplex biomarker approach for determining risk of prostate-specific antigen-defined recurrence of prostate cancer. J Natl Cancer Inst. 2003, 95: 661-668.PubMedCrossRef
218.
Zurück zum Zitat Minna JD, Fong K, Zochbauer-Muller S, Gazdar AF: Molecular pathogenesis of lung cancer and potential translational applications. Cancer J. 2002, 8 Suppl 1: S41-6.PubMed Minna JD, Fong K, Zochbauer-Muller S, Gazdar AF: Molecular pathogenesis of lung cancer and potential translational applications. Cancer J. 2002, 8 Suppl 1: S41-6.PubMed
219.
Zurück zum Zitat Girard L, Zochbauer-Muller S, Virmani AK, Gazdar AF, Minna JD: Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res. 2000, 60: 4894-4906.PubMed Girard L, Zochbauer-Muller S, Virmani AK, Gazdar AF, Minna JD: Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res. 2000, 60: 4894-4906.PubMed
220.
Zurück zum Zitat Luk C, Tsao MS, Bayani J, Shepherd F, Squire JA: Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization. Cancer Genet Cytogenet. 2001, 125: 87-99.PubMedCrossRef Luk C, Tsao MS, Bayani J, Shepherd F, Squire JA: Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization. Cancer Genet Cytogenet. 2001, 125: 87-99.PubMedCrossRef
221.
Zurück zum Zitat Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, Lizyness ML, Kuick R, Hayasaka S, Taylor JM, Iannettoni MD, Orringer MB, Hanash S: Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med. 2002, 8: 816-824.PubMed Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, Lizyness ML, Kuick R, Hayasaka S, Taylor JM, Iannettoni MD, Orringer MB, Hanash S: Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med. 2002, 8: 816-824.PubMed
222.
Zurück zum Zitat Miura K, Bowman ED, Simon R, Peng AC, Robles AI, Jones RT, Katagiri T, He P, Mizukami H, Charboneau L, Kikuchi T, Liotta LA, Nakamura Y, Harris CC: Laser capture microdissection and microarray expression analysis of lung adenocarcinoma reveals tobacco smoking- and prognosis-related molecular profiles. Cancer Res. 2002, 62: 3244-3250.PubMed Miura K, Bowman ED, Simon R, Peng AC, Robles AI, Jones RT, Katagiri T, He P, Mizukami H, Charboneau L, Kikuchi T, Liotta LA, Nakamura Y, Harris CC: Laser capture microdissection and microarray expression analysis of lung adenocarcinoma reveals tobacco smoking- and prognosis-related molecular profiles. Cancer Res. 2002, 62: 3244-3250.PubMed
223.
Zurück zum Zitat Nakamura H, Saji H, Ogata A, Hosaka M, Hagiwara M, Saijo T, Kawasaki N, Kato H: cDNA microarray analysis of gene expression in pathologic Stage IA nonsmall cell lung carcinomas. Cancer. 2003, 97: 2798-2805.PubMedCrossRef Nakamura H, Saji H, Ogata A, Hosaka M, Hagiwara M, Saijo T, Kawasaki N, Kato H: cDNA microarray analysis of gene expression in pathologic Stage IA nonsmall cell lung carcinomas. Cancer. 2003, 97: 2798-2805.PubMedCrossRef
224.
Zurück zum Zitat Varella-Garcia M, Gemmill RM, Rabenhorst SH, Lotto A, Drabkin HA, Archer PA, Franklin WA: Chromosomal duplication accompanies allelic loss in non-small cell lung carcinoma. Cancer Res. 1998, 58: 4701-4707.PubMed Varella-Garcia M, Gemmill RM, Rabenhorst SH, Lotto A, Drabkin HA, Archer PA, Franklin WA: Chromosomal duplication accompanies allelic loss in non-small cell lung carcinoma. Cancer Res. 1998, 58: 4701-4707.PubMed
225.
Zurück zum Zitat Petersen S, Aninat-Meyer M, Schluns K, Gellert K, Dietel M, Petersen I: Chromosomal alterations in the clonal evolution to the metastatic stage of squamous cell carcinomas of the lung. Br J Cancer. 2000, 82: 65-73.PubMedCentralPubMedCrossRef Petersen S, Aninat-Meyer M, Schluns K, Gellert K, Dietel M, Petersen I: Chromosomal alterations in the clonal evolution to the metastatic stage of squamous cell carcinomas of the lung. Br J Cancer. 2000, 82: 65-73.PubMedCentralPubMedCrossRef
226.
Zurück zum Zitat Shibuya K, Fujisawa T, Hoshino H, Baba M, Saitoh Y, Iizasa T, Sekine Y, Suzuki M, Hiroshima K, Ohwada H: Increased telomerase activity and elevated hTERT mRNA expression during multistage carcinogenesis of squamous cell carcinoma of the lung. Cancer. 2001, 92: 849-855.PubMedCrossRef Shibuya K, Fujisawa T, Hoshino H, Baba M, Saitoh Y, Iizasa T, Sekine Y, Suzuki M, Hiroshima K, Ohwada H: Increased telomerase activity and elevated hTERT mRNA expression during multistage carcinogenesis of squamous cell carcinoma of the lung. Cancer. 2001, 92: 849-855.PubMedCrossRef
227.
Zurück zum Zitat Tan DF, Huberman JA, Hyland A, Loewen GM, Brooks JS, Beck AF, Todorov IT, Bepler G: MCM2--a promising marker for premalignant lesions of the lung: a cohort study. BMC Cancer. 2001, 1: 6-PubMedCentralPubMedCrossRef Tan DF, Huberman JA, Hyland A, Loewen GM, Brooks JS, Beck AF, Todorov IT, Bepler G: MCM2--a promising marker for premalignant lesions of the lung: a cohort study. BMC Cancer. 2001, 1: 6-PubMedCentralPubMedCrossRef
228.
Zurück zum Zitat Osada H, Tatematsu Y, Yatabe Y, Nakagawa T, Konishi H, Harano T, Tezel E, Takada M, Takahashi T: Frequent and histological type-specific inactivation of 14-3-3sigma in human lung cancers. Oncogene. 2002, 21: 2418-2424.PubMedCrossRef Osada H, Tatematsu Y, Yatabe Y, Nakagawa T, Konishi H, Harano T, Tezel E, Takada M, Takahashi T: Frequent and histological type-specific inactivation of 14-3-3sigma in human lung cancers. Oncogene. 2002, 21: 2418-2424.PubMedCrossRef
229.
Zurück zum Zitat Virmani AK, Tsou JA, Siegmund KD, Shen LY, Long TI, Laird PW, Gazdar AF, Laird-Offringa IA: Hierarchical clustering of lung cancer cell lines using DNA methylation markers. Cancer Epidemiol Biomarkers Prev. 2002, 11: 291-297.PubMed Virmani AK, Tsou JA, Siegmund KD, Shen LY, Long TI, Laird PW, Gazdar AF, Laird-Offringa IA: Hierarchical clustering of lung cancer cell lines using DNA methylation markers. Cancer Epidemiol Biomarkers Prev. 2002, 11: 291-297.PubMed
230.
Zurück zum Zitat Seki N, Takasu T, Mandai K, Nakata M, Saeki H, Heike Y, Takata I, Segawa Y, Hanafusa T, Eguchi K: Expression of eukaryotic initiation factor 4E in atypical adenomatous hyperplasia and adenocarcinoma of the human peripheral lung. Clin Cancer Res. 2002, 8: 3046-3053.PubMed Seki N, Takasu T, Mandai K, Nakata M, Saeki H, Heike Y, Takata I, Segawa Y, Hanafusa T, Eguchi K: Expression of eukaryotic initiation factor 4E in atypical adenomatous hyperplasia and adenocarcinoma of the human peripheral lung. Clin Cancer Res. 2002, 8: 3046-3053.PubMed
231.
Zurück zum Zitat Zabarovsky ER, Lerman MI, Minna JD: Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene. 2002, 21: 6915-6935.PubMedCrossRef Zabarovsky ER, Lerman MI, Minna JD: Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene. 2002, 21: 6915-6935.PubMedCrossRef
232.
Zurück zum Zitat Fujii T, Dracheva T, Player A, Chacko S, Clifford R, Strausberg RL, Buetow K, Azumi N, Travis WD, Jen J: A preliminary transcriptome map of non-small cell lung cancer. Cancer Res. 2002, 62: 3340-3346.PubMed Fujii T, Dracheva T, Player A, Chacko S, Clifford R, Strausberg RL, Buetow K, Azumi N, Travis WD, Jen J: A preliminary transcriptome map of non-small cell lung cancer. Cancer Res. 2002, 62: 3340-3346.PubMed
233.
Zurück zum Zitat Tan D, Li Q, Deeb G, Ramnath N, Slocum HK, Brooks J, Cheney R, Wiseman S, Anderson T, Loewen G: Thyroid transcription factor-1 expression prevalence and its clinical implications in non-small cell lung cancer: A high-throughput tissue microarray and immunohistochemistry study. Hum Pathol. 2003, 34: 597-604.PubMedCrossRef Tan D, Li Q, Deeb G, Ramnath N, Slocum HK, Brooks J, Cheney R, Wiseman S, Anderson T, Loewen G: Thyroid transcription factor-1 expression prevalence and its clinical implications in non-small cell lung cancer: A high-throughput tissue microarray and immunohistochemistry study. Hum Pathol. 2003, 34: 597-604.PubMedCrossRef
234.
Zurück zum Zitat Tan D, Kirley S, Li Q, Ramnath N, Slocum HK, Brooks JS, Wu CL, Zukerberg LR: Loss of cables protein expression in human non-small cell lung cancer: a tissue microarray study. Hum Pathol. 2003, 34: 143-149.PubMedCrossRef Tan D, Kirley S, Li Q, Ramnath N, Slocum HK, Brooks JS, Wu CL, Zukerberg LR: Loss of cables protein expression in human non-small cell lung cancer: a tissue microarray study. Hum Pathol. 2003, 34: 143-149.PubMedCrossRef
235.
Zurück zum Zitat Santos Romeo M, Sokolova IA, Morrison LE, Zeng C, Baron AE, Hirsch FR, Miller YE, Franklin WA, Varella-Garcia M: Chromosomal abnormalities in non-small cell lung carcinomas and in bronchial epithelia of high-risk smokers detected by multi-target interphase fluorescence in situ hybridization. J Mol Diagn. 2003, 5: 103-112.PubMedCentralCrossRef Santos Romeo M, Sokolova IA, Morrison LE, Zeng C, Baron AE, Hirsch FR, Miller YE, Franklin WA, Varella-Garcia M: Chromosomal abnormalities in non-small cell lung carcinomas and in bronchial epithelia of high-risk smokers detected by multi-target interphase fluorescence in situ hybridization. J Mol Diagn. 2003, 5: 103-112.PubMedCentralCrossRef
236.
Zurück zum Zitat Yokota J, Nishioka M, Tani M, Kohno T: Genetic alterations responsible for metastatic phenotypes of lung cancer cells. Clin Exp Metastasis. 2003, 20: 189-193.PubMedCrossRef Yokota J, Nishioka M, Tani M, Kohno T: Genetic alterations responsible for metastatic phenotypes of lung cancer cells. Clin Exp Metastasis. 2003, 20: 189-193.PubMedCrossRef
237.
238.
Zurück zum Zitat Niklinski J, Niklinska W, Chyczewski L, Becker HD, Pluygers E: Molecular genetic abnormalities in premalignant lung lesions: biological and clinical implications. Eur J Cancer Prev. 2001, 10: 213-226.PubMedCrossRef Niklinski J, Niklinska W, Chyczewski L, Becker HD, Pluygers E: Molecular genetic abnormalities in premalignant lung lesions: biological and clinical implications. Eur J Cancer Prev. 2001, 10: 213-226.PubMedCrossRef
239.
Zurück zum Zitat Mitsuuchi Y, Testa JR: Cytogenetics and molecular genetics of lung cancer. Am J Med Genet. 2002, 115: 183-188.PubMedCrossRef Mitsuuchi Y, Testa JR: Cytogenetics and molecular genetics of lung cancer. Am J Med Genet. 2002, 115: 183-188.PubMedCrossRef
240.
Zurück zum Zitat Osada H, Takahashi T: Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer. Oncogene. 2002, 21: 7421-7434.PubMedCrossRef Osada H, Takahashi T: Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer. Oncogene. 2002, 21: 7421-7434.PubMedCrossRef
241.
Zurück zum Zitat Zochbauer-Muller S, Gazdar AF, Minna JD: Molecular pathogenesis of lung cancer. Annu Rev Physiol. 2002, 64: 681-708.PubMedCrossRef Zochbauer-Muller S, Gazdar AF, Minna JD: Molecular pathogenesis of lung cancer. Annu Rev Physiol. 2002, 64: 681-708.PubMedCrossRef
242.
Zurück zum Zitat Wistuba , II, Lam S, Behrens C, Virmani AK, Fong KM, LeRiche J, Samet JM, Srivastava S, Minna JD, Gazdar AF: Molecular damage in the bronchial epithelium of current and former smokers. J Natl Cancer Inst. 1997, 89: 1366-1373.PubMedCrossRef Wistuba , II, Lam S, Behrens C, Virmani AK, Fong KM, LeRiche J, Samet JM, Srivastava S, Minna JD, Gazdar AF: Molecular damage in the bronchial epithelium of current and former smokers. J Natl Cancer Inst. 1997, 89: 1366-1373.PubMedCrossRef
243.
Zurück zum Zitat McWilliams A, MacAulay C, Gazdar AF, Lam S: Innovative molecular and imaging approaches for the detection of lung cancer and its precursor lesions. Oncogene. 2002, 21: 6949-6959.PubMedCrossRef McWilliams A, MacAulay C, Gazdar AF, Lam S: Innovative molecular and imaging approaches for the detection of lung cancer and its precursor lesions. Oncogene. 2002, 21: 6949-6959.PubMedCrossRef
244.
Zurück zum Zitat Lam S, MacAulay C, leRiche JC, Palcic B: Detection and localization of early lung cancer by fluorescence bronchoscopy. Cancer. 2000, 89: 2468-2473.PubMedCrossRef Lam S, MacAulay C, leRiche JC, Palcic B: Detection and localization of early lung cancer by fluorescence bronchoscopy. Cancer. 2000, 89: 2468-2473.PubMedCrossRef
245.
Zurück zum Zitat Fujita Y, Fujikane T, Fujiuchi S, Nishigaki Y, Yamazaki Y, Nagase A, Shimizu T, Ohsaki Y, Kikuchi K: The diagnostic and prognostic relevance of human telomerase reverse transcriptase mRNA expression detected in situ in patients with nonsmall cell lung carcinoma. Cancer. 2003, 98: 1008-1013.PubMedCrossRef Fujita Y, Fujikane T, Fujiuchi S, Nishigaki Y, Yamazaki Y, Nagase A, Shimizu T, Ohsaki Y, Kikuchi K: The diagnostic and prognostic relevance of human telomerase reverse transcriptase mRNA expression detected in situ in patients with nonsmall cell lung carcinoma. Cancer. 2003, 98: 1008-1013.PubMedCrossRef
247.
Zurück zum Zitat Fearnhead NS, Wilding JL, Bodmer WF: Genetics of colorectal cancer: hereditary aspects and overview of colorectal tumorigenesis. Br Med Bull. 2002, 64: 27-43.PubMedCrossRef Fearnhead NS, Wilding JL, Bodmer WF: Genetics of colorectal cancer: hereditary aspects and overview of colorectal tumorigenesis. Br Med Bull. 2002, 64: 27-43.PubMedCrossRef
248.
Zurück zum Zitat Kinzler KW, Vogelstein B: Lessons from hereditary colorectal cancer. Cell. 1996, 87: 159-170.PubMedCrossRef Kinzler KW, Vogelstein B: Lessons from hereditary colorectal cancer. Cell. 1996, 87: 159-170.PubMedCrossRef
249.
Zurück zum Zitat Komarova NL, Lengauer C, Vogelstein B, Nowak MA: Dynamics of genetic instability in sporadic and familial colorectal cancer. Cancer Biology & Therapy. 2002, 1: 685-692.CrossRef Komarova NL, Lengauer C, Vogelstein B, Nowak MA: Dynamics of genetic instability in sporadic and familial colorectal cancer. Cancer Biology & Therapy. 2002, 1: 685-692.CrossRef
250.
Zurück zum Zitat Rajagopalan H, Nowak MA, Vogelstein B, Lengauer C: Opinion: The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer. 2003, 3: 695-701.PubMedCrossRef Rajagopalan H, Nowak MA, Vogelstein B, Lengauer C: Opinion: The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer. 2003, 3: 695-701.PubMedCrossRef
251.
Zurück zum Zitat Dunican DS, McWilliam P, Tighe O, Parle-McDermott A, Croke DT: Gene expression differences between the microsatellite instability (MIN) and chromosomal instability (CIN) phenotypes in colorectal cancer revealed by high-density cDNA array hybridization. Oncogene. 2002, 21: 3253-3257.PubMedCrossRef Dunican DS, McWilliam P, Tighe O, Parle-McDermott A, Croke DT: Gene expression differences between the microsatellite instability (MIN) and chromosomal instability (CIN) phenotypes in colorectal cancer revealed by high-density cDNA array hybridization. Oncogene. 2002, 21: 3253-3257.PubMedCrossRef
252.
Zurück zum Zitat Kitahara O, Furukawa Y, Tanaka T, Kihara C, Ono K, Yanagawa R, Nita ME, Takagi T, Nakamura Y, Tsunoda T: Alterations of gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia. Cancer Res. 2001, 61: 3544-3549.PubMed Kitahara O, Furukawa Y, Tanaka T, Kihara C, Ono K, Yanagawa R, Nita ME, Takagi T, Nakamura Y, Tsunoda T: Alterations of gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia. Cancer Res. 2001, 61: 3544-3549.PubMed
253.
Zurück zum Zitat Notterman DA, Alon U, Sierk AJ, Levine AJ: Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res. 2001, 61: 3124-3130.PubMed Notterman DA, Alon U, Sierk AJ, Levine AJ: Transcriptional gene expression profiles of colorectal adenoma, adenocarcinoma, and normal tissue examined by oligonucleotide arrays. Cancer Res. 2001, 61: 3124-3130.PubMed
254.
Zurück zum Zitat Hegde P, Qi R, Gaspard R, Abernathy K, Dharap S, Earle-Hughes J, Gay C, Nwokekeh NU, Chen T, Saeed AI, Sharov V, Lee NH, Yeatman TJ, Quackenbush J: Identification of tumor markers in models of human colorectal cancer using a 19, 200-element complementary DNA microarray. Cancer Res. 2001, 61: 7792-7797.PubMed Hegde P, Qi R, Gaspard R, Abernathy K, Dharap S, Earle-Hughes J, Gay C, Nwokekeh NU, Chen T, Saeed AI, Sharov V, Lee NH, Yeatman TJ, Quackenbush J: Identification of tumor markers in models of human colorectal cancer using a 19, 200-element complementary DNA microarray. Cancer Res. 2001, 61: 7792-7797.PubMed
255.
Zurück zum Zitat Lin YM, Furukawa Y, Tsunoda T, Yue CT, Yang KC, Nakamura Y: Molecular diagnosis of colorectal tumors by expression profiles of 50 genes expressed differentially in adenomas and carcinomas. Oncogene. 2002, 21: 4120-4128.PubMedCrossRef Lin YM, Furukawa Y, Tsunoda T, Yue CT, Yang KC, Nakamura Y: Molecular diagnosis of colorectal tumors by expression profiles of 50 genes expressed differentially in adenomas and carcinomas. Oncogene. 2002, 21: 4120-4128.PubMedCrossRef
256.
Zurück zum Zitat Zou TT, Selaru FM, Xu Y, Shustova V, Yin J, Mori Y, Shibata D, Sato F, Wang S, Olaru A, Deacu E, Liu TC, Abraham JM, Meltzer SJ: Application of cDNA microarrays to generate a molecular taxonomy capable of distinguishing between colon cancer and normal colon. Oncogene. 2002, 21: 4855-4862.PubMedCrossRef Zou TT, Selaru FM, Xu Y, Shustova V, Yin J, Mori Y, Shibata D, Sato F, Wang S, Olaru A, Deacu E, Liu TC, Abraham JM, Meltzer SJ: Application of cDNA microarrays to generate a molecular taxonomy capable of distinguishing between colon cancer and normal colon. Oncogene. 2002, 21: 4855-4862.PubMedCrossRef
257.
Zurück zum Zitat Birkenkamp-Demtroder K, Christensen LL, Olesen SH, Frederiksen CM, Laiho P, Aaltonen LA, Laurberg S, Sorensen FB, Hagemann R, TF O. Rntoft: Gene expression in colorectal cancer. Cancer Res. 2002, 62: 4352-4363.PubMed Birkenkamp-Demtroder K, Christensen LL, Olesen SH, Frederiksen CM, Laiho P, Aaltonen LA, Laurberg S, Sorensen FB, Hagemann R, TF O. Rntoft: Gene expression in colorectal cancer. Cancer Res. 2002, 62: 4352-4363.PubMed
258.
Zurück zum Zitat Stremmel C, Wein A, Hohenberger W, Reingruber B: DNA microarrays: a new diagnostic tool and its implications in colorectal cancer. Int J Colorectal Dis. 2002, 17: 131-136.PubMedCrossRef Stremmel C, Wein A, Hohenberger W, Reingruber B: DNA microarrays: a new diagnostic tool and its implications in colorectal cancer. Int J Colorectal Dis. 2002, 17: 131-136.PubMedCrossRef
259.
Zurück zum Zitat Yasui W, Oue N, Ono S, Mitani Y, Ito R, Nakayama H: Histone acetylation and gastrointestinal carcinogenesis. Ann N Y Acad Sci. 2003, 983: 220-231.PubMedCrossRef Yasui W, Oue N, Ono S, Mitani Y, Ito R, Nakayama H: Histone acetylation and gastrointestinal carcinogenesis. Ann N Y Acad Sci. 2003, 983: 220-231.PubMedCrossRef
260.
Zurück zum Zitat Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L: The case for early detection. Nat Rev Cancer. 2003, 3: 243-252.PubMedCrossRef Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L: The case for early detection. Nat Rev Cancer. 2003, 3: 243-252.PubMedCrossRef
Metadaten
Titel
Genetic alteration and gene expression modulation during cancer progression
verfasst von
Cathie Garnis
Timon PH Buys
Wan L Lam
Publikationsdatum
01.12.2004
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2004
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-3-9

Weitere Artikel der Ausgabe 1/2004

Molecular Cancer 1/2004 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.