Skip to main content
Erschienen in: Cardiovascular Diabetology 1/2020

Open Access 01.12.2020 | Original investigation

Impacts of triglyceride-glucose index on prognosis of patients with type 2 diabetes mellitus and non-ST-segment elevation acute coronary syndrome: results from an observational cohort study in China

verfasst von: Qi Zhao, Ting-Yu Zhang, Yu-Jing Cheng, Yue Ma, Ying-Kai Xu, Jia-Qi Yang, Yu-Jie Zhou

Erschienen in: Cardiovascular Diabetology | Ausgabe 1/2020

Abstract

Background

The relationship between triglyceride-glucose index (TyG index) and the prevalence and prognosis of cardiovascular disease has been confirmed by former studies. However, it remains uncertain whether TyG index has a prognostic impact in patients with type 2 diabetes mellitus (T2DM) and non-ST-segment elevation acute coronary syndrome (NSTE-ACS) undergoing percutaneous coronary intervention (PCI).

Methods

The study retrospectively enrolled 798 patients (mean age: 60.9 ± 8.3 years; 68.3% men) with T2DM and NSTE-ACS who underwent PCI at Beijing Anzhen Hospital from January to December 2015. TyG index was calculated as previously reported: ln [fasting TGs (mg/dL) * FBG (mg/dL)/2]. The primary endpoint was a composite of adverse events as follows: all-cause death, non-fatal myocardial infarction (MI) and ischemia-driven revascularization.

Results

TyG index was significantly higher in patients with a primary endpoint event compared with those without. Multivariate Cox proportional hazards analysis showed that 1-unit increase of TyG index was independently associated with higher risk of primary endpoint, independent of other risk factors [hazard ratio (HR) 3.208 per 1-unit increase, 95% confidence interval (CI) 2.400–4.289, P < 0.001]. The addition of TyG index to a baseline risk model had an incremental effect on the predictive value for adverse prognosis [AUC: baseline risk model, 0.800 vs. baseline risk model + TyG index, 0.856, P for comparison < 0.001; category-free net reclassification improvement (NRI) 0.346, P < 0.001; integrated discrimination improvement (IDI) 0.087, P < 0.001].

Conclusions

Increased TyG index is a significant predictor of adverse prognosis in patients with T2DM and NSTE-ACS undergoing PCI. Further studies need to be performed to determine whether interventions for TyG index have a positive impact on improving clinical prognosis.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12933-020-01086-5.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CAD
Coronary artery disease
ACS
Acute coronary syndrome
T2DM
Type 2 diabetes mellitus
IR
Insulin resistance
TyG index
Triglyceride-glucose index
NSTE-ACS
Non-ST-segment elevation acute coronary syndrome
PCI
Percutaneous coronary intervention
TGs
Triglycerides
BMI
Body mass index
FBG
Fasting blood glucose
NSTEMI
Non-ST-segment elevation myocardial infarction
UA
Unstable angina
SBP
Systolic blood pressure
DBP
Diastolic blood pressure
HbA1c
Glycosylated hemoglobin A1c
TC
Total cholesterol
LDL-C
Low-density lipoprotein cholesterol
HDL-C
High-density lipoprotein cholesterol
eGFR
Estimated glomerular filtration rate
SYNTAX
The synergy between PCI with taxus and cardiac surgery
MI
Myocardial infarction
PVD
Peripheral vascular disease
LVEF
Left ventricular ejection fraction
DAPT
Dual antiplatelet therapy
ROC
Receiver operating characteristics
hs-CRP
High-sensitivity C-reactive protein
LM
Left main artery
AUC
Area under the curve
HR
Hazard ratio
CI
Confidence interval
NRI
Net reclassification improvement
IDI
Integrated discrimination improvement
HOMA-IR
Homeostasis model assessment of insulin resistance

Background

Coronary artery disease (CAD) has been recognized as the leading cause of disability and mortality in contemporary society. In recent years, in spite of superior evidence-based strategies including optimized drug therapy and revascularization having been widely developed and applied, the risk of recurrent adverse cardiovascular outcomes remains relatively high in patients with CAD, especially for those who have ever had an acute coronary syndrome (ACS) [13]. Previous studies have suggested that more than one-quarter of patients with ACS are combined with Type 2 Diabetes mellitus (T2DM), which has been widely proved to be one of the most significant risk factors for cardiovascular disease [4]. Certain studies have demonstrated that T2DM is significantly correlated with higher prevalence of CAD, more complex coronary lesions and worse prognosis [46]. Therefore, identification of the residual risk factors of diabetic patients with ACS is of great clinical importance if we are to develop new therapeutic targets and to tailor risk reduction strategies that match individual risk level.
Insulin resistance (IR), the critical mechanism of the pathogenesis of T2DM, has been extensively demonstrated to be significantly related to the development of coronary and carotid atherosclerosis and an increased risk of adverse prognosis [710]. The triglyceride-glucose index (TyG index), which is derived from fasting triglycerides (TGs) and fasting blood glucose (FBG), has been proposed as a surrogate biomarker of IR and former studies have proved that it has high correlation with hyperinsulinaemic-euglycaemic clamp (the gold standard technique for assessing IR), either in individuals with or without T2DM [1113]. Studies have shown that an increased level of TyG index is closely related to higher incidence of diabetes and prediabetic status [1416]. Furthermore, the association between TyG index and the prevalence and prognosis of cardiovascular disease has been confirmed by certain clinical researches, despite the existence of diabetes or not at baseline [1722].
However, the prognostic significance of TyG index in patients with T2DM and non-ST-segment elevation acute coronary syndrome (NSTE-ACS) who were treated with percutaneous coronary intervention (PCI) has not been fully studied. Based on this, the present study was designed with the aim of: (1) identifying the potential association between IR quantified by TyG index and clinical prognosis; (2) determining whether TyG index has an incremental effect on risk stratification on the basis of traditional risk factors in participants with T2DM and NSTE-ACS undergoing PCI.

Methods

Study population

The present study is a single-center, observational, retrospective cohort study among patients with diabetes who were diagnosed with NSTE-ACS and treated with elective PCI at Beijing Anzhen Hospital between January and December 2015. The exclusion criteria were listed as follows: (1) explicit or suspected type 1 diabetes mellitus (T1DM); (2) missing clinical data; (3) history of coronary artery bypass grafting (CABG), cardiogenic shock, chronic infectious disease and malignant tumor; (4) taking TGs-lowering medications before admission (such as fibrates); (5) extreme body mass index (BMI) (BMI > 45 kg/m2) and suspected familial hypertriglyceridemia [plasma TGs ≥ 500 mg/dL (5.65 mmol/L)]; (6) renal dysfunction with estimated glomerular filtration rate (eGFR) < 30 mL/(min * 1.73 m2) or treated with renal replacement therapy, severe hepatic insufficiency with alanine transaminase (ALT) or aspartate transaminase (AST) ≥ 5 upper limit of normal; (7) PCI failure, PCI-related complications, and in-hospital death. Ultimately, a cohort of 798 patients who met the enrollment principles were included for the present analyses (Fig. 1).

Data collection and definitions

Data of demographic and clinical characteristics, including age, sex, weight, height, heart rate, blood pressure [systolic blood pressure (SBP) and diastolic blood pressure (DBP)], medical history, family history, and medical treatment were extracted from the medical information recording system of Beijing Anzhen Hospital. BMI was calculated as follows: BMI = weight (kg)/[height (m)]2. Criteria for diabetes include: (1) previously diagnosed diabetes under treatment of antidiabetic medication (diet, oral agents, and/or insulin); (2) the typical symptoms of diabetes with a random blood glucose ≥ 11.1 mmol/L, and/or FBG ≥ 7.0 mmol/L, and/or 2-h blood glucose after oral glucose tolerance test (OGTT) ≥ 11.1 mmol/L [23]; (3) glycosylated hemoglobin A1c (HbA1c) level ≥ 6.5% on admission [24]. NSTE-ACS was composed of non-ST-segment elevation myocardial infarction (NSTEMI) and unstable angina (UA), definitions of which were determined by appropriate guidelines [25]. NSTEMI was defined as having symptoms of ischemia and elevated cardiac troponin I (cTnI), and without an elevation of ST-segment. UA was diagnosed as ischemic symptoms at rest, or exacerbated or new-onset symptoms with transient ischemic ST-segment shifts, and without release of myocardial enzymes related to myocardial necrosis. Patients with SBP ≥ 140 mmHg and/or DBP ≥ 90 mmHg, or those receiving anti-hypertensive treatments were considered having hypertension. Peripheral vascular disease (PVD) was defined as aorta and other arteries than coronary arteries, with exercise related claudication, or reduced or absent pulsation, or angiographic stenosis of more than 50%.
Venous blood samples were collected after an overnight fasting on the day of the baseline coronary procedure. The routine hematology and biochemical parameters, including lipid profiles [TGs, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C)], creatinine, uric acid, FBG, HbA1c, high-sensitivity C-reactive protein (hs-CRP), and other biomarkers, were determined by standard laboratory methods in central lab of Beijing Anzhen Hospital. Patients with fasting TC > 200 mg/dL, and/or LDL-C > 130 mg/dL, and/or TGs > 150 mg/dL, and/or HDL-C < 40 mg/dL at admission, and/or previously long-term use of lipid-lowering drugs were considered having dyslipidemia. The eGFR was calculated as previously described: eGFR [mL/(min * 1.73 m2)] = 186 * serum creatinine (mg/dL)−1.154 * age−0.203 (* 0.742 if female) [26]. Baseline TyG index was calculated based on fasting TGs and FBG values obtained at admission as previously reported: ln [fasting TGs (mg/dL) * FBG (mg/dL)/2] [11]. Left ventricular ejection fraction (LVEF) was evaluated by two-dimensional modified Simpson’s method using an ultrasonic cardiogram (Philips Company, Eindhoven, The Netherlands).
Coronary angiogram data were analyzed and recorded by at least two experienced cardiologists, and measurements of coronary artery lesion characteristics were obtained. The lesion characteristics were defined as follows: (1) multi-vessel lesion: more than two main coronary branches (vessel diameter ≥ 2 mm) with extent of stenosis ≥ 50%. (2) chronic total occlusion lesion: lesion with complete obstruction [thrombolysis in myocardial infarction (TIMI) flow grade 0] lasting longer than 3 months, which was judged from the previous medical history or coronary angiogram results. (3) diffuse lesion: a single stenotic lesion with a length of ≥ 20 mm. (4) bifurcation lesion: stenosis occurred adjacent to and/or involving the origin of a significant side branch that has too much functional value and so cannot be lost during the interventional procedure. (5) in-stent restenosis: stenosis of ≥ 50% occurring in the segment inside the stent, 5 mm proximal or distal to the stent [27]. The severity of coronary artery lesions was quantified by the synergy between PCI with taxus and cardiac surgery (SYNTAX) score. The SYNTAX score was calculated for each participant using the online calculator (http://​www.​syntaxscore.​com). PCI was performed in accordance with current practice guidelines in China [28], and detailed strategies were determined by experienced interventional cardiologists.

Follow-up and endpoint event

After baseline PCI, all patients were routinely followed up by trained professionals who were blinded to the baseline information at 3, 6, and 12 months and then annually for up to 36 months. The information about adverse prognostic events was obtained from patients or their family members by telephone questionnaire. The information was further confirmed by careful verification of corresponding medical records if necessary. The primary observational endpoint was defined as a composite of events including all-cause death, non-fatal myocardial infarction (MI) and ischemia-driven revascularization. The secondary observational endpoints were each component of the composite primary endpoint. MI was defined as elevated cardiac troponin higher than the upper reference limit with ischemia indicated from symptoms and/or electrocardiographic changes, with or without an elevation of ST-segment. Ischemia-driven revascularization was defined as the revascularization procedure associated with symptoms and/or electrocardiographic changes implicating ischemia. The first primary endpoint event that occurred during the follow-up was used for analysis in current study. For patients with multiple adverse outcomes occurring almost simultaneously during the follow-up, only the most severe event (all-cause death > non-fatal MI > ischemia-driven revascularization) was selected to perform our analyses. If the same event occurs multiple times, only the first occurrence was used for analysis.

Statistical analysis

Continuous variables were presented as mean ± standard deviation (SD) or median (25th and 75th percentiles: P25, P75) in the case of normal or non-normal distribution, and differences between the two groups were examined by independent-sample t-test or Mann–Whitney U test correspondingly. Categorical variables were described as counts (percentages) and compared by Pearson chi-square test (Pearson χ2 test) or Fisher’s exact test appropriately. The Spearman’s rank correlation test or Pearson correlation test was used for evaluating the correlations between the TyG index and cardiovascular risk factors when appropriate. The Pearson correlation test was used to evaluate the correlation between two continuous variables with normal distribution, while the Spearman’s rank correlation test was applied in case that one or more of the variables being analyzed was non-normally distributed continuous variable or categorical variable. Receiver-operating characteristic (ROC) curve analysis was performed to determine the optimal cutoff point value of TyG index for predicting primary endpoint. The Kaplan–Meier survival analyses were performed to evaluate the incidence rate of adverse events between groups according to the optimal cutoff point of TyG index, and discrepancies between groups were evaluated by log-rank test. The predictive value of the variables for primary endpoint was evaluated by univariate and multivariate Cox proportional hazards analyses. The TyG index was analyzed in two ways: (1) as a categorical variable; and (2) as a continuous variable. In multivariate Cox proportional hazards analyses, four models were established to evaluate the predictive value of TyG index for primary endpoint, among which confounders were selected according to statistical significance (P < 0.2) in univariate analysis and clinical importance: (1) Model 1: adjusted for age, sex (female), BMI, SBP, DBP, smoking, drinking, duration of diabetes, dyslipidemia, prior MI, PCI, stroke and PVD; (2) Model 2: adjusted for variables included in Model 1 and diagnosis (NSTEMI), TC, HDL-C, eGFR, HbA1c, LVEF; (3) Model 3: adjusted for variables included in Model 2 and SYNTAX score, left main artery (LM) treatment, drug-coated balloon (DCB) use, complete revascularization and number of stents; (4) Model 4: adjusted for variables included in Model 3 and dual antiplatelet therapy (DAPT) at discharge, DAPT interruption in 12 months, statins at discharge, statins interruption in 12 months, oral hypoglycemic agents (metformin, alpha-glucosidase inhibitor, sulfonylurea, dipeptidyl peptidase 4 inhibitor) at discharge and insulin at discharge. The prognostic impact of TyG index for each component of primary endpoint was also assessed by using model 4. FBG and TGs were not introduced into multivariate analysis since the TyG index was calculated from them. Results of Cox proportional hazards analyses were presented as hazard ratio (HR) and 95% confidence intervals (CI). Further stratified analyses according to age (≤ 65 and > 65 years), sex, BMI (≤ 28 and > 28 kg/m2), hypertension, initial diagnosis (UA and NSTEMI), HbA1c (≤ 7 and > 7%), LDL-C (≤ 70 and > 70 mg/dL), and pre-admission medication including statins, oral hypoglycemic agents and insulin were employed to examine the consistence of the prognostic impact of TyG index for primary endpoint. The model used in the stratified analyses consisted of all covariates used in Model 4 except for the variables that were used for stratification. The interaction of TyG index and variables used for stratification was examined by likelihood ratio tests.
C-statistics including ROC curve analysis were performed to examine the incremental effects of TyG index on the predictive potential of the baseline risk model that including traditional risk factors. DeLong’s test was used to compare the area under the curve (AUC) from each of the models. We also calculated category-free net reclassification improvement (NRI) and integrated discrimination improvement (IDI) to determine the extent to which the addition of TyG index improves the predictive power of existing baseline risk model.
Statistical tests were performed with SPSS 23.0 (SPSS Inc., Chicago, Illinois, USA), the R Programming Language (version 3.5.1) and MedCalc version 19.1 (MedCalc Software, Belgium). A two-tailed P value < 0.05 was regarded as statistically significant.

Results

A total of 798 patients (mean age: 60.9 ± 8.3 years; 68.3% men) were finally enrolled in present study. During the 36-month follow-up period, 17 patients (2.1% of total population) were lost to follow-up. Among the 798 participants, 180 (22.6%) experienced primary endpoint events, which consisted of 14 (1.8%) all-cause death, 37 (4.6%) non-fatal MI, and 129 (16.2%) ischemia-driven revascularization.

Baseline characteristic of study population

Baseline characteristics of the total population and groups stratified by the occurrence of primary endpoint event were presented in Table 1. TyG index was significantly higher in patients with primary endpoint event compared with those without. Patients with a primary endpoint event showed higher age and SBP, longer duration of diabetes, and higher prevalence of dyslipidemia, previous MI and PCI history. In terms of laboratory indicators, participants with endpoint event had higher levels of TGs, TC, hs-CRP, FBG and HbA1c, but lower levels of HDL-C, eGFR and LVEF. As for the angiographic findings, those with an endpoint event showed higher proportions of LM disease, multi-vessel disease and other characteristics of complex coronary artery lesion. The SYNTAX score was significantly higher in subset with adverse prognosis. Correspondingly, more LM lesions were disposed and more coronary artery stents were implanted in patients with endpoint event. Moreover, the rate of complete revascularization was significantly lower in participants with adverse prognosis.
Table 1
Baseline clinical characteristics of patients with and without adverse event
 
Total population (n = 798)
Without event (n = 618)
With event (n = 180)
P value
Age, years
60.9 ± 8.3
60.3 ± 8.1
62.9 ± 8.6
< 0.001
Sex, male, n (%)
545 (68.3)
430 (69.6)
115 (63.9)
0.149
BMI, kg/m2
26.7 ± 3.2
26.7 ± 3.2
26.6 ± 3.2
0.772
Heart rate, bpm
71.7 ± 10.2
71.5 ± 9.8
72.1 ± 11.4
0.502
SBP, mmHg
131.8 ± 17.1
130.8 ± 16.3
135.1 ± 19.5
0.007
DBP, mmHg
76.8 ± 10.1
76.4 ± 9.8
78.1 ± 11.1
0.052
Smoking, n (%)
417 (52.3)
332 (53.7)
85 (47.2)
0.124
Drinking, n (%)
184 (23.1)
149 (24.1)
35 (19.4)
0.191
Family history of CAD, n (%)
93 (11.7)
73 (11.8)
20 (11.1)
0.796
Duration of diabetes, years
8.2 ± 4.3
8.0 ± 4.1
9.1 ± 4.7
0.007
Medical history, n (%)
 Hypertension
573 (71.8)
449 (72.7)
124 (68.9)
0.323
 Dyslipidemia
710 (89.0)
537 (86.9)
173 (96.1)
0.001
 Prior MI
175 (21.9)
118 (19.1)
57 (31.7)
< 0.001
 Prior PCI
151 (18.9)
106 (17.2)
45 (25.0)
0.018
 Prior stroke
109 (13.7)
80 (12.9)
29 (16.1)
0.276
 Prior PVD
125 (15.7)
93 (15.0)
32 (17.8)
0.375
Laboratory results
 TGs, mg/dL
138.2 (97.2, 198.5)
127.6 (91.3, 174.8)
209.1 (134.9, 299.5)
< 0.001
 TC, mg/dL
157.2 ± 39.7
153.5 ± 39.4
170.2 ± 38.2
< 0.001
 LDL-C, mg/dL
94.2 ± 33.1
93.2 ± 33.9
97.6 ± 29.8
0.112
 HDL-C, mg/dL
36.9 ± 8.7
37.3 ± 8.8
35.3 ± 8.0
0.005
 hs-CRP, mg/L
1.6 (0.7, 4.1)
1.5 (0.6, 3.9)
2.0 (0.9, 4.4)
0.011
 Creatinine, mg/dL
0.8 ± 0.2
0.8 ± 0.2
0.8 ± 0.2
0.384
 eGFR, mL/(min * 1.73 m2)
96.5 ± 21.6
97.4 ± 21.7
93.5 ± 21.1
0.030
 Uric acid, μmol/L
328.0 ± 75.6
328.3 ± 75.3
327.0 ± 76.6
0.842
 FBG, mg/dL
127.7 (109.6, 157.0)
125.3 (108.1, 148.4)
141.5 (118.4, 173.3)
< 0.001
 HbA1c, %
7.5 ± 1.3
7.3 ± 1.2
8.0 ± 1.3
< 0.001
 TyG index
9.1 ± 0.6
9.0 ± 0.6
9.6 ± 0.7
< 0.001
 LVEF, %
64.0 ± 6.6
64.3 ± 6.3
62.7 ± 7.5
0.010
Initial diagnosis, n (%)
0.149
 UA
650 (81.5)
510 (82.5)
140 (77.8)
 
 NSTEMI
148 (18.5)
108 (17.5)
40 (22.2)
 
Pre-admission medication, n (%)
 ACEI
79 (9.9)
62 (10.0)
17 (9.4)
0.816
 ARB
128 (16.0)
99 (16.0)
29 (16.1)
0.976
 DAPT
253 (31.7)
194 (31.4)
59 (32.8)
0.725
 Aspirin
427 (53.5)
325 (52.6)
102 (56.7)
0.334
 Clopidogrel
264 (33.1)
203 (32.8)
61 (33.9)
0.794
 β-blocker
166 (20.8)
127 (20.6)
39 (21.7)
0.745
 Statins
233 (29.2)
190 (30.7)
43 (23.9)
0.075
 Proton pump inhibitor
8 (1.0)
7 (1.1)
1 (0.6)
0.796
 Oral hypoglycemic agents
413 (51.8)
324 (52.4)
89 (49.4)
0.481
 Metformin
170 (21.3)
138 (22.3)
32 (17.8)
0.189
 Alpha-glucosidase inhibitor
185 (23.2)
140 (22.7)
45 (25.0)
0.512
 Sulfonylurea
126 (15.8)
102 (16.5)
24 (13.3)
0.304
 Dipeptidyl peptidase 4 inhibitor
15 (1.9)
12 (1.9)
3 (1.7)
0.811
 Insulin
225 (28.2)
163 (26.4)
62 (34.4)
0.034
Post-discharge medication, n (%)
 ACEI
234 (29.3)
177 (28.6)
57 (31.7)
0.433
 ARB
384 (48.1)
294 (47.6)
90 (50.0)
0.566
 DAPT
796 (99.7)
617 (99.8)
179 (99.4)
0.934
 DAPT interruption in 12 months
12 (1.5)
9 (1.5)
3 (1.7)
0.838
 Aspirin
797 (99.9)
617 (99.8)
180 (100.0)
0.589
 Clopidogrel
797 (99.9)
618 (100.0)
179 (99.4)
0.226
 β-blocker
744 (93.2)
579 (93.7)
165 (91.7)
0.342
 Statins
787 (98.6)
611 (98.9)
176 (97.8)
0.459
 Statins interruption in 12 months
31 (3.9)
21 (3.4)
10 (5.6)
0.187
 Proton pump inhibitor
790 (99.0)
613 (99.2)
177 (98.3)
0.554
 Oral hypoglycemic agents
409 (51.3)
321 (51.9)
88 (48.9)
0.471
 Metformin
167 (20.9)
135 (21.8)
32 (17.8)
0.238
 Alpha-glucosidase inhibitor
181 (22.7)
137 (22.2)
44 (24.4)
0.521
 Sulfonylurea
123 (15.4)
99 (16.0)
24 (13.3)
0.380
 Dipeptidyl peptidase 4 inhibitor
15 (1.9)
12 (1.9)
3 (1.7)
0.811
 Insulin
217 (27.2)
156 (25.2)
61 (33.9)
0.022
Angiographic data
 LM disease, n (%)
44 (5.5)
22 (3.6)
22 (12.2)
< 0.001
 One-vessel disease, n (%)
167 (20.9)
146 (23.6)
21 (11.7)
0.001
 Two-vessel disease, n (%)
287 (36.0)
233 (37.7)
54 (30.0)
0.058
 Three-vessel disease, n (%)
344 (43.1)
239 (38.7)
105 (58.3)
< 0.001
 Chronic total occlusion, n (%)
117 (14.7)
67 (10.8)
50 (27.8)
< 0.001
 Diffuse lesion, n (%)
237 (29.7)
169 (27.3)
68 (37.8)
0.007
 Bifurcation lesion, n (%)
186 (23.3)
124 (20.1)
62 (34.4)
< 0.001
 In-stent restenosis, n (%)
58 (7.3)
38 (6.1)
20 (11.1)
0.024
 SYNTAX score
12.0 ± 5.5
11.1 ± 5.1
15.2 ± 6.0
< 0.001
Procedural results
 Target vessel territory, n (%)
  LM
25 (3.1)
14 (2.3)
11 (6.1)
0.009
  LAD
513 (64.3)
393 (63.6)
120 (66.7)
0.449
  LCX
335 (42.0)
249 (40.3)
86 (47.8)
0.073
  RCA
398 (49.9)
300 (48.5)
98 (54.4)
0.164
 DES implantation, n (%)
785 (98.4)
608 (98.4)
177 (98.3)
0.964
 DCB use, n (%)
15 (1.9)
10 (1.6)
5 (2.8)
0.313
 Complete revascularization, n (%)
414 (51.9)
333 (53.9)
81 (45.0)
0.036
 Number of stents
2.1 ± 1.3
2.0 ± 1.2
2.4 ± 1.5
0.001
Italic values indicate statistically significant associations
BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, CAD coronary artery disease, MI myocardial infarction, PCI percutaneous coronary intervention, PVD peripheral vascular disease, TGs triglycerides, TC total cholesterol, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, hs-CRP high-sensitivity C-reactive protein, eGFR estimated glomerular filtration rate, FBG fasting blood glucose, HbA1c glycosylated hemoglobin A1c, TyG triglyceride glucose, LVEF left ventricular ejection fraction, UA unstable angina, NSTEMI non-ST-segment elevation myocardial infarction, ACEI angiotensin converting enzyme inhibitor, ARB angiotensin receptor blocker, DAPT dual antiplatelet therapy, LM left main artery, SYNTAX synergy between PCI with taxus and cardiac surgery, LAD left anterior descending artery, LCX left circumflex artery, RCA right coronary artery, DES drug-eluting stent, DCB drug-coated balloon
ROC curve analysis showed that the AUC of TyG index for predicting primary endpoint was 0.745 (95% CI 0.702–0.788, P < 0.001). The TyG index of 9.18 was determined as the optimal cutoff point for predicting primary endpoint with a sensitivity of 77.2% and a specificity of 62.8%. Baseline characteristics of groups according to the optimal cutoff point of TyG index were summarized in Table 2. Compared with patients in lower TyG index group, those with higher TyG index seemed to be younger, manifest higher levels of BMI and heart rate, and higher proportion of dyslipidemia. Laboratory indexes including TGs, TC, LDL-C, hs-CRP, uric acid, FBG and HbA1c were significantly higher in patients with higher TyG index, while HDL-C levels were relatively lower. In higher TyG index group, more patients were diagnosed as NSTEMI and prescribed insulin for treatment. Participants with higher TyG index also showed higher SYNTAX score compared to those with lower TyG index.
Table 2
Baseline clinical characteristics of patients stratified by the optimal cutoff point of TyG index
 
Total population (n = 798)
Lower TyG index (< 9.18; n = 429)
Higher TyG index (≥ 9.18; n = 369)
P value
Age, years
60.9 ± 8.3
62.1 ± 7.9
59.5 ± 8.5
< 0.001
Sex, male, n (%)
545 (68.3)
303 (70.6)
242 (65.6)
0.127
BMI, kg/m2
26.7 ± 3.2
26.3 ± 3.2
27.1 ± 3.2
< 0.001
Heart rate, bpm
71.7 ± 10.2
70.9 ± 9.6
72.5 ± 10.8
0.028
SBP, mmHg
131.8 ± 17.1
131.3 ± 16.8
132.2 ± 17.5
0.443
DBP, mmHg
76.8 ± 10.1
76.2 ± 10.1
77.6 ± 10.1
0.051
Smoking, n (%)
417 (52.3)
227 (52.9)
190 (51.5)
0.688
Drinking, n (%)
184 (23.1)
106 (24.7)
78 (21.1)
0.233
Family history of CAD, n (%)
93 (11.7)
44 (10.3)
49 (13.3)
0.185
Duration of diabetes, years
8.2 ± 4.3
8.3 ± 4.3
8.2 ± 4.2
0.681
Medical history, n (%)
 Hypertension
573 (71.8)
303 (70.6)
270 (73.2)
0.426
 Dyslipidemia
710 (89.0)
347 (80.9)
363 (98.4)
< 0.001
 Prior MI
175 (21.9)
90 (21.0)
85 (23.0)
0.484
 Prior PCI
151 (18.9)
82 (19.1)
69 (18.7)
0.881
 Prior stroke
109 (13.7)
60 (14.0)
49 (13.3)
0.772
 Prior PVD
125 (15.7)
72 (16.8)
53 (14.4)
0.348
Laboratory results
 TGs, mg/dL
138.2 (97.2, 198.5)
99.2 (78.4, 127.1)
204.7 (164.4, 276.0)
< 0.001
 TC, mg/dL
157.2 ± 39.7
145.9 ± 35.0
170.4 ± 40.8
< 0.001
 LDL-C, mg/dL
94.2 ± 33.1
88.2 ± 30.5
101.1 ± 34.6
< 0.001
 HDL-C, mg/dL
36.9 ± 8.7
38.7 ± 9.3
34.8 ± 7.3
< 0.001
 hs-CRP, mg/L
1.6 (0.7, 4.1)
1.3 (0.6, 4.2)
1.9 (0.9, 3.9)
0.009
 Creatinine, mg/dL
0.8 ± 0.2
0.8 ± 0.2
0.8 ± 0.2
0.655
 eGFR, mL/(min * 1.73 m2)
96.5 ± 21.6
96.6 ± 21.3
96.5 ± 22.0
0.992
 Uric acid, μmol/L
328.0 ± 75.6
322.2 ± 74.9
334.8 ± 75.9
0.019
 FBG, mg/dL
127.7 (109.6, 157.0)
115.4 (102.3, 133.1)
149.9 (125.3, 177.8)
< 0.001
 HbA1c, %
7.5 ± 1.3
7.1 ± 1.2
7.8 ± 1.3
< 0.001
 TyG index
9.1 ± 0.6
8.6 ± 0.4
9.7 ± 0.4
< 0.001
 LVEF, %
64.0 ± 6.6
64.0 ± 6.8
64.0 ± 6.4
0.986
Initial diagnosis, n (%)
0.022
 UA
650 (81.5)
362 (84.4)
288 (78.0)
 
 NSTEMI
148 (18.5)
67 (15.6)
81 (22.0)
 
Pre-admission medication, n (%)
 ACEI
79 (9.9)
44 (10.3)
35 (9.5)
0.716
 ARB
128 (16.0)
66 (15.4)
62 (16.8)
0.586
 DAPT
253 (31.7)
136 (31.7)
117 (31.7)
0.999
 Aspirin
427 (53.5)
226 (52.7)
201 (54.5)
0.613
 Clopidogrel
264 (33.1)
141 (32.9)
123 (33.3)
0.889
 β-blocker
166 (20.8)
92 (21.4)
74 (20.1)
0.629
 Statins
233 (29.2)
127 (29.6)
106 (28.7)
0.786
 Proton pump inhibitor
8 (1.0)
4 (0.9)
4 (1.1)
0.830
 Oral hypoglycemic agents
413 (51.8)
220 (51.3)
193 (52.3)
0.773
 Metformin
170 (21.3)
101 (23.5)
69 (18.7)
0.096
 Alpha-glucosidase inhibitor
185 (23.2)
100 (23.3)
85 (23.0)
0.927
 Sulfonylurea
126 (15.8)
67 (15.6)
59 (16.0)
0.886
 Dipeptidyl peptidase 4 inhibitor
15 (1.9)
7 (1.6)
8 (2.2)
0.578
 Insulin
225 (28.2)
109 (25.4)
116 (31.4)
0.059
Post-discharge medication, n (%)
 ACEI
234 (29.3)
114 (26.6)
120 (32.5)
0.066
 ARB
384 (48.1)
204 (47.6)
180 (48.8)
0.729
 DAPT
796 (99.7)
429 (100.0)
367 (99.5)
0.214
 DAPT interruption in 12 months
12 (1.5)
7 (1.6)
5 (1.4)
0.749
 Aspirin
797 (99.9)
429 (100.0)
368 (99.7)
0.462
 Clopidogrel
797 (99.9)
429 (100.0)
368 (99.7)
0.462
 β-blocker
744 (93.2)
400 (93.2)
344 (93.2)
0.993
 Statins
787 (98.6)
423 (98.6)
364 (98.6)
0.958
 Statins interruption in 12 months
31 (3.9)
14 (3.3)
17 (4.6)
0.327
 Proton pump inhibitor
790 (99.0)
426 (99.3)
364 (98.6)
0.568
 Oral hypoglycemic agents
409 (51.3)
217 (50.6)
192 (52.0)
0.683
 Metformin
167 (20.9)
98 (22.8)
69 (18.7)
0.151
 Alpha-glucosidase inhibitor
181 (22.7)
97 (22.6)
84 (22.8)
0.959
 Sulfonylurea
123 (15.4)
64 (14.9)
59 (16.0)
0.676
 Dipeptidyl peptidase 4 inhibitor
15 (1.9)
7 (1.6)
8 (2.2)
0.578
 Insulin
217 (27.2)
104 (24.2)
113 (30.6)
0.043
Angiographic data
 LM disease, n (%)
44 (5.5)
19 (4.4)
25 (6.8)
0.148
 One-vessel disease, n (%)
167 (20.9)
92 (21.4)
75 (20.3)
0.698
 Two-vessel disease, n (%)
287 (36.0)
163 (38.0)
124 (33.6)
0.197
 Three-vessel disease, n (%)
344 (43.1)
174 (40.6)
170 (46.1)
0.117
 Chronic total occlusion, n (%)
117 (14.7)
55 (12.8)
62 (16.8)
0.113
 Diffuse lesion, n (%)
237 (29.7)
123 (28.7)
114 (30.9)
0.493
 Bifurcation lesion, n (%)
186 (23.3)
93 (21.7)
93 (25.2)
0.240
 In-stent restenosis, n (%)
58 (7.3)
28 (6.5)
30 (8.1)
0.384
 SYNTAX score
12.0 ± 5.5
11.6 ± 5.5
12.6 ± 5.6
0.010
Procedural results
 Target vessel territory, n (%)
  LM
25 (3.1)
14 (3.3)
11 (3.0)
0.819
  LAD
513 (64.3)
274 (63.9)
239 (64.8)
0.791
  LCX
335 (42.0)
185 (43.1)
150 (40.7)
0.480
  RCA
398 (49.9)
211 (49.2)
187 (50.7)
0.674
 DES implantation, n (%)
785 (98.4)
425 (99.1)
360 (97.6)
0.163
 DCB use, n (%)
15 (1.9)
5 (1.2)
10 (2.7)
0.109
 Complete revascularization, n (%)
414 (51.9)
229 (53.4)
185 (50.1)
0.360
 Number of stents
2.1 ± 1.3
2.1 ± 1.3
2.1 ± 1.3
0.700
The groups were stratified by the optimal cutoff point of TyG index determined by ROC curve analysis
Italic values indicate statistically significant associations
BMI body mass index, SBP systolic blood pressure, DBP diastolic blood pressure, CAD coronary artery disease, MI myocardial infarction, PCIpercutaneous coronary intervention, PVD peripheral vascular disease, TGs triglycerides, TC total cholesterol, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, hs-CRP high-sensitivity C-reactive protein, eGFR estimated glomerular filtration rate, FBG fasting blood glucose, HbA1c glycosylated hemoglobin A1c, TyG triglyceride glucose, LVEF left ventricular ejection fraction, UA unstable angina, NSTEMI non-ST-segment elevation myocardial infarction, ACEI angiotensin converting enzyme inhibitor, ARB angiotensin receptor blocker, DAPT dual antiplatelet therapy, LM left main artery, SYNTAX synergy between PCI with taxus and cardiac surgery, LAD left anterior descending artery, LCX left circumflex artery, RCA right coronary artery, DES drug-eluting stent, DCB drug-coated balloon

Correlation between the TyG index and cardiovascular risk factors

The Spearman’s rank or Pearson correlation analysis was performed to determine the correlation between the TyG index and traditional or commonly-used risk factors for cardiovascular disease. The TyG index was positively correlated with BMI, FBG, HbA1c, TGs, TC, LDL-C, uric acid, and hs-CRP, while negatively correlated with age and HDL-C (Table 3).
Table 3
Correlations between the TyG index and traditional cardiovascular risk factors
 
Correlation coefficient
P value
Age
− 0.194
< 0.001
Sex, female
0.069
0.051
BMI
0.184
< 0.001
FBG
0.588
< 0.001
HbA1c
0.352
< 0.001
TGs
0.906
< 0.001
TC
0.333
< 0.001
LDL-C
0.197
< 0.001
HDL-C
− 0.273
< 0.001
Uric acid
0.093
0.008
eGFR
0.010
0.785
hs-CRP
0.123
0.001
LVEF
0.001
0.981
SYNTAX score
0.049
0.166
Italic values indicate statistically significant associations
BMI body mass index, FBG fasting blood glucose, HbA1c glycosylated hemoglobin A1c, TGs triglycerides, TC total cholesterol, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, eGFR estimated glomerular filtration rate, hs-CRP high-sensitivity C-reactive protein, LVEF left ventricular ejection fraction, SYNTAX synergy between PCI with taxus and cardiac surgery

Clinical outcomes and Kaplan–Meier analysis

During the 36-month follow-up period, 180 (22.6%) endpoint events including 14 (1.8%) all-cause death, 37 (4.6%) non-fatal MI, and 129 (16.2%) ischemia-driven revascularization were documented to perform the present analyses. The incidence of adverse prognosis was compared between groups stratified by the optimal cutoff point of TyG index determined by ROC curve analysis. The incidence of primary endpoint, non-fatal MI and ischemia-driven revascularization increased significantly in patients with higher TyG index compared with those with lower TyG index (all chi-square P < 0.001). However, the all-cause death rate was similar between the two groups (chi-square P = 0.172) (Table 4).
Table 4
Incidence of endpoint events according to the optimal cutoff point of TyG index
 
Lower TyG index (< 9.18; n = 429)
Higher TyG index (≥ 9.18; n = 369)
P value
Primary endpoint, n (%)
41 (9.6)
139 (37.7)
< 0.001
All-cause death, n (%)
5 (1.2)
9 (2.4)
0.172
Non-fatal MI, n (%)
9 (2.1)
28 (7.6)
< 0.001
Ischemia-driven revascularization, n (%)
27 (6.3)
102 (27.6)
< 0.001
The groups were stratified by the optimal cutoff point of TyG index determined by ROC curve analysis
Italic values indicate statistically significant associations
TyG triglyceride glucose, MI myocardial infarction
Kaplan–Meier curves for incidence of primary endpoint and each component of it according to the optimal cutoff point of TyG index were shown in Fig. 2. Kaplan–Meier curves for primary endpoint showed a significant difference between the lower and higher TyG index group (Fig. 2a, Log-rank P < 0.001). The difference was mainly driven by the increased incidence of non-fatal MI and ischemia-driven revascularization (Fig. 2c, d, both Log-rank P < 0.001). Kaplan–Meier curves for all-cause death between the lower and higher TyG index group failed to reach statistical significance (Fig. 2b, Log-rank P = 0.167).

Cox proportional hazard analyses to evaluate the prognostic implication of TyG index

In multivariate Cox proportional hazard analysis, four models (Model 1–4 as described above) including variables that had statistical significance (P < 0.2) and/or clinical importance were constructed to evaluate the predictive potential of TyG index for primary endpoint. After adjusting for confounding variables, higher TyG index remained to be an independent risk predictor of primary endpoint, despite of regarding TyG index as a nominal or continuous variable (all P < 0.001 in Model 1–4) (Table 5). The detailed information of Model 4 was shown in Additional file 1: Table S1.
Table 5
Predictive value of TyG index for primary endpoint in different Cox proportional hazards models
 
TyG index as a nominal variablea
TyG index as a continuous variableb
HR
95% CI
P value
HR
95% CI
P value
Crude model
4.610
3.253–6.533
< 0.001
3.367
2.677–4.235
< 0.001
Model 1
4.858
3.367–7.011
< 0.001
3.459
2.731–4.381
< 0.001
Model 2
3.774
2.553–5.580
< 0.001
2.900
2.194–3.832
< 0.001
Model 3
3.994
2.699–5.991
< 0.001
3.031
2.294–4.005
< 0.001
Model 4
4.062
2.732–6.040
< 0.001
3.208
2.400–4.289
< 0.001
Model 1: adjusted for age, sex (female), BMI, SBP, DBP, smoking, drinking, duration of diabetes, dyslipidemia, prior MI, PCI, stroke and PVD
Model 2: adjusted for variables included in Model 1 and diagnosis (NSTEMI), TC, HDL-C, eGFR, HbA1c, LVEF
Model 3: adjusted for variables included in Model 2 and SYNTAX score, LM treatment, DCB use, complete revascularization and number of stents
Model 4: adjusted for variables included in Model 3 and DAPT at discharge, DAPT interruption in 12 months, statins at discharge, statins interruption in 12 months, oral hypoglycemic agents (metformin, alpha-glucosidase inhibitor, sulfonylurea, dipeptidyl peptidase 4 inhibitor) at discharge and insulin at discharge
Italic values indicate statistically significant associations
TyG triglyceride glucose, HR hazard ratio, CI confidence interval
aThe HR was examined regarding lower TyG index as reference (stratified by the optimal cutoff point of TyG index determined by ROC curve analysis)
bThe HR was examined by per 1-unit increase of TyG index
The predictive value of TyG index for each component of primary endpoint was also evaluated by using model 4. The results showed that a 1-unit increase of TyG index was independently associated with higher risk of non-fatal MI and ischemia-driven revascularization [HR (95% CI) for non-fatal MI: 3.332 (1.730–6.415), P < 0.001; HR (95% CI) for ischemia-driven revascularization: 3.021 (2.167–4.211), P < 0.001]. However, higher TyG index levels failed to be a predictor of all-cause death, which was consistent with the results of Kaplan–Meier curves (Table 6).
Table 6
Predictive value of TyG index for primary endpoint and each component in univariate and multivariate analysis
 
Univariate analysis
Multivariate analysisc
HR
95% CI
P value
HR
95% CI
P value
TyG index as a nominal variablea
 Primary endpoint
4.610
3.253–6.533
< 0.001
4.062
2.732–6.040
< 0.001
 All-cause death
2.103
0.705–6.276
0.183
0.872
0.179–4.258
0.866
 Non-fatal MI
3.744
1.767–7.935
0.001
2.260
0.894–5.715
0.085
 Ischemia-driven revascularization
4.920
3.218–7.521
< 0.001
4.980
3.075–8.067
< 0.001
TyG index as a continuous variableb
 Primary endpoint
3.367
2.677–4.235
< 0.001
3.208
2.400–4.289
< 0.001
 All-cause death
1.358
0.610–3.024
0.454
0.429
0.111–1.659
0.220
 Non-fatal MI
4.449
2.684–7.373
< 0.001
3.332
1.730–6.415
< 0.001
 Ischemia-driven revascularization
2.874
2.216–3.727
< 0.001
3.021
2.167–4.211
< 0.001
Italic values indicate statistically significant associations
TyG triglyceride glucose, MI myocardial infarction, HR hazard ratio, CI confidence interval
aThe HR was examined regarding lower TyG index as reference (stratified by the optimal cutoff point of TyG index determined by ROC curve analysis)
bThe HR was examined by per 1-unit increase of TyG index
cThe multivariate analysis was performed by using Model 4 [adjusted for age, sex (female), BMI, SBP, DBP, smoking, drinking, duration of diabetes, dyslipidemia, prior MI, PCI, stroke, PVD, diagnosis (NSTEMI), TC, HDL-C, eGFR, HbA1c, LVEF, SYNTAX score, LM treatment, DCB use, complete revascularization, number of stents, DAPT at discharge, DAPT interruption in 12 months, statins at discharge, statins interruption in 12 months, oral hypoglycemic agents (metformin, alpha-glucosidase inhibitor, sulfonylurea, dipeptidyl peptidase 4 inhibitor) at discharge and insulin at discharge]
Further evaluation of the risk stratification value of TyG index for primary endpoint was performed in various subclasses of the study population. Increased TyG index (per 1-unit) was consistently related to primary endpoint in various subgroups, including age ≤ 65 or > 65 years, female or male, BMI ≤ 28 or > 28 kg/m2, with or without hypertension, UA or NSTEMI, HbA1c ≤ 7 or > 7%, LDL-C ≤ 70 or > 70 mg/dL, with or without pre-admission medication including statins, oral hypoglycemic agents and insulin (Fig. 3). Interestingly, the predictive value of TyG index seemed to be more prominent in patients with BMI > 28 kg/m2 [HR (95% CI) BMI > 28 kg/m2 5.513 (3.631–8.370) vs. BMI ≤ 28 kg/m2 2.178 (1.524–3.111), P for interaction < 0.001] and without pre-admission insulin therapy [HR (95% CI) without insulin 4.011 (2.827–5.691) vs. with insulin 2.255 (1.461–3.479), P for interaction = 0.024] (Fig. 3).

Incremental effect of TyG index on predictive value for adverse prognosis

The addition of TyG index had a significant incremental effect on the AUC obtained from baseline risk model that consisted of risk factors including age, sex (female), smoking, SBP, prior MI, prior PCI, TC, HDL-C, eGFR, LVEF, SYNTAX score, LM treatment, complete revascularization, number of stents and statins at discharge (AUC: baseline risk model, 0.800 vs. baseline risk model + TyG index, 0.856, P for comparison < 0.001) (Table 7, Fig. 4d). Moreover, the addition of TyG index significantly improved the reclassification and discrimination ability beyond the baseline risk model with a category-free NRI of 0.346 and an IDI of 0.087 (both P < 0.001) (Table 8). Adding TGs to the baseline risk model also had a significant incremental effect on prognostic prediction (AUC: baseline risk model, 0.800 vs. baseline risk model + TGs, 0.842, P for comparison < 0.001; category-free NRI: 0.318, P < 0.001; IDI: 0.067, P < 0.001) (Tables 7 and 8, Fig. 4c). However, the addition of glycemic index including FBG or HbA1c did not have a significant incremental effect on the AUC of the baseline risk model (Table 7, Fig. 4a, b). A significant but relatively minor incremental effect on the reclassification and discrimination ability was found after adding HbA1c to the baseline risk model (Table 8).
Table 7
C-statistics for discrimination ability of various models
 
AUC
95% CI
P value
Z value
P for comparison
Baseline risk modela
0.800
0.771–0.827
< 0.001
Reference
Reference
+ FBG
0.807
0.778–0.834
< 0.001
1.860
0.063
+ HbA1c
0.811
0.782–0.838
< 0.001
1.653
0.098
+ TGs
0.842
0.815–0.867
< 0.001
3.757
< 0.001
+ TyG index
0.856
0.829–0.879
< 0.001
4.046
< 0.001
Italic values indicate statistically significant associations
FBG fasting blood glucose, HbA1c glycosylated hemoglobin A1c, TGs triglycerides, TyG triglyceride glucose, AUC area under the curve, CI confidence interval
aThe baseline risk model includes age, sex (female), smoking, SBP, prior MI, prior PCI, TC, HDL-C, eGFR, LVEF, SYNTAX score, LM treatment, complete revascularization, number of stents and statins at discharge
Table 8
Category-free NRI and IDI for the incremental predictive values of various models
 
Category-free NRI
IDI
Index
95% CI
P value
Index
95% CI
P value
Baseline risk modela
Reference
Reference
+ FBG
0.076
− 0.146 to 0.190
0.358
0.005
− 0.005 to 0.019
0.408
+ HbA1c
0.145
0.050–0.234
0.020
0.014
0.001–0.038
0.020
+ TGs
0.318
0.143–0.399
< 0.001
0.067
0.028–0.108
< 0.001
+ TyG index
0.346
0.230–0.430
< 0.001
0.087
0.039–0.128
< 0.001
FBG fasting blood glucose, HbA1c glycosylated hemoglobin A1c, TGs triglycerides, TyG triglyceride glucose, NRI net reclassification improvement, IDI integrated discrimination improvement, CI confidence interval
aThe baseline risk model includes age, sex (female), smoking, SBP, prior MI, prior PCI, TC, HDL-C, eGFR, LVEF, SYNTAX score, LM treatment, complete revascularization, number of stents and statins at discharge

Discussion

In our present study, we retrospectively investigated the predictive significance of IR assessed by TyG index for adverse prognosis in patients with T2DM and NSTE-ACS who were treated with PCI. The major findings are listed as follows: (1) the TyG index was significantly correlated with variety of risk factors for cardiovascular disease; (2) compared to participants with lower TyG index, those with higher TyG index had an apparently higher incidence of primary endpoint; (3) the increased level of TyG index was a strong indicator of worse prognosis in the study population, even after adjustment of confounding risk factors; (4) the addition of TyG index to the baseline risk model including traditional risk factors significantly promoted the ability of risk stratification.
T2DM has been widely recognized as the most significant risk factors for cardiovascular disease and it is very common for patients with ACS combined with T2DM. Certain studies have demonstrated that T2DM is significantly associated with preclinical cardiovascular organ damage, development of CAD, more complex coronary lesions and adverse prognosis [46, 29] and the association has been shown to be mediated primarily by IR [30]. It has been proved that IR is significantly related to the development and progression of coronary atherosclerosis [7, 8]. Therefore, for patients with or at high risk of CAD, quantitative assessment of the extent of IR is of great clinical importance for risk stratification and prognosis prediction. The euglycemic-hyperinsulinemic clamp has been acknowledged as the gold standard method for the diagnosis of IR by previous studies [31]. However, this method is relatively time-consuming, expensive and complicated to operate, which makes it comparatively difficult to be applied in real-world clinical practice. Homeostasis model assessment of IR (HOMA-IR), which is calculated by fasting insulin and glucose, has been one of the commonly used method for the assessment of IR in current clinical applications [31]. However, the insulin concentration is not routinely measured in clinical practice, which makes HOMA-IR inappropriate for extensive clinical application. Based on these, a surrogate marker of IR named TyG index derived from commonly used clinical indicators (fasting TGs and glucose) has been proposed and showed to be well related to the euglycemic-hyperinsulinemic clamp and HOMA-IR [11, 3234]. And studies even showed that the TyG index may have a better performance on the prediction of IR and atherosclerosis compared with HOMA-IR [35, 36].
Previous studies have demonstrated that IR evaluated by TyG index is strongly related to the incidence of diabetes and prediabetic status, suggesting that TyG index may be a considerable predictor for early identifying individuals at high risk of developing diabetes and prediabetes, even performs better than other risk factors such as FBG and weight gain [1416, 37, 38]. Studies also showed that elevated level of TyG index is prominently associated with an increased risk of developing cardiovascular disease including CAD and ischemic stroke, which suggests evaluation of TyG index might be helpful for identifying people who is susceptible to cardiovascular disease, despite existence of traditional cardiovascular risk factors or not [17, 18, 3941]. And for patients with stable CAD, TyG index has been demonstrated to be positively related to future adverse clinical outcomes, indicating that TyG index may play an important role in the prediction of clinical prognosis in patients with stable CAD [42, 43]. The clinical significance of TyG index has been increasing as the adverse effects of it on individuals with or at high risk of cardiovascular disease have been elucidated. Evaluation of TyG index may have great clinical importance on risk stratification and therapeutic individuation for these patients.
Several studies have shown that there is an important correlation between TyG index and clinical prognosis in patients with ACS. Study from Mao et al. [44] revealed that the level of TyG index is strongly associated with the complexity of coronary lesions and the incidence of future adverse cardiovascular event during a 12-month of follow-up in patients diagnosed with NSTE-ACS. Another observational study from Luo et al. [45] assessing the predictive potential of TyG index for 1-year prognosis suggested that the increased TyG index might be an effective indicator of worse prognosis in patients with ST-segment elevation myocardial infarction (STEMI) who were treated with PCI. However, whether the predictive value of TyG index for poor prognosis was consistent in patients with or without diabetes was not investigated in former studies. Ma et al. [46] evaluated the predictive significance of TyG index in participants with T2DM and ACS undergoing PCI and showed that the TyG index was the independent predictor of adverse clinical outcomes. However, whether the addition of TyG index has an incremental effect on predicting adverse cardiovascular prognosis at the basis of traditional risk factors is not confirmed. The present study, which has a relatively longer follow-up period, revealed the significant prognostic impact of TyG index and its incremental effect on risk stratification at the basis of traditional risk factors in a specific cohort of patients with T2DM and NSTE-ACS undergoing PCI, which makes the study be great agreement and complement to previous literatures.
Based on the formula used for calculating TyG index, it’s easy to conclude that the value of TyG index is determined by the levels of fasting TGs and FPG. Therefore, factors manipulating these two indicators such as statins, TGs-lowering therapies and antidiabetic medications all have certain impacts on the evaluation of TyG index [47, 48]. The results of current study showed that the addition of TyG index or fasting TGs, but not FBG, had a significant incremental effect on predictive performance at the basis of a baseline risk model. This may be mainly attributed to the large proportion of participants receiving antidiabetic medications before admission, which can influence the assessment of the true level of FBG, thus further affecting its predictive value for adverse prognosis. The exclusion of patients receiving TGs-lowering therapies mitigated the influence of TGs-lowering medications on fasting TGs levels to great extent, so the fasting TGs levels manifested a significant discriminative performance of predicting adverse prognosis beyond a baseline risk model including traditional risk factors. The stratification analysis according to receiving statins, oral hypoglycemic agents and insulin or not showed that the predictive value of TyG index was more significant in patients without insulin treatment before admission [HR (95% CI) without insulin 4.011 (2.827–5.691) vs. with insulin 2.255 (1.461–3.479), P for interaction = 0.024], which indicates that the antidiabetic therapies, especially insulin, do have an important effect on predictive performance of TyG index for adverse prognosis.
The potential mechanism inducing the association of IR presented by TyG index with development and progression of cardiovascular disease remains uncertain, several speculations summarize as follows. (1) It has been demonstrated that TyG index is closely related to traditional risk factors for cardiovascular disease such as hypertension [49] and renal insufficiency [50]. In the present study, participants with higher TyG index exactly tended to combine with more severe and complex clinical conditions in terms of BMI, blood pressure, lipid profiles and coronary lesions, and correlation analysis also showed that TyG index is positively related to multiple risk factors for cardiovascular disease. (2) Study have shown that FBG mainly reflects IR from liver, whereas fasting TGs mainly reflects IR from adipose cell [51]. Therefore, it can be concluded that TyG index may reflect IR from two aspects and thus be closely related to IR, which has been widely demonstrated to have significant relationship with endothelial dysfunction, oxidative stress, cardio-vascular remodeling, coagulation imbalance and inflammation response [5254]. Indeed, a positive association between TyG index and hs-CRP levels was confirmed in the present study. (3) Certain studies have also identified an important correlation between TyG index and coronary artery calcification [55], which may be another potential mechanism. (4) The TyG index has been also demonstrated to be related to arterial stiffness evaluated by pulse pressure, brachial-ankle pulse wave velocity and carotid-femoral pulse wave velocity, which has been recognized as cardiovascular risk predictor [10, 5658].
Since adverse prognostic impacts of IR on individuals with CAD have been elucidated by previous studies, taking assessment and intervention of IR into long-term management strategies may be beneficial for patients with CAD. However, the relative lack of research about intervention on IR in patients with CAD makes it uncertain whether intervention of IR is necessary for the management of such patients. Former studies have shown that whole-grain consumption plays a significant protective role on IR and inflammatory markers [59, 60]. However, a recent systematic review of 9 RCTs indicated that there is insufficient evidence on the effect of whole-grain diets on cardiovascular outcomes or major cardiovascular disease risk factors [61]. This may be partly attributed to the fact that the association between whole-grain consumption and IR is partially mediated by adiposity [60]. Our present study also revealed that the predictive value of IR presented by TyG index seemed to be more prominent in patients BMI > 28 kg/m2 [HR (95% CI) BMI > 28 kg/m2 4.625 (2.863–7.471) vs. BMI ≤ 28 kg/m2 2.355 (1.749–3.170), P for interaction = 0.044]. Further specific-designed studies are required to determine whether interventions of IR assessed by TyG index have a positive impact on improving clinical prognosis in this population.
This study confirmed the predictive value of IR presented by TyG index for adverse prognosis in a cohort including patients with T2DM and NSTE-ACS who were treated with PCI, which indicates that TyG index can be an available predictor in clinical practice and has a positive effect on more comprehensive risk evaluation and stratification on the basis of traditional risk factors in this selected population. Meanwhile, some limitations of the study should be recognized. (1) This study is a single-center, retrospective, observational study in a highly selected cohort with strict exclusion criteria, and the sample size is relatively small, which may weaken the power of the results. Further prospective, multi-center study in a more extensive population with larger sample size are needed to further verify the present findings. (2) The TyG index was assessed only once at admission. The changes of TyG index during the follow-up period, which may have better prediction value for adverse prognosis, were not assessed in our study. (3) Certain proportion of participants received statins therapy and antidiabetic treatment at admission, which may have potential impact on the TyG index and the study results. (4) Non-fatal stroke and cardiovascular death, the commonly-used endpoint events, were not specified in current study since the information about them was relatively inadequate. (5) Nearly all of the study population is Chinese patients. The results should be cautiously interpreted and expanded to Western population as differences in metabolic levels exist among different races. (6) It is hard to rule out that some patients may be complicated with undiagnosed systemic diseases, such as occult malignancies, which may have impact on the assessment of prognosis. (7) The HOMA-IR was not calculated in the present study, so the comparison between TyG index and HOMA-IR is lacking.

Conclusions

Increased IR extent presented by TyG index is a prominent risk predictor of adverse prognosis in patients with T2DM and NSTE-ACS who were treated with PCI. The addition of the TyG index to a baseline risk model has a strong incremental effect on the predictive potential for adverse prognosis. Further prospective, randomized studies need to be performed to determine whether interventions for IR have a positive impact on improving clinical prognosis.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12933-020-01086-5.

Acknowledgements

Not applicable.
Written or oral informed consent was obtained from each participant, and the study protocol was approved by the Clinical Research Ethics Committee of Beijing Anzhen Hospital, Capital Medical University.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Jernberg T, Hasvold P, Henriksson M, Hjelm H, Thuresson M, Janzon M. Cardiovascular risk in post-myocardial infarction patients: nationwide real world data demonstrate the importance of a long-term perspective. Eur Heart J. 2015;36(19):1163–70.PubMed Jernberg T, Hasvold P, Henriksson M, Hjelm H, Thuresson M, Janzon M. Cardiovascular risk in post-myocardial infarction patients: nationwide real world data demonstrate the importance of a long-term perspective. Eur Heart J. 2015;36(19):1163–70.PubMed
2.
Zurück zum Zitat Fox KAA, Carruthers KF, Dunbar DR, Graham C, Manning JR, De Raedt H, et al. Underestimated and under-recognized: the late consequences of acute coronary syndrome (GRACE UK-Belgian Study). Eur Heart J. 2010;31(22):2755–64.PubMed Fox KAA, Carruthers KF, Dunbar DR, Graham C, Manning JR, De Raedt H, et al. Underestimated and under-recognized: the late consequences of acute coronary syndrome (GRACE UK-Belgian Study). Eur Heart J. 2010;31(22):2755–64.PubMed
3.
Zurück zum Zitat Schwartz GG, Abt M, Bao W, DeMicco D, Kallend D, Miller M, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol. 2015;65(21):2267–75.PubMed Schwartz GG, Abt M, Bao W, DeMicco D, Kallend D, Miller M, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol. 2015;65(21):2267–75.PubMed
4.
Zurück zum Zitat Ray KK, Colhoun HM, Szarek M, Baccara-Dinet M, Bhatt DL, Bittner VA, et al. Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(8):618–28.PubMed Ray KK, Colhoun HM, Szarek M, Baccara-Dinet M, Bhatt DL, Bittner VA, et al. Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(8):618–28.PubMed
5.
Zurück zum Zitat Lenzen M, Ryden L, Ohrvik J, Bartnik M, Malmberg K, Scholte OP, Reimer W, et al. Diabetes known or newly detected, but not impaired glucose regulation, has a negative influence on 1-year outcome in patients with coronary artery disease: a report from the Euro Heart Survey on diabetes and the heart. Eur Heart J. 2006;27(24):2969–74.PubMed Lenzen M, Ryden L, Ohrvik J, Bartnik M, Malmberg K, Scholte OP, Reimer W, et al. Diabetes known or newly detected, but not impaired glucose regulation, has a negative influence on 1-year outcome in patients with coronary artery disease: a report from the Euro Heart Survey on diabetes and the heart. Eur Heart J. 2006;27(24):2969–74.PubMed
6.
Zurück zum Zitat Maron DJ, Boden WE, Spertus JA, Hartigan PM, Mancini GB, Sedlis SP, et al. Impact of metabolic syndrome and diabetes on prognosis and outcomes with early percutaneous coronary intervention in the COURAGE (Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation) trial. J Am Coll Cardiol. 2011;58(2):131–7.PubMed Maron DJ, Boden WE, Spertus JA, Hartigan PM, Mancini GB, Sedlis SP, et al. Impact of metabolic syndrome and diabetes on prognosis and outcomes with early percutaneous coronary intervention in the COURAGE (Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation) trial. J Am Coll Cardiol. 2011;58(2):131–7.PubMed
7.
Zurück zum Zitat Wu S, Liu W, Ma Q, Yu W, Guo Y, Zhao Y, et al. Association between insulin resistance and coronary plaque vulnerability in patients with acute coronary syndromes: insights from optical coherence tomography. Angiology. 2019;70(6):539–46.PubMed Wu S, Liu W, Ma Q, Yu W, Guo Y, Zhao Y, et al. Association between insulin resistance and coronary plaque vulnerability in patients with acute coronary syndromes: insights from optical coherence tomography. Angiology. 2019;70(6):539–46.PubMed
8.
Zurück zum Zitat Iguchi T, Hasegawa T, Otsuka K, Matsumoto K, Yamazaki T, Nishimura S, et al. Insulin resistance is associated with coronary plaque vulnerability: insight from optical coherence tomography analysis. Eur Heart J Cardiovasc Imaging. 2014;15(3):284–91.PubMed Iguchi T, Hasegawa T, Otsuka K, Matsumoto K, Yamazaki T, Nishimura S, et al. Insulin resistance is associated with coronary plaque vulnerability: insight from optical coherence tomography analysis. Eur Heart J Cardiovasc Imaging. 2014;15(3):284–91.PubMed
9.
Zurück zum Zitat Uetani T, Amano T, Harada K, Kitagawa K, Kunimura A, Shimbo Y, et al. Impact of insulin resistance on post-procedural myocardial injury and clinical outcomes in patients who underwent elective coronary interventions with drug-eluting stents. JACC Cardiovasc Interv. 2012;5(11):1159–67.PubMed Uetani T, Amano T, Harada K, Kitagawa K, Kunimura A, Shimbo Y, et al. Impact of insulin resistance on post-procedural myocardial injury and clinical outcomes in patients who underwent elective coronary interventions with drug-eluting stents. JACC Cardiovasc Interv. 2012;5(11):1159–67.PubMed
10.
Zurück zum Zitat Fiorentino TV, Marini MA, Succurro E, Andreozzi F, Sesti G. Relationships of surrogate indexes of insulin resistance with insulin sensitivity assessed by euglycemic hyperinsulinemic clamp and subclinical vascular damage. BMJ Open Diabetes Res Care. 2019;7(1):e911. Fiorentino TV, Marini MA, Succurro E, Andreozzi F, Sesti G. Relationships of surrogate indexes of insulin resistance with insulin sensitivity assessed by euglycemic hyperinsulinemic clamp and subclinical vascular damage. BMJ Open Diabetes Res Care. 2019;7(1):e911.
11.
Zurück zum Zitat Guerrero-Romero F, Simental-Mendia LE, Gonzalez-Ortiz M, Martinez-Abundis E, Ramos-Zavala MG, Hernandez-Gonzalez SO, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95(7):3347–51.PubMed Guerrero-Romero F, Simental-Mendia LE, Gonzalez-Ortiz M, Martinez-Abundis E, Ramos-Zavala MG, Hernandez-Gonzalez SO, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95(7):3347–51.PubMed
12.
Zurück zum Zitat Mazidi M, Kengne AP, Katsiki N, Mikhailidis DP, Banach M. Lipid accumulation product and triglycerides/glucose index are useful predictors of insulin resistance. J Diabetes Complicat. 2018;32(3):266–70.PubMed Mazidi M, Kengne AP, Katsiki N, Mikhailidis DP, Banach M. Lipid accumulation product and triglycerides/glucose index are useful predictors of insulin resistance. J Diabetes Complicat. 2018;32(3):266–70.PubMed
13.
Zurück zum Zitat Du T, Yuan G, Zhang M, Zhou X, Sun X, Yu X. Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc Diabetol. 2014;13:146.PubMedPubMedCentral Du T, Yuan G, Zhang M, Zhou X, Sun X, Yu X. Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc Diabetol. 2014;13:146.PubMedPubMedCentral
14.
Zurück zum Zitat Brahimaj A, Rivadeneira F, Muka T, Sijbrands EJG, Franco OH, Dehghan A, et al. Novel metabolic indices and incident type 2 diabetes among women and men: the Rotterdam Study. Diabetologia. 2019;62(9):1581–90.PubMedPubMedCentral Brahimaj A, Rivadeneira F, Muka T, Sijbrands EJG, Franco OH, Dehghan A, et al. Novel metabolic indices and incident type 2 diabetes among women and men: the Rotterdam Study. Diabetologia. 2019;62(9):1581–90.PubMedPubMedCentral
15.
Zurück zum Zitat Zhang M, Wang B, Liu Y, Sun X, Luo X, Wang C, et al. Cumulative increased risk of incident type 2 diabetes mellitus with increasing triglyceride glucose index in normal-weight people: the Rural Chinese Cohort Study. Cardiovasc Diabetol. 2017;16(1):30.PubMedPubMedCentral Zhang M, Wang B, Liu Y, Sun X, Luo X, Wang C, et al. Cumulative increased risk of incident type 2 diabetes mellitus with increasing triglyceride glucose index in normal-weight people: the Rural Chinese Cohort Study. Cardiovasc Diabetol. 2017;16(1):30.PubMedPubMedCentral
16.
Zurück zum Zitat Ramírez-Vélez R, Pérez-Sousa MÁ, González-Ruíz K, Cano-Gutierrez CA, Schmidt-RioValle J, Correa-Rodríguez M, et al. Obesity- and lipid-related parameters in the identification of older adults with a high risk of prediabetes according to the American Diabetes Association: an analysis of the 2015 Health, Well-Being, and Aging Study. Nutrients. 2019;11(11):2654.PubMedCentral Ramírez-Vélez R, Pérez-Sousa MÁ, González-Ruíz K, Cano-Gutierrez CA, Schmidt-RioValle J, Correa-Rodríguez M, et al. Obesity- and lipid-related parameters in the identification of older adults with a high risk of prediabetes according to the American Diabetes Association: an analysis of the 2015 Health, Well-Being, and Aging Study. Nutrients. 2019;11(11):2654.PubMedCentral
17.
Zurück zum Zitat Da Silva A, Caldas APS, Hermsdorff HHM, Bersch-Ferreira ÂC, Torreglosa CR, Weber B, et al. Triglyceride-glucose index is associated with symptomatic coronary artery disease in patients in secondary care. Cardiovasc Diabetol. 2019;18(1):89.PubMedPubMedCentral Da Silva A, Caldas APS, Hermsdorff HHM, Bersch-Ferreira ÂC, Torreglosa CR, Weber B, et al. Triglyceride-glucose index is associated with symptomatic coronary artery disease in patients in secondary care. Cardiovasc Diabetol. 2019;18(1):89.PubMedPubMedCentral
18.
Zurück zum Zitat Li S, Guo B, Chen H, Shi Z, Li Y, Tian Q, et al. The role of the triglyceride (triacylglycerol) glucose index in the development of cardiovascular events: a retrospective cohort analysis. Sci Rep-Uk. 2019;9(1):7320. Li S, Guo B, Chen H, Shi Z, Li Y, Tian Q, et al. The role of the triglyceride (triacylglycerol) glucose index in the development of cardiovascular events: a retrospective cohort analysis. Sci Rep-Uk. 2019;9(1):7320.
19.
Zurück zum Zitat Sánchez-Íñigo L, Navarro-González D, Fernández-Montero A, Pastrana-Delgado J, Martínez JA. The TyG index may predict the development of cardiovascular events. Eur J Clin Invest. 2016;46(2):189–97.PubMed Sánchez-Íñigo L, Navarro-González D, Fernández-Montero A, Pastrana-Delgado J, Martínez JA. The TyG index may predict the development of cardiovascular events. Eur J Clin Invest. 2016;46(2):189–97.PubMed
20.
Zurück zum Zitat Sánchez-Íñigo L, Navarro-González D, Pastrana-Delgado J, Fernández-Montero A, Martínez JA. Association of triglycerides and new lipid markers with the incidence of hypertension in a Spanish cohort. J Hypertens. 2016;34(7):1257–65.PubMed Sánchez-Íñigo L, Navarro-González D, Pastrana-Delgado J, Fernández-Montero A, Martínez JA. Association of triglycerides and new lipid markers with the incidence of hypertension in a Spanish cohort. J Hypertens. 2016;34(7):1257–65.PubMed
21.
Zurück zum Zitat Cho Y, Ann SH, Won K, Park G, Kim Y, Yang DH, et al. Association between insulin resistance, hyperglycemia, and coronary artery disease according to the presence of diabetes. Sci Rep-Uk. 2019;9(1):6129. Cho Y, Ann SH, Won K, Park G, Kim Y, Yang DH, et al. Association between insulin resistance, hyperglycemia, and coronary artery disease according to the presence of diabetes. Sci Rep-Uk. 2019;9(1):6129.
22.
Zurück zum Zitat Lee EY, Yang HK, Lee J, Kang B, Yang Y, Lee S, et al. Triglyceride glucose index, a marker of insulin resistance, is associated with coronary artery stenosis in asymptomatic subjects with type 2 diabetes. Lipids Health Dis. 2016;15(1):155.PubMedPubMedCentral Lee EY, Yang HK, Lee J, Kang B, Yang Y, Lee S, et al. Triglyceride glucose index, a marker of insulin resistance, is associated with coronary artery stenosis in asymptomatic subjects with type 2 diabetes. Lipids Health Dis. 2016;15(1):155.PubMedPubMedCentral
23.
Zurück zum Zitat Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabetic Med. 1998;15(7):539–53.PubMed Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabetic Med. 1998;15(7):539–53.PubMed
24.
Zurück zum Zitat American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S14–31. American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S14–31.
25.
Zurück zum Zitat Roffi M, Patrono C, Collet J, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2016;37(3):267–315.PubMed Roffi M, Patrono C, Collet J, Mueller C, Valgimigli M, Andreotti F, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2016;37(3):267–315.PubMed
26.
Zurück zum Zitat Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247–54.PubMed Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247–54.PubMed
27.
Zurück zum Zitat Alfonso F, Byrne RA, Rivero F, Kastrati A. Current treatment of in-stent restenosis. J Am Coll Cardiol. 2014;63(24):2659–73.PubMed Alfonso F, Byrne RA, Rivero F, Kastrati A. Current treatment of in-stent restenosis. J Am Coll Cardiol. 2014;63(24):2659–73.PubMed
28.
Zurück zum Zitat Section of Interventional Cardiology of Chinese Society of Cardiology of Chinese Medical Association, Specialty Committee on Prevention and Treatment of Thrombosis of Chinese College of Cardiovascular Physicians, Editorial Board of Chinese Journal of Cardiology. Chinese guideline for percutaneous coronary intervention. Chin J Cardiol. 2016;44(5):382–400. Section of Interventional Cardiology of Chinese Society of Cardiology of Chinese Medical Association, Specialty Committee on Prevention and Treatment of Thrombosis of Chinese College of Cardiovascular Physicians, Editorial Board of Chinese Journal of Cardiology. Chinese guideline for percutaneous coronary intervention. Chin J Cardiol. 2016;44(5):382–400.
29.
Zurück zum Zitat Kozakova M, Morizzo C, Goncalves I, Natali A, Nilsson J, Palombo C. Cardiovascular organ damage in type 2 diabetes mellitus: the role of lipids and inflammation. Cardiovasc Diabetol. 2019;18(1):61.PubMedPubMedCentral Kozakova M, Morizzo C, Goncalves I, Natali A, Nilsson J, Palombo C. Cardiovascular organ damage in type 2 diabetes mellitus: the role of lipids and inflammation. Cardiovasc Diabetol. 2019;18(1):61.PubMedPubMedCentral
30.
Zurück zum Zitat Sharif S, Groenwold R, van der Graaf Y, Berkelmans G, Cramer MJ, Visseren F, et al. Mediation analysis of the relationship between type 2 diabetes and cardiovascular events and all-cause mortality: findings from the SMART cohort. Diabetes Obes Metab. 2019;21(8):1935–43.PubMedPubMedCentral Sharif S, Groenwold R, van der Graaf Y, Berkelmans G, Cramer MJ, Visseren F, et al. Mediation analysis of the relationship between type 2 diabetes and cardiovascular events and all-cause mortality: findings from the SMART cohort. Diabetes Obes Metab. 2019;21(8):1935–43.PubMedPubMedCentral
31.
Zurück zum Zitat Antuna-Puente B, Disse E, Rabasa-Lhoret R, Laville M, Capeau J, Bastard JP. How can we measure insulin sensitivity/resistance? Diabetes Metab. 2011;37(3):179–88.PubMed Antuna-Puente B, Disse E, Rabasa-Lhoret R, Laville M, Capeau J, Bastard JP. How can we measure insulin sensitivity/resistance? Diabetes Metab. 2011;37(3):179–88.PubMed
32.
Zurück zum Zitat Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299–304.PubMed Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299–304.PubMed
33.
Zurück zum Zitat Tuo X, Yuan J, Wang X, Xin Z. Identifying the insulin resistance index in nondiabetic Chinese subjects. Medicine. 2020;99(5):e19023.PubMedPubMedCentral Tuo X, Yuan J, Wang X, Xin Z. Identifying the insulin resistance index in nondiabetic Chinese subjects. Medicine. 2020;99(5):e19023.PubMedPubMedCentral
34.
Zurück zum Zitat Sánchez-García A, Rodríguez-Gutiérrez R, Mancillas-Adame L, González-Nava V, Díaz GA, Solis RC, et al. Diagnostic accuracy of the triglyceride and glucose index for insulin resistance: a systematic review. Int J Endocrinol. 2020;2020:4678526.PubMedPubMedCentral Sánchez-García A, Rodríguez-Gutiérrez R, Mancillas-Adame L, González-Nava V, Díaz GA, Solis RC, et al. Diagnostic accuracy of the triglyceride and glucose index for insulin resistance: a systematic review. Int J Endocrinol. 2020;2020:4678526.PubMedPubMedCentral
35.
Zurück zum Zitat Vasques AC, Novaes FS, de Oliveira MS, Souza JR, Yamanaka A, Pareja JC, et al. TyG index performs better than HOMA in a Brazilian population: a hyperglycemic clamp validated study. Diabetes Res Clin Pract. 2011;93(3):e98–100.PubMed Vasques AC, Novaes FS, de Oliveira MS, Souza JR, Yamanaka A, Pareja JC, et al. TyG index performs better than HOMA in a Brazilian population: a hyperglycemic clamp validated study. Diabetes Res Clin Pract. 2011;93(3):e98–100.PubMed
36.
Zurück zum Zitat Irace C, Carallo C, Scavelli FB, De Franceschi MS, Esposito T, Tripolino C, et al. Markers of insulin resistance and carotid atherosclerosis. A comparison of the homeostasis model assessment and triglyceride glucose index. Int J Clin Pract. 2013;67(7):665–72.PubMed Irace C, Carallo C, Scavelli FB, De Franceschi MS, Esposito T, Tripolino C, et al. Markers of insulin resistance and carotid atherosclerosis. A comparison of the homeostasis model assessment and triglyceride glucose index. Int J Clin Pract. 2013;67(7):665–72.PubMed
37.
Zurück zum Zitat Navarro-González D, Sánchez-Íñigo L, Pastrana-Delgado J, Fernández-Montero A, Martinez JA. Triglyceride-glucose index (TyG index) in comparison with fasting plasma glucose improved diabetes prediction in patients with normal fasting glucose: the Vascular-Metabolic CUN cohort. Prev Med. 2016;86:99–105.PubMed Navarro-González D, Sánchez-Íñigo L, Pastrana-Delgado J, Fernández-Montero A, Martinez JA. Triglyceride-glucose index (TyG index) in comparison with fasting plasma glucose improved diabetes prediction in patients with normal fasting glucose: the Vascular-Metabolic CUN cohort. Prev Med. 2016;86:99–105.PubMed
38.
Zurück zum Zitat Navarro-González D, Sánchez-Íñigo L, Fernández-Montero A, Pastrana-Delgado J, Martinez JA. TyG index change is more determinant for forecasting type 2 diabetes onset than weight gain. Medicine. 2016;95(19):e3646.PubMedPubMedCentral Navarro-González D, Sánchez-Íñigo L, Fernández-Montero A, Pastrana-Delgado J, Martinez JA. TyG index change is more determinant for forecasting type 2 diabetes onset than weight gain. Medicine. 2016;95(19):e3646.PubMedPubMedCentral
39.
Zurück zum Zitat Su W, Chen S, Huang Y, Huang J, Wu P, Hsu W, et al. Comparison of the effects of fasting glucose, hemoglobin A1c, and triglyceride-glucose index on cardiovascular events in type 2 diabetes mellitus. Nutrients. 2019;11(11):2838.PubMedCentral Su W, Chen S, Huang Y, Huang J, Wu P, Hsu W, et al. Comparison of the effects of fasting glucose, hemoglobin A1c, and triglyceride-glucose index on cardiovascular events in type 2 diabetes mellitus. Nutrients. 2019;11(11):2838.PubMedCentral
40.
Zurück zum Zitat Park G, Cho Y, Won K, Yang YJ, Park S, Ann SH, et al. Triglyceride glucose index is a useful marker for predicting subclinical coronary artery disease in the absence of traditional risk factors. Lipids Health Dis. 2020;19(1):7.PubMedPubMedCentral Park G, Cho Y, Won K, Yang YJ, Park S, Ann SH, et al. Triglyceride glucose index is a useful marker for predicting subclinical coronary artery disease in the absence of traditional risk factors. Lipids Health Dis. 2020;19(1):7.PubMedPubMedCentral
41.
Zurück zum Zitat Shi W, Xing L, Jing L, Tian Y, Yan H, Sun Q, et al. Value of triglyceride-glucose index for the estimation of ischemic stroke risk: insights from a general population. Nutr Metab Cardiovasc Dis. 2020;30(2):245–53.PubMed Shi W, Xing L, Jing L, Tian Y, Yan H, Sun Q, et al. Value of triglyceride-glucose index for the estimation of ischemic stroke risk: insights from a general population. Nutr Metab Cardiovasc Dis. 2020;30(2):245–53.PubMed
42.
Zurück zum Zitat Jin JL, Cao YX, Wu LG, You XD, Guo YL, Wu NQ, et al. Triglyceride glucose index for predicting cardiovascular outcomes in patients with coronary artery disease. J Thorac Dis. 2018;10(11):6137–46.PubMedPubMedCentral Jin JL, Cao YX, Wu LG, You XD, Guo YL, Wu NQ, et al. Triglyceride glucose index for predicting cardiovascular outcomes in patients with coronary artery disease. J Thorac Dis. 2018;10(11):6137–46.PubMedPubMedCentral
43.
Zurück zum Zitat Jin J, Sun D, Cao Y, Guo Y, Wu N, Zhu C, et al. Triglyceride glucose and haemoglobin glycation index for predicting outcomes in diabetes patients with new-onset, stable coronary artery disease: a nested case-control study. Ann Med. 2018;50(7):576–86.PubMed Jin J, Sun D, Cao Y, Guo Y, Wu N, Zhu C, et al. Triglyceride glucose and haemoglobin glycation index for predicting outcomes in diabetes patients with new-onset, stable coronary artery disease: a nested case-control study. Ann Med. 2018;50(7):576–86.PubMed
44.
Zurück zum Zitat Mao Q, Zhou D, Li Y, Wang Y, Xu S, Zhao X. The triglyceride-glucose index predicts coronary artery disease severity and cardiovascular outcomes in patients with non-ST-segment elevation acute coronary syndrome. Dis Markers. 2019;2019:1–11. Mao Q, Zhou D, Li Y, Wang Y, Xu S, Zhao X. The triglyceride-glucose index predicts coronary artery disease severity and cardiovascular outcomes in patients with non-ST-segment elevation acute coronary syndrome. Dis Markers. 2019;2019:1–11.
45.
Zurück zum Zitat Luo E, Wang D, Yan G, Qiao Y, Liu B, Hou J, et al. High triglyceride-glucose index is associated with poor prognosis in patients with acute ST-elevation myocardial infarction after percutaneous coronary intervention. Cardiovasc Diabetol. 2019;18(1):150.PubMedPubMedCentral Luo E, Wang D, Yan G, Qiao Y, Liu B, Hou J, et al. High triglyceride-glucose index is associated with poor prognosis in patients with acute ST-elevation myocardial infarction after percutaneous coronary intervention. Cardiovasc Diabetol. 2019;18(1):150.PubMedPubMedCentral
46.
Zurück zum Zitat Ma X, Dong L, Shao Q, Cheng Y, Lv S, Sun Y, et al. Triglyceride glucose index for predicting cardiovascular outcomes after percutaneous coronary intervention in patients with type 2 diabetes mellitus and acute coronary syndrome. Cardiovasc Diabetol. 2020;19(1):31.PubMedPubMedCentral Ma X, Dong L, Shao Q, Cheng Y, Lv S, Sun Y, et al. Triglyceride glucose index for predicting cardiovascular outcomes after percutaneous coronary intervention in patients with type 2 diabetes mellitus and acute coronary syndrome. Cardiovasc Diabetol. 2020;19(1):31.PubMedPubMedCentral
47.
Zurück zum Zitat Alizargar J, Bai C, Hsieh N, Wu SV. Use of the triglyceride-glucose index (TyG) in cardiovascular disease patients. Cardiovasc Diabetol. 2020;19(1):8.PubMedPubMedCentral Alizargar J, Bai C, Hsieh N, Wu SV. Use of the triglyceride-glucose index (TyG) in cardiovascular disease patients. Cardiovasc Diabetol. 2020;19(1):8.PubMedPubMedCentral
48.
Zurück zum Zitat Alizargar J, Hsieh NC, Wu SV. Is the use of triglyceride-glucose (TyG) index to recognize glucose disorders really practical? Eur J Pediatr. 2020;179:1169 (Online ahead of print).PubMed Alizargar J, Hsieh NC, Wu SV. Is the use of triglyceride-glucose (TyG) index to recognize glucose disorders really practical? Eur J Pediatr. 2020;179:1169 (Online ahead of print).PubMed
49.
Zurück zum Zitat Zheng R, Mao Y. Triglyceride and glucose (TyG) index as a predictor of incident hypertension: a 9-year longitudinal population-based study. Lipids Health Dis. 2017;16(1):175.PubMedPubMedCentral Zheng R, Mao Y. Triglyceride and glucose (TyG) index as a predictor of incident hypertension: a 9-year longitudinal population-based study. Lipids Health Dis. 2017;16(1):175.PubMedPubMedCentral
50.
Zurück zum Zitat Shi W, Liu S, Jing L, Tian Y, Xing L. Estimate of reduced glomerular filtration rate by triglyceride-glucose index: insights from a general Chinese population. Postgrad Med. 2019;131(4):287–94.PubMed Shi W, Liu S, Jing L, Tian Y, Xing L. Estimate of reduced glomerular filtration rate by triglyceride-glucose index: insights from a general Chinese population. Postgrad Med. 2019;131(4):287–94.PubMed
51.
Zurück zum Zitat Low S, Khoo K, Irwan B, Sum CF, Subramaniam T, Lim SC, et al. The role of triglyceride glucose index in development of type 2 diabetes mellitus. Diabetes Res Clin Pract. 2018;143:43–9.PubMed Low S, Khoo K, Irwan B, Sum CF, Subramaniam T, Lim SC, et al. The role of triglyceride glucose index in development of type 2 diabetes mellitus. Diabetes Res Clin Pract. 2018;143:43–9.PubMed
52.
Zurück zum Zitat Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122.PubMedPubMedCentral Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):122.PubMedPubMedCentral
53.
Zurück zum Zitat Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol. 2014;10(5):293–302.PubMed Laakso M, Kuusisto J. Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol. 2014;10(5):293–302.PubMed
54.
Zurück zum Zitat Markus M, Rospleszcz S, Ittermann T, Baumeister SE, Schipf S, Siewert-Markus U, et al. Glucose and insulin levels are associated with arterial stiffness and concentric remodeling of the heart. Cardiovasc Diabetol. 2019;18(1):145.PubMedPubMedCentral Markus M, Rospleszcz S, Ittermann T, Baumeister SE, Schipf S, Siewert-Markus U, et al. Glucose and insulin levels are associated with arterial stiffness and concentric remodeling of the heart. Cardiovasc Diabetol. 2019;18(1):145.PubMedPubMedCentral
55.
Zurück zum Zitat Park K, Ahn CW, Lee SB, Kang S, Nam JS, Lee BK, et al. Elevated TyG index predicts progression of coronary artery calcification. Diabetes Care. 2019;42(8):1569–73.PubMed Park K, Ahn CW, Lee SB, Kang S, Nam JS, Lee BK, et al. Elevated TyG index predicts progression of coronary artery calcification. Diabetes Care. 2019;42(8):1569–73.PubMed
56.
Zurück zum Zitat Lee SB, Ahn CW, Lee BK, Kang S, Nam JS, You JH, et al. Association between triglyceride glucose index and arterial stiffness in Korean adults. Cardiovasc Diabetol. 2018;17(1):41.PubMedPubMedCentral Lee SB, Ahn CW, Lee BK, Kang S, Nam JS, You JH, et al. Association between triglyceride glucose index and arterial stiffness in Korean adults. Cardiovasc Diabetol. 2018;17(1):41.PubMedPubMedCentral
57.
Zurück zum Zitat Zhao S, Yu S, Chi C, Fan X, Tang J, Ji H, et al. Association between macro- and microvascular damage and the triglyceride glucose index in community-dwelling elderly individuals: the Northern Shanghai Study. Cardiovasc Diabetol. 2019;18(1):95.PubMedPubMedCentral Zhao S, Yu S, Chi C, Fan X, Tang J, Ji H, et al. Association between macro- and microvascular damage and the triglyceride glucose index in community-dwelling elderly individuals: the Northern Shanghai Study. Cardiovasc Diabetol. 2019;18(1):95.PubMedPubMedCentral
58.
Zurück zum Zitat Nakagomi A, Sunami Y, Kawasaki Y, Fujisawa T, Kobayashi Y. Sex difference in the association between surrogate markers of insulin resistance and arterial stiffness. J Diabetes Complications. 2020;34(6):107442.PubMed Nakagomi A, Sunami Y, Kawasaki Y, Fujisawa T, Kobayashi Y. Sex difference in the association between surrogate markers of insulin resistance and arterial stiffness. J Diabetes Complications. 2020;34(6):107442.PubMed
59.
Zurück zum Zitat Liese AD, Roach AK, Sparks KC, Marquart L, D’Agostino RJ, Mayer-Davis EJ. Whole-grain intake and insulin sensitivity: the Insulin Resistance Atherosclerosis Study. Am J Clin Nutr. 2003;78(5):965–71.PubMed Liese AD, Roach AK, Sparks KC, Marquart L, D’Agostino RJ, Mayer-Davis EJ. Whole-grain intake and insulin sensitivity: the Insulin Resistance Atherosclerosis Study. Am J Clin Nutr. 2003;78(5):965–71.PubMed
60.
Zurück zum Zitat Mazidi M, Katsiki N, Kengne AP, Mikhailidis DP, Banach M. Adiposity mediates the association between whole grain consumption, glucose homeostasis and insulin resistance: findings from the US NHANES. Lipids Health Dis. 2018;17(1):219.PubMedPubMedCentral Mazidi M, Katsiki N, Kengne AP, Mikhailidis DP, Banach M. Adiposity mediates the association between whole grain consumption, glucose homeostasis and insulin resistance: findings from the US NHANES. Lipids Health Dis. 2018;17(1):219.PubMedPubMedCentral
61.
Zurück zum Zitat Kelly SA, Hartley L, Loveman E, Colquitt JL, Jones HM, Al-Khudairy L, et al. Whole grain cereals for the primary or secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017;8(8):D5051. Kelly SA, Hartley L, Loveman E, Colquitt JL, Jones HM, Al-Khudairy L, et al. Whole grain cereals for the primary or secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017;8(8):D5051.
Metadaten
Titel
Impacts of triglyceride-glucose index on prognosis of patients with type 2 diabetes mellitus and non-ST-segment elevation acute coronary syndrome: results from an observational cohort study in China
verfasst von
Qi Zhao
Ting-Yu Zhang
Yu-Jing Cheng
Yue Ma
Ying-Kai Xu
Jia-Qi Yang
Yu-Jie Zhou
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Cardiovascular Diabetology / Ausgabe 1/2020
Elektronische ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-020-01086-5

Weitere Artikel der Ausgabe 1/2020

Cardiovascular Diabetology 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Nach Herzinfarkt mit Typ-1-Diabetes schlechtere Karten als mit Typ 2?

29.05.2024 Herzinfarkt Nachrichten

Bei Menschen mit Typ-2-Diabetes sind die Chancen, einen Myokardinfarkt zu überleben, in den letzten 15 Jahren deutlich gestiegen – nicht jedoch bei Betroffenen mit Typ 1.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.