Skip to main content
Erschienen in: Cancer Cell International 1/2020

Open Access 01.12.2020 | Review

Prognostic value of systemic immune-inflammation index in patients with urologic cancers: a meta-analysis

verfasst von: Yilong Huang, Yunfeng Gao, Yushen Wu, Huapeng Lin

Erschienen in: Cancer Cell International | Ausgabe 1/2020

Abstract

Background

Several studies have reported that the systemic immune-inflammation index (SII) is associated with the prognosis of patients with urologic cancers (UCs). The aim of this study was to systematically evaluate the prognostic value of SII in UC patients.

Methods

We searched public databases for relevant published studies on the prognostic value of SII in UC patients. Hazard ratios (HRs) and 95% confidence intervals (CIs) were extracted and pooled to assess the relationships between SII and overall survival (OS), progression-free survival (PFS), cancer-specific survival (CSS), overall response rate (ORR) and disease control rate (DCR).

Results

A total of 14 studies with 3074 patients were included. From the pooled results, we found that high SII was associated with worse overall survival (OS) in patients with UC (HR 2.58, 95% CI 1.59–4.21). Patients with high SII values also had poorer PFS (HR 1.92, 95% CI 1.29–2.88) and CSS (HR 2.58, 95% CI 1.36–4.91) as well as lower ORRs (HR 0.40, 95% CI 0.22–0.71) than patients with low SII values. In addition, the subgroup analysis of OS and PFS showed that the prognosis of patients with high SII was worse than that of patients with low SII.

Conclusions

SII might be a promising noninvasive predictor in patients with UC. However, more samples and multicenter studies are needed to confirm the effectiveness of SII in predicting the prognosis of patients with UC.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

Urologic cancer is a group of cancers that occur in the urinary system. The incidence of urologic cancer is still high. Kidney cancer is the seventh most common malignancy in men and the ninth most common malignancy in women globally [1]. Bladder cancer is the fourth and eleventh most common cancer among men and women worldwide [2]. Prostate cancer is the most common type of cancer in men and the second leading cause of cancer-related death in men [2]. Despite advances in the early diagnosis and treatment of urologic cancers, the prognosis remains poor due to local recurrence or distal metastasis [3, 4]. Therefore, noninvasive detection tools such as serum biomarkers are increasingly valued for their simplicity and predictive value.
Inflammation is an important predictor of tumor invasion, progression and metastasis [5]. Therefore, a series of biological indicators based on inflammation and/or nutritional status, such as the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR), have been reported as efficient tumor biomarkers [68]. The systemic immune-inflammation index (SII), as a relatively new inflammatory index based on peripheral lymphocyte, neutrophil, and platelet counts, was evaluated to have high diagnostic value for the prognosis of cancer [9, 10]. Poor outcomes have been recently reported in patients with high SII values based on studies of other cancers, such as respiratory system cancers and digestive system cancers [7, 8, 11]. There is still a debate for the use of SII in urologic cancers, although an increasing number of studies has been performed on this topic, and the sample size in the existing research is not that large [12, 13]. Therefore, we conducted a meta-analysis to investigate the prognostic role of SII in patients with urologic cancers.

Methods

Search strategy

To identify relevant available articles irrespective of language, the electronic databases of EMBASE, PubMed and the Cochrane Library were rigorously searched from inception to April 2020. The search terms included ‘urinary cancer’, ‘bladder cancer’, ‘kidney cancer’, ‘prostate cancer’ and ‘systemic immune-inflammation index’ or ‘SII’. Both MeSH terms and entry terms were utilized in the literature search. In addition, we screened all the references of the relevant studies and reviews to attain additional eligible studies.

Inclusion and exclusion criteria

The studies included in the meta-analysis met the following inclusion criteria: (1) adult patients who were diagnosed with urinary cancer; (2) SII, which was defined as the multiplication of the neutrophil and platelet counts divided by the lymphocyte count, was available or could be calculated, and SII was presented as a binary variable with a selected cut-off value; (3) the primary outcome was overall survival (OS), and the relationship between OS and SII was analyzed; (4) the hazard ratios (HRs) with the 95% confidence intervals (95% CIs) were available or could be calculated; and (5) the study quality was assessed in accordance with the Newcastle–Ottawa quality assessment scale, and the included studies had a score of no less than 6.14 The exclusion criteria were as follows: (1) studies on the children or pregnant women; (2) experimental studies on the cell lines or animals; (3) the use of anti-inflammatory or immune-suppressive drugs in the studies; and (4) publication types including case reports, editorials, meta-analyses and reviews. When duplicated studies from the same population were included, the latest and most complete study was included.

Data extraction

The following information was extracted from the selected studies: first author, publication year with the country or region of the study, study type, kind of cancer, number of samples, age of patients, follow-up time, cut-off value of SII and how the cut-off was selected, treatment that the patients received, stage of the cancer and data on the primary and secondary outcomes. Analysis results from univariate and multivariate analyses were extracted. Effect values in multivariate analysis were preferred, and subgroup analysis according to the different analysis methods was performed. If the HRs with the 95% CI were not available, they were calculated from survival curves using Engauge Digitizer. Two researchers extracted the information independently, and any disagreements were resolved by a third individual.

Statistical analysis

The meta-analysis was performed using RevMan software (version 5.3; The Nordic Cochrane Center, Cochrane Collaboration, Copenhagen, Denmark). The HRs and 95% CIs from the survival analyses of the included studies were pooled to assess the prognostic role of SII in urinary cancer patients, and the odds ratios (ORs) with the corresponding CIs were pooled in the analysis of binary variables. The heterogeneity of the results across studies was qualitatively tested using Cochran’s Q-test and quantified using I2 statistics. I2 statistics of 25%, 50% and 75% represent the low, moderate and high levels of heterogeneity, respectively. A fixed-effects model was used when there was low heterogeneity; otherwise, a random-effects model was used. Publication bias was evaluated by funnel plots. Sensitivity analysis was performed by omitting individual studies one by one to assess the reliability of the results. A P value less than 0.05 was considered statistically significant.

Results

Search results and study characteristics

The search yielded 184 studies, of which 76 studies were from the PubMed database and 108 studies were from the EMBASE database. No available studies were obtained from the Cochrane Library database. A total of 14 studies (11 full-text studies and 3 conference abstracts) were finally included in the present meta-analysis [9, 12, 13, 1424]. Figure 1 shows the study selection process. There were 7 studies on patients with renal cancer, 5 of which were studies on advanced carcinoma, 1 on resectable carcinoma and the last one had unclear tumor stages. Among the studies on advanced renal cancer, the primary treatments were immunotherapy, targeted therapy and extensive surgeries. Three studies were on prostate cancer, and all of the included patients from these studies were diagnosed with metastasis. Abiraterone, docetaxel and their combination were selected as the first-line treatment in the three prostate cancer studies. Two studies evaluated the prognostic value of SII in patients with muscle-invasive bladder cancer after radical cystectomy. Two studies were conducted on patients with tumors from different organs. Several studies evaluated the prognostic role of other serum inflammation biomarkers. NLR (7 studies) and PLR (6 studies) were the most frequently studied biomarkers in previous studies. Three studies reported the association of the monocyte-to-lymphocyte ratio (MLR)/lymphocyte-to-monocyte ratio (LMR) and prognosis, and the prognostic role of the C-reactive protein-to-albumin ratio (CAR) was assessed in two studies. The details of the characteristics of the included studies are presented in Table 1.
Table 1
Characteristics of included studies
Study/year
Cancer type
Country/region
Study type
Included period
No of samples
Age
Primary outcome
Ugo De Giorgi (2019)
mRCC
Italy
P
2015–2016
313
65
OS/PFS
Cristian Lolli (2016)
mRCC
Italy
R
NA
335
63
OS/PFS
Wentao Zhang (2019)
BC
China
R
2015–2019
209
66.7
OS
Rebuzzi S.E. (2020)
mRCC
Italy
R
2016–2019
189
69
OS
Pawel Chrom (2018)
mRCC
Poland
R
2008–2016
502
NA
OS
Cristian Lolli (2016)
mCRPC
Italy
R
2011–2015
230
74
OS
Sacit Nuri Gorgel (2019)
MIBC
Turkey
R
2006–2018
191
62.1
OS/CSS
Ghanghoria A (2020)
RCC
India
R
NA
33
NA
OS
Hau-Chern Jan (2018)
UTUC
Taiwan
R
2007–2017
424
70
OS/PFS/CSS
Ya‑nan Man (2019)
mCRPC
China
R
2010–2018
179
70
OS
Emin Ozbek (2019)
RCC
Turkey
R
NA
176
62
OS/DSS
Liancheng Fan (2017)
mCRPC
China
R
2013–2017
104
72
OS/PFS
Palacka P (2017)
mUC
Slovakia
R
2000–2015
185
NA
OS/PFS
Sasanka Kumar Barua (2019)
mRCC
India
R
2012–2017
31
60
OS/PFS
Follow-up (months)
Cut-off
Cut-off selection
Treatment Methods
Stage/T stage
MVA
NOS score
Conference summary
24
1375
X-tile
Mix
T4
Y
7
N
49
730
X-tile
No surgery
T4
N
7
N
1–48
507
X-tile
Mix
Tis-T4
Y
6
N
NA
1375
NA
No surgery
T4
N
NA
Y
52.5
730
X-tile
Mix
T4
Y
8
N
1–30
535
X-tile
No surgery
T4
Y
7
N
37
843
ROC
Surgery
T2–T4
Y
8
N
6.8–38.6
8.67
NA
Surgery
NA
N
NA
Y
1–120
580
ROC
Surgery
Ta–T4
Y
8
N
24
535
NA
No surgery
T4
Y
7
N
NA
830/850
ROC
Surgery
T1–T4
N
7
N
1–50
200
ROC
No surgery
T4
Y
7
N
10
NA
NA
No surgery
T4
Y
NA
Y
NA
883
ROC
Surgery
T4
Y
6
N
mRCC: metastatic renal cell cancer; BC: bladder cancer; mCRPC: metastatic castration-resistant prostate cancer; MIBC: muscle invasive bladder cancer; RCC: renal cell cancer; UTUC: Upper-Tract Urothelial Carcinoma; mUC: metastatic urothelial carcinoma; P: prospective; R:retrospctive; OS: overall survival; PFS: progression-free survival; CSS: cancer-specific survival; DSS: disease-specific survival; MVA: multivariate analysis; NOS: Newcastle–Ottawa quality assessment scale; Y:yes; N: non

Impact of SII on OS

The prognostic value of SII was evaluated in all 14 included studies. As shown in Fig. 2a, patients with high SII had a significantly better overall survival than patients with low SII (HR 2.58, 95% CI 1.59–4.21, p = 0.0001). High heterogeneity was observed; therefore, a random-effects model was used in the analysis. There was no significant publication bias, as shown in the funnel plot (Fig. 2b). Then, we performed the subgroup analysis (Table 2). The subgroup analysis according to the cancer type, study type, cut-off value of SII and analysis method showed that the poorer prognosis was persistent in patients with high SII than in patients with low SII. All the above analysis results were evaluated to be reliable after the sensitivity analysis.
Table 2
Results of subgroup analysis of pooled hazard ratios of OS of patients with different SII
Stratified analysis
No. of studies
Pooled HR (95% CI)
P‐value
Heterogeneity
I2 (%)
PQ
Cancer type
RCC
7
2.73 (1.28, 5.81)
0.009
99
< 0.001
PC
3
2.29 (1.44, 3.63)
< 0.001
46
0.160
BC
2
3.01 (1.35, 6.68)
0.007
0
0.870
Unclear
2
1.92 (1.46, 2.54)
< 0.001
0
0.660
Urothelial cancer
4
2.03 (1.55, 2.63)
< 0.001
0
0.730
Non urothelial cancer
10
2.67 (1.46, 4.88)
0.001
98
< 0.001
Study type
Prospective
1
2.99 (2.07, 4.32)
< 0.001
NA
NA
Retrospective
13
2.55 (1.53, 4.27)
< 0.001
97
< 0.001
Treatment
     
Surgery
5
1.70 (1.04, 2.79)
0.030
76
0.002
Non surgery
7
2.16 (1.74, 2.68)
< 0.001
52
0.050
Mix
2
6.67 (1.40, 31.84)
0.020
98
< 0.001
Cut-off value
 0–500
2
9.05 (2.99, 27.41)
< 0.001
82
0.020
 501–1000
9
1.84 (1.30, 2.59)
< 0.001
90
< 0.001
 >1000
2
3.23 (2.38, 4.39)
< 0.001
0
0.450
Analysis
 Multivariate
10
2.06 (1.44, 2.94)
< 0.001
9.1
< 0.001
 Univariate
1
2.36 (1.78, 3.13)
< 0.001
NA
NA
CI: confidence interval; HR: hazard ratio; OS: overall survival; SII: systemic immune‐inflammation index

Impact of SII on progression‐free survival (PFS)

We performed the analysis with PFS as the secondary outcome. As shown in Table 3, patients with high SII had a worse prognosis than patients with low SII (HR 1.92, 95% CI 1.29–2.88, p = 0.001). Subsequently, subgroup analysis was performed according to the cancer type, treatment type, study type and analysis method (Table 4). A significant difference between patients with high and low SII in terms of PFS was observed in almost all the subgroup analyses, except for the analysis in prospective studies or in patients who underwent surgery.
Table 3
Analyses of secondary outcomes in urologic cancers
Secondary outcomes
No. of studies
No. of cases
Pooled HR (95% CI)
P-value
Heterogeneity
I2
Model
PFS
7
1554
1.92 (1.29, 2.88)
0.001
93
Random
CSS
2
600
2.58 (1.36, 4.91)
0.004
7
Random
ORR
2
448
0.40 (0.22, 0.71)
0.002
0
Fixed
DCR
2
448
0.93 (0.11, 8.05)
0.950
95
Random
CI: confidence interval; CSS: cancer‐specific survival; DSS: disease‐specific survival; ORR: overall response rate; DCR: disease control rate; HR: hazard ratio; SII: systemic immune‐inflammation index
Table 4
Results of subgroup analysis of pooled hazard ratios of PFS of patients
Stratified analysis
No. of studies
Pooled HR (95% CI)
P‐value
Heterogeneity
I2 (%)
PQ
Cancer type
 RCC
4
1.52 (0.99, 2.31)
0.050
91
< 0.001
 PC
1
11.8 (5.6, 24.87)
< 0.001
NA
NA
 Unclear
2
1.6 (1.23, 2.07)
< 0.001
0
0.900
Urothelial cancer
2
1.6 (1.23, 2.07)
< 0.001
0
0.900
Non urothelial cancer
5
2.31 (1.23, 3.69)
0.007
95
< 0.001
Treatment
 Surgery
2
1.16 (0.8, 1.7)
0.430
62
0.110
 Non surgery
4
2.65 (1.53, 4.58)
< 0.001
88
< 0.001
 Mix
1
1.43 (0.89, 2.3)
0.140
NA
NA
Study type
 Prospective
1
1.43 (0.89, 2.3)
0.140
NA
NA
 Retrospective
6
2.03 (1.29, 3.2)
0.002
94
< 0.001
Analysis
 Multivariate
5
1.93 (1.14, 3.29)
0.010
93
< 0.001
 Univariate
2
1.91 (1.53, 2.38)
< 0.001
0
0.550
CI: confidence interval; HR: hazard ratio; OS: overall survival; SII: systemic immune‐inflammation index

Impact of SII on cancer-specific survival (CSS), overall response rate (ORR) and disease control rate (DCR)

As shown in Table 3, patients with low SII had a significantly better cancer-specific survival than patients with high SII (HR 2.58, 95% CI 1.36–4.91, p = 0.004). Low SII was evaluated to be associated with a higher ORR (OR 0.40, 95% CI 0.22–0.71, p = 0.002). However, the difference in terms of DCR was not significant between patients with high and low SII (OR 0.93, 95% CI 0.11–8.05, p = 0.950).

Discussion

To our knowledge, this is the first meta-analysis that analyzed the prognostic value of SII in urologic cancers. A total of 14 published articles or conferences with 3074 cases were included in this study. From the pooled results, we found that UC patients with a high SII value had a worse prognosis for OS (HR 2.58, 95% CI 1.59–4.21). Moreover, we performed subgroup analysis to assess the prognostic significance of SII. The subgroup analysis results showed that high SII was a prognostic marker for worse OS in PC (prostate cancer) and UC (urothelial carcinoma). Similarly, high SII was also negatively correlated with PFS, CSS, and ORR. Considering the above results, SII could serve as a prognostic factor for urinary cancers.
Currently, an increasing number of biological markers have been applied in clinical work due to their inexpensiveness and ready availability. The lymphocyte count, plasma fibrinogen, NLR, PLR and LMR have been proven to be valuable for the prognosis of cancer patients. However, when only one or two parameters were involved, these predictors became unstable and tended to be susceptible to the influence of other confounding factors [25]. SII, defined as P (platelet count) x N (neutrophil count)/L (lymphocyte count), combines NLR with platelet count and might have a better predictive power than NLR [26]. As a more objective tumor marker, SII reflects the balance between host inflammation and the state of the immune response [27].
SII has been reported in other studies as a predictor for cancer outcomes, such as small cell lung cancer, GI (gastrointestinal) cancer, and hepatocellular carcinoma [7, 8, 25]. The prognostic role of SII in tumors can be explained by the following mechanisms. Numerous studies have reported the relationship between inflammation and cancer and found that cancer-related inflammation is an indispensable component of the tumor microenvironment [28, 29]. Circulating inflammatory cells, such as neutrophils, lymphocytes, and platelets, play important roles in the development and progression of tumors [5, 33]. Patients with cancer often suffer from a hypercoagulable state, and platelets can mediate the survival and growth of tumor cells by regulating the formation of micrometastases [30]. Lymphocytes inhibit the proliferation and growth of tumor cells by cytotoxic cell death in cancer immune surveillance and resistance [31, 32]. In addition, neutrophils play an important role in metastasis and progression [5, 33]. Thus, SII could explain why higher levels of neutrophils and platelets and lower levels of lymphocytes indicate a weak immune response but a strong inflammatory response.
The limitations of this study include the following aspects. First, most of the articles included in this study were retrospective studies, and only one was a prospective study. Second, the number of studies that met the requirements was not that large, and the sample size included was relatively small, especially in the subgroup analysis. Third, the cut-off values of SII varied in different studies, and the calculation methods were inconsistent. A few studies did not provide multivariate analysis results, so we used univariate results instead. Finally, despite the subgroup analysis and the sensitivity analysis being performed, we were not able to confirm whether different types of tumors and different treatments would lead to bias in the results.
In conclusion, the outcomes presented in this meta-analysis indicated that high SII was independently related to poor prognosis in patients with urologic cancers. SII could be a significant and cost-effective prognostic indicator for urinary cancers. Of course, well-designed, large-scale multicenter studies are needed to validate the clinical value of SII as a prognostic biomarker for urologic cancers.
Not applicable.
Not applicable.

Conflict of interests

We declare that we have no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373(9669):1119–32.CrossRef Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet. 2009;373(9669):1119–32.CrossRef
2.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.CrossRef
3.
Zurück zum Zitat Gilbert SM, Wood DP, Dunn RL, et al. Measuring health-related quality of life outcomes in bladder cancer patients using the Bladder Cancer Index (BCI). Cancer-Am Cancer Soc. 2007;109(9):1756–62. Gilbert SM, Wood DP, Dunn RL, et al. Measuring health-related quality of life outcomes in bladder cancer patients using the Bladder Cancer Index (BCI). Cancer-Am Cancer Soc. 2007;109(9):1756–62.
4.
Zurück zum Zitat Katzenwadel A, Wolf P. Androgen deprivation of prostate cancer: leading to a therapeutic dead end. Cancer Lett. 2015;367(1):12–7.CrossRef Katzenwadel A, Wolf P. Androgen deprivation of prostate cancer: leading to a therapeutic dead end. Cancer Lett. 2015;367(1):12–7.CrossRef
5.
Zurück zum Zitat Bausch D, Pausch T, Krauss T, et al. Neutrophil granulocyte derived MMP-9 is a VEGF independent functional component of the angiogenic switch in pancreatic ductal adenocarcinoma. Angiogenesis. 2011;14(3):235–43.CrossRef Bausch D, Pausch T, Krauss T, et al. Neutrophil granulocyte derived MMP-9 is a VEGF independent functional component of the angiogenic switch in pancreatic ductal adenocarcinoma. Angiogenesis. 2011;14(3):235–43.CrossRef
6.
Zurück zum Zitat Minami S, Ihara S, Kim SH, Yamamoto S, Komuta K. Lymphocyte to Monocyte Ratio and Modified Glasgow Prognostic Score Predict Prognosis of Lung Adenocarcinoma Without Driver Mutation. World J Oncol. 2018;9(1):13–20.CrossRef Minami S, Ihara S, Kim SH, Yamamoto S, Komuta K. Lymphocyte to Monocyte Ratio and Modified Glasgow Prognostic Score Predict Prognosis of Lung Adenocarcinoma Without Driver Mutation. World J Oncol. 2018;9(1):13–20.CrossRef
7.
Zurück zum Zitat Miao Y, Yan Q, Li S, Li B, Feng Y. Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio are predictive of chemotherapeutic response and prognosis in epithelial ovarian cancer patients treated with platinum-based chemotherapy. Cancer Biomark. 2016;17(1):33–40.CrossRef Miao Y, Yan Q, Li S, Li B, Feng Y. Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio are predictive of chemotherapeutic response and prognosis in epithelial ovarian cancer patients treated with platinum-based chemotherapy. Cancer Biomark. 2016;17(1):33–40.CrossRef
8.
Zurück zum Zitat Zhou X, Xu L, Huang Z, et al. The hematologic markers as prognostic factors in patients with resectable gastric cancer. Cancer Biomark. 2016;17(3):359–67.CrossRef Zhou X, Xu L, Huang Z, et al. The hematologic markers as prognostic factors in patients with resectable gastric cancer. Cancer Biomark. 2016;17(3):359–67.CrossRef
9.
Zurück zum Zitat Lolli C, Caffo O, Scarpi E, et al. Systemic immune-inflammation index predicts the clinical outcome in oatients with mCRPC treated with abiraterone. Front Pharmacol. 2016;7:376.CrossRef Lolli C, Caffo O, Scarpi E, et al. Systemic immune-inflammation index predicts the clinical outcome in oatients with mCRPC treated with abiraterone. Front Pharmacol. 2016;7:376.CrossRef
10.
Zurück zum Zitat Zhong JH, Huang DH, Chen ZY. Prognostic role of systemic immune-inflammation index in solid tumors: a systematic review and meta-analysis. Oncotarget. 2017;8(43):75381–8.CrossRef Zhong JH, Huang DH, Chen ZY. Prognostic role of systemic immune-inflammation index in solid tumors: a systematic review and meta-analysis. Oncotarget. 2017;8(43):75381–8.CrossRef
11.
Zurück zum Zitat Chen C, Peng GE, Bai Y, Zhao Z, Ren L. CRP/Alb ratio in the prognosis of lung cancer. Lab Med. 2017. Chen C, Peng GE, Bai Y, Zhao Z, Ren L. CRP/Alb ratio in the prognosis of lung cancer. Lab Med. 2017.
12.
Zurück zum Zitat De Giorgi U, Procopio G, Giannarelli D, et al. Association of systemic inflammation index and body mass index with survival in patients with renal cell cancer treated with nivolumab. Clin Cancer Res. 2019;25(13):3839–46.CrossRef De Giorgi U, Procopio G, Giannarelli D, et al. Association of systemic inflammation index and body mass index with survival in patients with renal cell cancer treated with nivolumab. Clin Cancer Res. 2019;25(13):3839–46.CrossRef
13.
Zurück zum Zitat Fan L, Wang R, Chi C, et al. Systemic immune-inflammation index predicts the combined clinical outcome after sequential therapy with abiraterone and docetaxel for metastatic castration-resistant prostate cancer patients. Prostate. 2018;78(4):250–6.CrossRef Fan L, Wang R, Chi C, et al. Systemic immune-inflammation index predicts the combined clinical outcome after sequential therapy with abiraterone and docetaxel for metastatic castration-resistant prostate cancer patients. Prostate. 2018;78(4):250–6.CrossRef
14.
Zurück zum Zitat Lolli C, Basso U, Derosa L, et al. Systemic immune-inflammation index predicts the clinical outcome in patients with metastatic renal cell cancer treated with sunitinib. Oncotarget. 2016;7(34):54564–71.CrossRef Lolli C, Basso U, Derosa L, et al. Systemic immune-inflammation index predicts the clinical outcome in patients with metastatic renal cell cancer treated with sunitinib. Oncotarget. 2016;7(34):54564–71.CrossRef
15.
Zurück zum Zitat Zhang W, Wang R, Ma W, et al. Systemic immune-inflammation index predicts prognosis of bladder cancer patients after radical cystectomy. Ann Transl Med. 2019;7(18):431.CrossRef Zhang W, Wang R, Ma W, et al. Systemic immune-inflammation index predicts prognosis of bladder cancer patients after radical cystectomy. Ann Transl Med. 2019;7(18):431.CrossRef
16.
Zurück zum Zitat Chrom P, Zolnierek J, Bodnar L, Stec R, Szczylik C. External validation of the systemic immune-inflammation index as a prognostic factor in metastatic renal cell carcinoma and its implementation within the international metastatic renal cell carcinoma database consortium model. Int J Clin Oncol. 2019;24(5):526–32.CrossRef Chrom P, Zolnierek J, Bodnar L, Stec R, Szczylik C. External validation of the systemic immune-inflammation index as a prognostic factor in metastatic renal cell carcinoma and its implementation within the international metastatic renal cell carcinoma database consortium model. Int J Clin Oncol. 2019;24(5):526–32.CrossRef
17.
Zurück zum Zitat Gorgel SN, Akin Y, Koc EM, Kose O, Ozcan S, Yilmaz Y. Retrospective study of systemic immune-inflammation index in muscle invasive bladder cancer: initial results of single centre. Int Urol Nephrol. 2020;52(3):469–73.CrossRef Gorgel SN, Akin Y, Koc EM, Kose O, Ozcan S, Yilmaz Y. Retrospective study of systemic immune-inflammation index in muscle invasive bladder cancer: initial results of single centre. Int Urol Nephrol. 2020;52(3):469–73.CrossRef
18.
Zurück zum Zitat Jan HC, Yang WH, Ou CH. Combination of the preoperative systemic immune-inflammation index and monocyte-lymphocyte ratio as a novel prognostic factor in patients with upper-tract urothelial carcinoma. Ann Surg Oncol. 2019;26(2):669–84.CrossRef Jan HC, Yang WH, Ou CH. Combination of the preoperative systemic immune-inflammation index and monocyte-lymphocyte ratio as a novel prognostic factor in patients with upper-tract urothelial carcinoma. Ann Surg Oncol. 2019;26(2):669–84.CrossRef
19.
Zurück zum Zitat Man YN, Chen YF. Systemic immune-inflammation index, serum albumin, and fibrinogen impact prognosis in castration-resistant prostate cancer patients treated with first-line docetaxel. Int Urol Nephrol. 2019;51(12):2189–99.CrossRef Man YN, Chen YF. Systemic immune-inflammation index, serum albumin, and fibrinogen impact prognosis in castration-resistant prostate cancer patients treated with first-line docetaxel. Int Urol Nephrol. 2019;51(12):2189–99.CrossRef
20.
Zurück zum Zitat Ozbek E, Besiroglu H, Ozer K, Horsanali MO, Gorgel SN. Systemic immune inflammation index is a promising non-invasive marker for the prognosis of the patients with localized renal cell carcinoma. Int Urol Nephrol. 2020;52(8):1455–63.CrossRef Ozbek E, Besiroglu H, Ozer K, Horsanali MO, Gorgel SN. Systemic immune inflammation index is a promising non-invasive marker for the prognosis of the patients with localized renal cell carcinoma. Int Urol Nephrol. 2020;52(8):1455–63.CrossRef
21.
Zurück zum Zitat Barua SK, Singh Y, Baruah SJ, et al. Predictors of progression-free survival and overall survival in metastatic non-clear cell renal cell carcinoma: a single-center experience. World J Oncol. 2019;10(2):101–11.CrossRef Barua SK, Singh Y, Baruah SJ, et al. Predictors of progression-free survival and overall survival in metastatic non-clear cell renal cell carcinoma: a single-center experience. World J Oncol. 2019;10(2):101–11.CrossRef
22.
Zurück zum Zitat Rebuzzi SE, Buti S, Sbrana A, et al. Baseline lymphocyte to monocyte ratio (LMR) and systemic inflammation index (SII) as prognostic factors in metastatic renal cell carcinoma (mRCC) patients treated with nivolumab: Preliminary results of the Meet-URO 15 (I-BIO-REC) study. J Clin Oncol. 2020;38(6). Rebuzzi SE, Buti S, Sbrana A, et al. Baseline lymphocyte to monocyte ratio (LMR) and systemic inflammation index (SII) as prognostic factors in metastatic renal cell carcinoma (mRCC) patients treated with nivolumab: Preliminary results of the Meet-URO 15 (I-BIO-REC) study. J Clin Oncol. 2020;38(6).
23.
Zurück zum Zitat Ghanghoria A, Barua SK, Rajeev TP, et al. Influence of inflammatory markers on the prognosis of rare kidney cancers with variant histology. Indian J Urol. 2020;36(5):S17–8. Ghanghoria A, Barua SK, Rajeev TP, et al. Influence of inflammatory markers on the prognosis of rare kidney cancers with variant histology. Indian J Urol. 2020;36(5):S17–8.
24.
Zurück zum Zitat Palacka P, Mego M, Mikulova T, et al. Systemic immune-inflammation index to predict survival in Caucasian patients with metastatic urothelial carcinoma. J Clin Oncol. 2017;35(15). Palacka P, Mego M, Mikulova T, et al. Systemic immune-inflammation index to predict survival in Caucasian patients with metastatic urothelial carcinoma. J Clin Oncol. 2017;35(15).
25.
Zurück zum Zitat Hong X, Cui B, Wang M, Yang Z, Wang L, Xu Q. Systemic immune-inflammation index, based on platelet counts and neutrophil-lymphocyte ratio, is useful for predicting prognosis in small cell lung cancer. Tohoku J Exp Med. 2015;236(4):297–304.CrossRef Hong X, Cui B, Wang M, Yang Z, Wang L, Xu Q. Systemic immune-inflammation index, based on platelet counts and neutrophil-lymphocyte ratio, is useful for predicting prognosis in small cell lung cancer. Tohoku J Exp Med. 2015;236(4):297–304.CrossRef
26.
Zurück zum Zitat Aziz MH, Sideras K, Aziz NA, et al. The systemic-immune-inflammation index independently predicts survival and recurrence in resectable pancreatic cancer and its prognostic value depends on bilirubin levels: a retrospective multicenter cohort study. Ann Surg. 2019;270(1):139–46.CrossRef Aziz MH, Sideras K, Aziz NA, et al. The systemic-immune-inflammation index independently predicts survival and recurrence in resectable pancreatic cancer and its prognostic value depends on bilirubin levels: a retrospective multicenter cohort study. Ann Surg. 2019;270(1):139–46.CrossRef
27.
Zurück zum Zitat Zhang Y, Lin S, Yang X, Wang R, Luo L. Prognostic value of pretreatment systemic immune-inflammation index in patients with gastrointestinal cancers. J Cell Physiol. 2019;234(5):5555–63.CrossRef Zhang Y, Lin S, Yang X, Wang R, Luo L. Prognostic value of pretreatment systemic immune-inflammation index in patients with gastrointestinal cancers. J Cell Physiol. 2019;234(5):5555–63.CrossRef
28.
Zurück zum Zitat Mezouar S, Frere C, Darbousset R, et al. Role of platelets in cancer and cancer-associated thrombosis: experimental and clinical evidences. Thromb Res. 2016;139:65–76.CrossRef Mezouar S, Frere C, Darbousset R, et al. Role of platelets in cancer and cancer-associated thrombosis: experimental and clinical evidences. Thromb Res. 2016;139:65–76.CrossRef
29.
Zurück zum Zitat Swierczak A, Mouchemore KA, Hamilton JA, Anderson RL. Neutrophils: important contributors to tumor progression and metastasis. Cancer Metastasis Rev. 2015;34(4):735–51.CrossRef Swierczak A, Mouchemore KA, Hamilton JA, Anderson RL. Neutrophils: important contributors to tumor progression and metastasis. Cancer Metastasis Rev. 2015;34(4):735–51.CrossRef
30.
Zurück zum Zitat Huang L, Liu S, Lei Y, Wang K, Yuan X. Systemic immune-inflammation index, thymidine phosphorylase and survival of localized gastric cancer patients after curative resection. Oncotarget. 2016;7(28):44185–93.CrossRef Huang L, Liu S, Lei Y, Wang K, Yuan X. Systemic immune-inflammation index, thymidine phosphorylase and survival of localized gastric cancer patients after curative resection. Oncotarget. 2016;7(28):44185–93.CrossRef
31.
Zurück zum Zitat Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.CrossRef Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–44.CrossRef
32.
Zurück zum Zitat Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–90.CrossRef Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–90.CrossRef
33.
Zurück zum Zitat Tan KW, Shu ZC, Wong FHS, et al. Neutrophils contribute to inflammatory lymphangiogenesis by increasing VEGF-A bioavailability and secreting VEGF-D. Blood. 2013;122(22):3666–77.CrossRef Tan KW, Shu ZC, Wong FHS, et al. Neutrophils contribute to inflammatory lymphangiogenesis by increasing VEGF-A bioavailability and secreting VEGF-D. Blood. 2013;122(22):3666–77.CrossRef
Metadaten
Titel
Prognostic value of systemic immune-inflammation index in patients with urologic cancers: a meta-analysis
verfasst von
Yilong Huang
Yunfeng Gao
Yushen Wu
Huapeng Lin
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Cancer Cell International / Ausgabe 1/2020
Elektronische ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-020-01590-4

Weitere Artikel der Ausgabe 1/2020

Cancer Cell International 1/2020 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.