Skip to main content
Erschienen in: Journal of Experimental & Clinical Cancer Research 1/2022

Open Access 01.12.2022 | Review

LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond

verfasst von: Wanxu Huang, Hua Li, Qingsong Yu, Wei Xiao, Dan Ohtan Wang

Erschienen in: Journal of Experimental & Clinical Cancer Research | Ausgabe 1/2022

Abstract

DNA methylation is one of the most important epigenetic mechanisms to regulate gene expression, which is highly dynamic during development and specifically maintained in somatic cells. Aberrant DNA methylation patterns are strongly associated with human diseases including cancer. How are the cell-specific DNA methylation patterns established or disturbed is a pivotal question in developmental biology and cancer epigenetics. Currently, compelling evidence has emerged that long non-coding RNA (lncRNA) mediates DNA methylation in both physiological and pathological conditions. In this review, we provide an overview of the current understanding of lncRNA-mediated DNA methylation, with emphasis on the roles of this mechanism in cancer, which to the best of our knowledge, has not been systematically summarized. In addition, we also discuss the potential clinical applications of this mechanism in RNA-targeting drug development.
Hinweise
Wanxu Huang and Hua Li contributed equally to this work.
The original online version of this article was revised: an error was identified in five references--References 48, 53, 55, 61, and 63.
A correction to this article is available online at https://​doi.​org/​10.​1186/​s13046-022-02468-1.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
lncRNA
Long non-coding RNA
CGIs
CpG islands
DNMTs
DNA methyltransferases
TET
Ten-eleven translocation
TDG
Thymine DNA glycosylase
PcG
Polycomb group
PRC2
Polycomb repressive complex 2
EZH2
Enhancer of Zeste homolog 2
GADD45A
Growth arrest and DNA-damage-inducible alpha
SAM
S-adenosylmethionine
SAH
S-adenosylhomocysteine
MAT
Methionine adenosyltransferase
SAHH
S-adenosylhomocysteine hydrolase
ceRNA
Competitive endogenous RNA
BC
Breast cancer
OC
Oral cancer
CML
Chronic myeloid leukemia
TSCC
Tongue squamous cell carcinoma
TNBC
Triple-negative breast cancer
EC
Esophageal cancer
PCa
Prostate cancer
RC
Renal carcinoma
GBC
Gallbladder cancer
HCC
Hepatocellular carcinoma
OSA
Osteosarcoma
NSCLC
Non-small cell lung cancer
LUAD
Lung adenocarcinoma
CRC
Colorectal cancer
GC
Gastric cancer
AML
Acute myeloid leukemia
LSCC
Laryngeal squamous cell carcinoma
KS
Kaposi’s sarcoma
ESCC
Esophageal squamous cell carcinoma
SCLC
Small-cell lung cancer
UL
Uterine leiomyomas
GBM
Glioblastoma multiforme
CS
Chondrosarcoma

Background

DNA methylation is the methyl modification on the fifth carbon of cytosines (5-methylcytosine, 5mC) typically found in the context of symmetrical CpG dinucleotides in mammals [1, 2]. It is estimated that 70–80% of CpG sites in the mammalian genome are methylated [3], excluding specific regions called CpG islands (CGIs). CGIs are CpG-rich sequences of about 1 kilo-base (kb) in length that mostly exist in gene promoters [4]. Approximately 60% of human gene promoters contain CGIs [5].
DNA methylation is established by DNA methyltransferases (DNMTs). In the simplified but widely accepted ‘division of labor’ model, it is proposed that DNMT3A and DNMT3B are essential for de novo DNA methylation, while DNMT1 is for methylation maintenance during DNA replication [6]. Ten-eleven translocation (TET) family of enzymes (TET1, TET2, and TET3) oppose the actions of the DNMT family by oxidation of 5mC, followed by replication-dependent dilution or thymine DNA glycosylase (TDG)-dependent base excision repair, leading to active DNA demethylation [79].
Genome-scale analysis revealed distinct DNA methylation patterns across different cell types, developmental stages, and in response to different stimuli [3, 10, 11]. Aberrant DNA methylation pattern is associated with diseases, including cancer [1215]. In cancer cells, whereas the general DNA methylation levels are reduced, the CGIs are hypermethylated in a cancer-specific manner [16, 17]. These observations raised a fundamental question: how does the cell type-specific DNA methylation pattern established across the genome? It is well-demonstrated that histone modification and chromosome remodeling [18], as well as transcriptional factors, play key roles in the regulation of DNA methylation genome-wide and in site-specific manner [1922]. Studies in recent years have accumulated compelling evidence to suggest that long non-coding RNA (lncRNA) is another important regulator of DNA methylation, especially in cancer.
While less than 2% of the human genome encodes proteins, nearly three-quarters can be actively transcribed into non-coding RNAs [23], amongst the ones typically with length more than 200 nucleotides are cataloged as lncRNAs. According to a current statistical analysis, there are more than 173,112 annotated lncRNAs transcribed from 96,411 genomic loci [24]. It is demonstrated that lncRNAs play versatile roles in development and diseases including cancer [2527]. In the nucleus, lncRNAs regulate chromatin remodeling and transcription; In the cytoplasm, lncRNAs regulate translation and mRNA turnover (reviewed in ref. [27]). There is accumulating evidence up to date showing that lncRNAs mediate DNA methylation via multiple manners, thereby regulating target gene expression in diverse physiological and pathological processes. In this review, we summarize our current understanding of lncRNA-mediated DNA methylation, with emphasis on the functions of this mechanism in cancer. The future direction and potential clinical application are also discussed.

LncRNAs recruit DNA methyltransferases

More than a decade ago, it was discovered that lncRNAs transcribed from the promoter of rRNA genes (rDNA) regulate DNA methylation and transcription of rDNA [28]. Later, it was demonstrated that this kind of lncRNA interacts with rDNA promoter and forms a DNA: RNA triplex, which is recognized by DNMT3B to epigenetically regulate rDNA expression [29, 30]. Although it is still unclear if this is a common model nowadays, a variety of lncRNAs have been reported to recruit DNMTs and regulate target gene expression, playing key roles in mesoderm commitment [31], muscle regeneration [32, 33], neural differentiation [34], adipogenesis [35], mental disorder [36], cardiovascular diseases [3740], osteoarthritis [41], as well as types of cancer (Table 1).
Table 1
LncRNAs mediate DNA methylation in cancer
lncRNA
Role
Factor
Target
Function
Cancer
Ref
TINCR
Recruit
DNMT1
miR-503-5p
Regulate EGFR expression
BC
[42]
MROS-1
Recruit
DNMT3A
PRUNE2
Nodal metastases
OC
[43]
HOTAIR
Recruit
DNMT1
PTEN
Cell proliferation, invasion and migration
CML
[44]
LINC00887
Recruit
DNMT1
CA9
Suppress oncogenic CA9
TSCC
[45]
LINC00472
Recruit
DNMTs
MCM6
Inhibited tumor growth and metastasis
TNBC
[46]
LINC01270
Recruit
DNMTs
GSTP1
Promote tumorigenesis and drug resistance
EC
[47]
HOTAIR
Recruit
DNMTs
MTHFR
chemoresistance
EC
[48]
ADAMTS9-AS2
Recruit
DNMT1/3
CDH3
Inhibits proliferation, invasion, and migration
EC
[49]
IRAIN
Recruit
DNMT1/3
VEGFA
Suppresses tumor growth
RC
[50]
PVT1
Recruit
DNMT1
miR-18b-5p
Promotes proliferation
GBC
[51]
BZRAP1-AS1
Recruit
DNMT3b
THBS1
Promotes angiogenesis
HCC
[52]
PYCARD-AS1
Recruit
DNMT1, G9a
PYCARD
Regulates apoptosis
BC
[53]
MIR210HG
Recruit
DNMT1
CACNA2D2
Promotes proliferation and invasion
NSCLC
[54]
HAGLR
Recruit
DNMT1
E2F1
Suppresses tumor growth
LUAD
[55]
DACOR1
Recruit
DNMT1
Genome-wide
 
CRC
[56, 57]
PVT1
Recruit
DNMT1
BNIP3
Promotes cell proliferation
GC
[58]
MALAT1
  
Mitochondrial DNA
Control metabolic Reprogramming
HCC
[59]
HOTAIR
Upregulate
DNMT3b
PTEN
Doxorubicin resistance
AML
[60]
RP11-159K7.2
Upregulate
DNMT3A
 
Promotes cell growth and invasion
LSCC
[61]
GAS5
Down-regulate
DNMTs
miR-424
Suppresses multiple malignant phenotypes
Glioma
[62]
lnc-OIP5-AS1
Upregulate
DNMT1
pre-miR-218–1
Promote cell motility and proliferation
KS
[63]
Linc-GALH
Ubiquitinate
DNMT1
Gankyrin
Promotes metastasis
HCC
[64]
LUCAT1
Inhibits ubiquitination
DNMT1
tumor-suppressor genes
Promotes tumor formation and metastasis
ESCC
[65]
HOTAIR
Upregulate (via EZH2)
DNMTs
miR-122
Activate Cyclin G1 and promote tumorigenicity
HCC
[66]
HOTAIR
Upregulate
DNMT1/3B
HOXA1
Multidrug resistance
SCLC
[67]
H19
Upregulate
TET3
MED12
Promotes cell proliferation
UL
[68]
DBCCR1-003
Sequestrate
DNMT1
DBCCR1
Inhibits cell growth
BCa
[69]
TTTY15
Sequestrate
DNMT3A
TBX4
Suppresses metastasis
NSCLC
[70]
HOTAIRM1
Sequestrate
G9a/EZH2/ DNMTs
HOXA1
Promotes tumor growth and invasion
GBM
[71]
91H
Repel
DNMTs
H19/IGF2 locus
Promotes tumorigenesis
BC
[72]
HOTAIR
Recruit (via EZH2)
 
HOXA1
Multidrug resistance
SCLC
[73]
SNHG3
Recruit (via EZH2)
 
MED18
Promotes cell migration and invasion
GC
[74]
HOXB13-AS1
Recruit (via EZH2)
DNMT3B
HOXB13
Promotes cell proliferation
Glioma
[75]
Lnc-LALC
Recruit (via EZH2)
DNMTs
LZTS1
Liver metastasis
CRC
[76]
HOTAIR
Recruit (via EZH2)
DNMT1
miR-454-3p
Promotes tumor growth
CS
[77]
GIHCG
Recruit (via EZH2)
DNMT1
miR-200b/a/429
Promotes tumor growth and metastasis
HCC
[78]
LINC00630
Restrict (via EZH2)
DNMT3B
BEX1
Suppresses cell apoptosis and promotes radio-resistance
CRC
[79]
Lnc34a
Recruit (via PHB2)
DNMT3A
miR-34a
Promotes cell proliferation
CRC
[80]
H19
Inhibit (via inhibiting SAHH)
DNMT3b
Beclin1
Induces autophagy activation and tamoxifen resistance
BC
[81]
LINC00662
Regulate
MAT1A/ SAHH
 
Activates SAM-dependent oncogenes
HCC
[82]
SNHG6
Regulate (via miRNAs)
MAT1A, MAT2A
Genome-wide
 
HCC
[83]
H19
Inhibit (via inhibiting SAHH)
DNMTs
LINE-1
Benzo [a]pyrene (BaP) carcinogenesis
Lung cancer
[84]
MAGI2-AS3
Recruit
TET2
LRIG1
Inhibits the self-renewal of leukaemic stem cells
AML
[85]
SSTR5-AS1
Recruit
TET1
E-cadherin
Inhibits tumor progression and metastasis
LSCC
[86]
SATB2-AS1
Recruit (via GADD45A)
TETs
SATB2
Inhibits cell metastasis and regulates immune response
CRC
[87]
Abbreviations: BC Breast cancer, OC Oral cancer, CML Chronic myeloid leukemia, TSCC Tongue squamous cell carcinoma, TNBC Triple-negative breast cancer, EC Esophageal cancer, PCa Prostate cancer, RC Renal carcinoma, GBC Gallbladder cancer, HCC Hepatocellular carcinoma, OSA Osteosarcoma, NSCLC Non-small cell lung cancer, LUAD Lung adenocarcinoma, CRC Colorectal cancer, GC Gastric cancer, AML Acute myeloid leukemia, LSCC Laryngeal squamous cell carcinoma, KS Kaposi’s sarcoma, ESCC Esophageal squamous cell carcinoma, SCLC small-cell lung cancer, UL Uterine leiomyomas, GBM Glioblastoma multiforme, CS Chondrosarcoma
Using an optimized RIP-seq method, Merry et al. identified 148 lncRNAs interacting with DNMT1 in colon cancer cells [56], and the following investigation showed that one of these lncRNAs, DACOR1, could recruit DNMT1 and reprogram genome-wide DNA methylation [57]. Currently, a growing number of studies suggest that lncRNA might recruit DNMTs directly to specific targets (Fig. 1a), including both protein-coding genes [43, 44, 4650, 54, 55, 58] and non-coding genes such as miRNA [42, 51, 88]. For instance, in esophageal cancer (EC), lncRNA ADAMTS9-AS2 was reported to recruit DNMT1/3 to CDH3 promoter, inhibiting the cancer cell proliferation, invasion, and migration [49]. Two other lncRNAs, HOTAIR and LINC01270 might recruit DNMTs to the promoters of MTHFR and GSTP1 respectively, leading to chemoresistance in EC [47, 48]. In lung adenocarcinoma (LUAD), lncRNA HAGLR was identified as a tumor suppressor by recruiting DNMT1 to the promoter of E2F1 to inhibit tumor growth [55]. A recent study revealed a more complex scenario, in which the authors identified two novel variants of lncRNA LINC00887, and showed that the short form variant suppressed Carbonic Anhydrase IX (CA9) by recruiting DNMT1 to its promoter, while the long-form variant activated CA9's transcription via interacting with HIF1α [45]. The two variants were supposed to differentially respond to hypoxia and oppositely control the progression of tongue squamous carcinoma [45].
Meanwhile, several groups also proposed that lncRNAs could recruit DNMT indirectly through the mediation of other factors (Fig. 1b). It was previously proposed that the polycomb group (PcG) protein EZH2 (Enhancer of Zeste homolog 2) interacts with DNMT and associates with DNMT activity [89]. Studies in recent years demonstrated in diverse cancers that lncRNAs might regulate DNA methylation of target genes via association with EZH2, promoting tumor growth [75, 77], metastasis [74, 76, 78] and radio-resistance [79]. Alternatively, EZH2 might regulate DNA methylation by the formation of H3K27me3 histone modification [73], while the molecular mechanism involved in H3K27me3-induced DNA methylation is unclear. Apart from histone modifier EZH2, two transcriptional regulators, NF-κB and PHB2 were also reported to interact with DNMT3A [80, 90]. LncRNA NKILA was identified as a suppressor of NF-κB by sequestering NF-κB in cytoplasm [91]. Upon proinflammatory stimuli, NF-κB is released from the sequestration and translocated into the nucleus (Fig. 2). DNMT3A is then recruited to the promoter of KLF4 by NF-κB, repressing KLF4 transcription by DNA methylation [90]. Another study by Wang et al. reported a lncRNA called Lnc34a, which could interact with Prohibitin 2 (PHB2) and then recruit DNMT3A to miR-34a promoter, silencing miR-34a expression and promoting colorectal cancer growth [80]. PHB2 is a multi-functional protein that can shuttle between nucleus and mitochondria [92]. Interestingly, the nuclear-encoded lncRNA MALAT1 was recently discovered to be transported into mitochondria and to regulate the methylation status of mitochondrial DNA in hepatocellular carcinoma [59], yet the detailed mechanism is unclear.
While most of the reported function of lncRNA recruitment of DNMT is to target DNMT to specific genomic sites or regions, recent work from Jones et al. proposed a different model, in which the lncRNA CCDC26 specifically interacts with DNMT1 and promote its localization from the cytosol to nucleus (Fig. 2), while removal of CCDC26 leads to genome-wide hypomethylation, increasing double-stranded DNA breaks and inducing cell death [93]. More investigation is needed to confirm if the interaction is direct and to reveal the detailed mechanisms.

LncRNAs recruit TET enzymes

TET (Ten-eleven Translocation)-mediated 5mC oxidation is responsible for the active erasure of DNA methylation [94]. Studies from recent years have revealed that a subset of lncRNAs has the potential to interact with TETs and regulate DNA methylation (Table 1).
In some cases, lncRNA directly interacts with TETs and recruits them to specific targets (Fig. 1a). It was demonstrated that lncRNA Oplr16 binds to the Oct4 promoter, orchestrating the promoter-enhancer loops and then interacts with TET2 by the 3' region of Oplr16 [95]. Similarly, Du et al. identified two motifs in lncRNA Platr10 that interact with Oct4 promoter and TET1 respectively, thus inducing TET1- mediated DNA demethylation at specific site [96]. A research by Zhou et al. suggested that lncRNA TETILA regulates TET2 subcellular localization and enzymatic activity by binding to the DSBH (double-stranded β-helix) domain of TET2 [97]. In acute myeloid leukemia, lncRNA MAGI2-AS3 recruits TET2 to LRIG1 promoter, inducing up-regulation of LRIG1 and inhibition of leukemic stem cell self-renewal [85]. Interestingly, using RNA reverse transcription-associated trap sequencing (RAT-seq) approach to profile genome-wide interaction targets for lncRNAs in mice, a recent study reported that lncRNA Peblr20 recruits TET2 to the enhancer of Pou5F1 and activates the enhancer-transcribed RNAs [98]. Whether a similar mechanism exists in humans especially in cancer development remains uninvestigated.
There is also evidence supporting an indirect model (Fig. 1c), in which lncRNAs recruit TET via GADD45A. It was first reported by Arab et al. that an antisense lncRNA from TCF21 gene locus termed TARID might recruit GADD45A (growth arrest and DNA-damage-inducible, alpha), and GADD45A then recruits TET to the promoter of its partner gene and induce its activation by DNA demethylation [99]. In the following work, the authors further showed that TARID forms an R-loop at the TCF21 promoter to recruit GADD45A [100]. It was speculated that lncRNA PCDHα-AS might function in a similar mechanism to recruit TET3 via GADD45A, driving stochastic promoter choice to establish a neuronal surface identity code for circuit assembly [101]. In colorectal cancer (CRC), lncRNA SATB2-AS1 directly recruits WDR5 and GADD45A, promoting SATB2 transcription by histone modification, as well as DNA demethylation [87], which inhibits cell metastasis and regulates the immune response in CRC. Recently, a database was created, with a comprehensive list of R-loops and their respective regulatory proteins [102], which might serve as a useful resource to identify novel lncRNAs with the potential to recruit GADD45A via formation of R-loops.

LncRNAs repel/ sequestrate DNA methyltransferases

While most of the current reports suggest the DNMT-recruiting role of lncRNAs, some lncRNAs are also shown to repel or sequestrate DNMT to negatively regulate DNA methylation (Fig. 1d and Table 1).
It was first reported by Di Ruscio et al. that a lncRNA arising from the CEBPA gene locus binds to DNMT1 and prevents CEBPA promoter methylation [103]. The lncRNA DBCCR1-003 was reported to function similarly to suppress DBCCR1 promoter methylation by sequestrating DNMT1 and eventually to inhibit cell growth in bladder cancer [69]. In non-small cell lung cancer, lncRNA TTTY15 interacts with DNMT3A and inhibits the binding of DNMT3A to TBX4 promoter, while the lower expression level of TTTY15 is associated with tumor metastasis [70]. In glioblastoma, lncRNA HOTAIRM1 was suggested to interact with several epigenetic factors including DNMT1/3A/3B to sequester them away from HOXA1 promoter [71]. In breast cancer, it was discovered that lncRNA 91H, which is transcribed from the antisense orientation of H19, promotes oncogenesis by masking methylation site on the H19 promoter, inducing the oncogenic H19 overexpression [72].

LncRNAs control SAM/ SAH level to regulate DNMT activity

DNMT catalyzes transmethylation reactions using S-adenosylmethionine (SAM) as the methyl group donor, yielding S-adenosylhomocysteine (SAH) as a by-product, which is also a strong feedback inhibitor of DNMT [6]. In mammals, SAM is biosynthesized by methionine adenosyltransferase (MAT) from ATP and methionine [104], while SAH is reversibly cleaved into adenosine and homocysteine by S-adenosylhomocysteine hydrolase (SAHH, also known as AdoHcy hydrolase, AHCY), which is essential to prevent accumulation of SAH [104], thereby relieving its inhibition to DNMT (Fig. 3).
It was proposed that lncRNA H19 binds to and inhibits SAHH, leading to genome-wide methylation changes at numerous gene loci [105]. Afterward, this mechanism was verified in embryonic hematopoietic stem cell development [106], odontogenic differentiation [107], metabolic abnormality [108] and neurodegenerative diseases [109]. In breast cancer, it was demonstrated that H19 inhibits SAHH, resulting in the accumulation of SAH, which restricts DNMT3B from methylating Beclin1 promoter and inducing the upregulation of Beclin1 and subsequently initiates autophagy, contributing to tamoxifen resistance [81]. Interestingly, the interaction of H19 and SAHH might be enhanced by Benzo [a]pyrene (BaP), which is a potent carcinogen, especially in lung cancer [84].
Other than the SAH level regulated by SAHH, the SAM level regulated by MAT is another factor affecting DNMT activity (Fig. 3). MAT has several homologs and isoenzymes, among which, MAT1A is mainly expressed in adulthood, serving as a marker for the normal differentiated liver. While MAT2A is a marker for rapid liver growth and dedifferentiation, which is transcriptionally induced in hepatocellular carcinoma (HCC) [104]. It was reported that the oncogenic lncRNA SNHG6 upregulates MAT2A expression as a competitive endogenous RNA (ceRNA) to sponge miR-1297, while down-regulates MAT1A translation by suppressing nucleocytoplasmic shuttling of MAT1A mRNA, thereby causing genome-wide hypomethylation and promoting HCC [83]. Recently, the same group of investigators identified a novel lncRNA named LINC00662 that was shown to decay MAT1A mRNA by RNA–RNA interactions and degrades SAHH protein by ubiquitination [82]. These studies revealed a pathway regulating the level of SAM/SAH to further control DNMT activity, with broad functions in cancer and other diseases.

LncRNAs regulate the expression of DNMTs/ TETs

There is compelling evidence showing that lncRNAs control the expression of DNMTs and TETs at diverse levels to regulate DNA methylation (Table 1 and Fig. 4). It was reported that lncRNAs promote or suppress DNMT expression, playing key roles in osteogenesis [110], macrophage polarization [111], as well as cell invasion in Kaposi's sarcoma [63] and chemoresistance in small cell lung cancer [67] and acute myeloid leukemia [60]. Several molecular mechanisms of lncRNA’s regulatory effect on DNMTs or TETs have been elucidated (Fig. 4).
The first mechanism is to regulate the transcription, as demonstrated in malignant glioma, where lncRNA GAS5 directly interacts with EZH2 and stimulates the formation of polycomb repressive complex 2 (PRC2), thereby transcriptionally suppressing DNMT [62]. There is also a report suggesting that EZH2 is recruited by lncRNA HOTAIR to upregulate DNMT, while the mechanism is unclear [66].
The second mechanism is to regulate the stability of DNMT mRNA, where lncRNA functions as a mediator to upregulating DNMT by interaction with the stabilizing factor HuR [112], or as a ceRNA to sponge specific miRNA, thereby upregulating DNMT [61]. The latter mechanism was also discovered in TET regulation, where estradiol and progesterone upregulate lncRNA H19 to suppress miRNA Let-7 and stabilize TET3 mRNA, activating key fibroid-promoting genes in uterine leiomyomas [68]. LncRNA might also exert this effect via a more indirect manner, as demonstrated for LINC1281, which stabilizes the expression of Let-7 miRNA, thus down-regulating its targets DNMT3A/B [113].
The third mechanism is to regulate DNMT at the protein level. Current studies mainly focus on protein degradation by ubiquitination (Fig. 4). It was reported by several groups that lncRNAs serve as a protein-binding scaffold and induce ubiquitin-mediated DNMT protein degradation, epigenetically regulating target gene expression in obesity-mediated beta cell dysfunction [114], polycystic ovary syndrome [115] and hepatocellular carcinoma (HCC) [64]. The detailed mechanism involving the role of lncRNA in DNMT ubiquitination is largely unknown and warrant more deep investigation. In esophageal squamous cell carcinoma, a distinct model was proposed, in which, the lncRNA LUCAT1 binds DNMT1 to protect it from ubiquitination, while LUCAT1 knock-down promotes ubiquitination of DNMT1 through UHRF1 (Ubiquitin-Like PHD and RING Finger Domain-Containing Protein 1) [65]. However, it is well established that UHRF1 deposits dual mono- ubiquitination on the H3 histone tail and PCNA-associated factor 15 (PAF15) for direct DNMT1 recruitment and DNA methylation maintenance [116118], while its roles in the mediation of DNMT1 ubiquitination need further validation and investigation.

Conclusions and discussions

Studies in recent years have revealed the multi-faceted role of lncRNA in regulating DNA methylation. Firstly, lncRNAs can recruit or repel DNA modifiers (DNMTs/ TETs) to specific gene targets (Fig. 1; Fig. 2); Secondly, lncRNAs can regulate DNMT activity by controlling the level of DNMT cofactor SAM/ SAH (Fig. 3); Lastly, lncRNAs can regulate the expression of DNMTs/ TETs per se at multiple levels (Fig. 4). All these mechanisms have been investigated in development and disease, with emphasized roles in cancer.
While most of the studies focused on the DNA methylation of the gene promoters, there is also a recent report highlighting the gene-body methylation mediated by a lncRNA by recruiting DNMT3A, which facilitates transcription of CTSG in dermatomyositic myoideum [119]. Whether this mechanism exists in cancer needs further investigation.
Although this review mainly discussed the lncRNA function in mediating DNA methylation, another two issues should be noted. The first is that lncRNAs are in turn regulated targets of DNA methylation [120123]; The second is that lncRNAs also mediate other epigenetic alterations such as histone modification and chromosome remodeling [124131]. These issues provide an additional layer of gene expression regulation to form complex crosstalk between lncRNA, transcriptional factors, and various epigenetic modifications. More elaborate investigations are warranted to reveal the common mechanisms.

Perspectives

The emerging roles of lncRNAs in cancer through the mediation of DNA methylation suggest novel applications in drug development. While there are currently no drugs targeting lncRNA based exactly on this mechanism, relevant studies shed light on this field (Fig. 5).
One direction is to design lncRNA mimics to regulate the activity of their target proteins, which was recently applied in treating a rare disease of phenylketonuria, where a lncRNA HULC was identified to interact with phenylalanine hydroxylase (PAH) and to modulate the enzymatic activities of PAH. In their work, the authors constructed a lncRNA mimic that rescues PAH enzymatic activity in HULC-deficient cells and mouse models, which showed the therapeutic potential for phenylketonuria [132].
Another direction is to design small molecules directly targeting lncRNA-protein interactions [133136]. Based on the structural insight of the interaction between lncRNA HOTAIR and EZH2, Ren et al. conducted a high-throughput virtual screening and identified a compound that selectively interrupts the lncRNA-protein interaction and inhibits cancer cell invasion and migration [137].
Owing to the fast progress of RNA structural biology and screening technologies, as well as the in-depth mechanistic studies and drug delivery technologies, it is reasonable to expect that RNA-targeting will emerge as a growing therapeutic strategy for human disorders, especially cancer.

Acknowledgements

Not applicable.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20:590–607.PubMedCrossRef Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20:590–607.PubMedCrossRef
2.
Zurück zum Zitat Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9:465–76.PubMedCrossRef Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9:465–76.PubMedCrossRef
3.
Zurück zum Zitat Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT, Kohlbacher O, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500:477–81.PubMedPubMedCentralCrossRef Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT, Kohlbacher O, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500:477–81.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19:81–92.PubMedCrossRef Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19:81–92.PubMedCrossRef
7.
Zurück zum Zitat Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18:517–34.PubMedCrossRef Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18:517–34.PubMedCrossRef
10.
Zurück zum Zitat Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22.PubMedPubMedCentralCrossRef Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462:315–22.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454:766–70.PubMedPubMedCentralCrossRef Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454:766–70.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Zhao SG, Chen WS, Li H, Foye A, Zhang M, Sjostrom M, et al. The DNA methylation landscape of advanced prostate cancer. Nat Genet. 2020;52:778–89.PubMedPubMedCentralCrossRef Zhao SG, Chen WS, Li H, Foye A, Zhang M, Sjostrom M, et al. The DNA methylation landscape of advanced prostate cancer. Nat Genet. 2020;52:778–89.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Sina AA, Carrascosa LG, Liang Z, Grewal YS, Wardiana A, Shiddiky MJA, et al. Epigenetically reprogrammed methylation landscape drives the DNA self-assembly and serves as a universal cancer biomarker. Nat Commun. 2018;9:4915.PubMedPubMedCentralCrossRef Sina AA, Carrascosa LG, Liang Z, Grewal YS, Wardiana A, Shiddiky MJA, et al. Epigenetically reprogrammed methylation landscape drives the DNA self-assembly and serves as a universal cancer biomarker. Nat Commun. 2018;9:4915.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Reddington JP, Sproul D, Meehan RR. DNA methylation reprogramming in cancer: does it act by re-configuring the binding landscape of Polycomb repressive complexes? BioEssays. 2014;36:134–40.PubMedCrossRef Reddington JP, Sproul D, Meehan RR. DNA methylation reprogramming in cancer: does it act by re-configuring the binding landscape of Polycomb repressive complexes? BioEssays. 2014;36:134–40.PubMedCrossRef
17.
Zurück zum Zitat Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet. 2021;37:1012–27.PubMedCrossRef Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet. 2021;37:1012–27.PubMedCrossRef
18.
Zurück zum Zitat Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16:519–32.PubMedPubMedCentralCrossRef Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16:519–32.PubMedPubMedCentralCrossRef
21.
22.
23.
24.
Zurück zum Zitat Zhao L, Wang J, Li Y, Song T, Wu Y, Fang S, et al. NONCODEV6: an updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Res. 2021;49:D165–71.PubMedCrossRef Zhao L, Wang J, Li Y, Song T, Wu Y, Fang S, et al. NONCODEV6: an updated database dedicated to long non-coding RNA annotation in both animals and plants. Nucleic Acids Res. 2021;49:D165–71.PubMedCrossRef
27.
Zurück zum Zitat Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21:542–51.PubMedCrossRef Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019;21:542–51.PubMedCrossRef
28.
Zurück zum Zitat Mayer C, Schmitz KM, Li J, Grummt I, Santoro R. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell. 2006;22:351–61.PubMedCrossRef Mayer C, Schmitz KM, Li J, Grummt I, Santoro R. Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell. 2006;22:351–61.PubMedCrossRef
29.
Zurück zum Zitat Bierhoff H, Schmitz K, Maass F, Ye J, Grummt I. Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes. Cold Spring Harb Symp Quant Biol. 2010;75:357–64.PubMedCrossRef Bierhoff H, Schmitz K, Maass F, Ye J, Grummt I. Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes. Cold Spring Harb Symp Quant Biol. 2010;75:357–64.PubMedCrossRef
30.
Zurück zum Zitat Schmitz KM, Mayer C, Postepska A, Grummt I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 2010;24:2264–9.PubMedPubMedCentralCrossRef Schmitz KM, Mayer C, Postepska A, Grummt I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 2010;24:2264–9.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Frank S, Ahuja G, Bartsch D, Russ N, Yao W, Kuo JC, et al. yylncT Defines a Class of Divergently Transcribed lncRNAs and Safeguards the T-mediated Mesodermal Commitment of Human PSCs. Cell Stem Cell. 2019;24:318-27 e8.PubMedCrossRef Frank S, Ahuja G, Bartsch D, Russ N, Yao W, Kuo JC, et al. yylncT Defines a Class of Divergently Transcribed lncRNAs and Safeguards the T-mediated Mesodermal Commitment of Human PSCs. Cell Stem Cell. 2019;24:318-27 e8.PubMedCrossRef
32.
Zurück zum Zitat Ponnusamy M, Liu F, Zhang YH, Li RB, Zhai M, Liu F, et al. Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair. Circulation. 2019;139:2668–84.PubMedCrossRef Ponnusamy M, Liu F, Zhang YH, Li RB, Zhai M, Liu F, et al. Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair. Circulation. 2019;139:2668–84.PubMedCrossRef
33.
Zurück zum Zitat Wang L, Zhao Y, Bao X, Zhu X, Kwok YK, Sun K, et al. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res. 2015;25:335–50.PubMedPubMedCentralCrossRef Wang L, Zhao Y, Bao X, Zhu X, Kwok YK, Sun K, et al. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res. 2015;25:335–50.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Chalei V, Sansom SN, Kong L, Lee S, Montiel JF, Vance KW, et al. The long non-coding RNA Dali is an epigenetic regulator of neural differentiation. Elife. 2014;3:e04530.PubMedPubMedCentralCrossRef Chalei V, Sansom SN, Kong L, Lee S, Montiel JF, Vance KW, et al. The long non-coding RNA Dali is an epigenetic regulator of neural differentiation. Elife. 2014;3:e04530.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Yi F, Zhang P, Wang Y, Xu Y, Zhang Z, Ma W, et al. Long non-coding RNA slincRAD functions in methylation regulation during the early stage of mouse adipogenesis. RNA Biol. 2019;16:1401–13.PubMedPubMedCentralCrossRef Yi F, Zhang P, Wang Y, Xu Y, Zhang Z, Ma W, et al. Long non-coding RNA slincRAD functions in methylation regulation during the early stage of mouse adipogenesis. RNA Biol. 2019;16:1401–13.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Ni C, Jiang W, Wang Z, Wang Z, Zhang J, Zheng X, et al. LncRNA-AC006129.1 reactivates a SOCS3-mediated anti-inflammatory response through DNA methylation-mediated CIC downregulation in schizophrenia. Mol Psychiatry. 2020;26(8):4511–28.PubMedCrossRef Ni C, Jiang W, Wang Z, Wang Z, Zhang J, Zheng X, et al. LncRNA-AC006129.1 reactivates a SOCS3-mediated anti-inflammatory response through DNA methylation-mediated CIC downregulation in schizophrenia. Mol Psychiatry. 2020;26(8):4511–28.PubMedCrossRef
37.
Zurück zum Zitat Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, et al. Silencing of Long Non-coding RNA GAS5 Suppresses Neuron Cell Apoptosis and Nerve Injury in Ischemic Stroke Through Inhibiting DNMT3B-Dependent MAP4K4 Methylation. Transl Stroke Res. 2020;11:950–66.PubMedCrossRef Deng Y, Chen D, Gao F, Lv H, Zhang G, Sun X, et al. Silencing of Long Non-coding RNA GAS5 Suppresses Neuron Cell Apoptosis and Nerve Injury in Ischemic Stroke Through Inhibiting DNMT3B-Dependent MAP4K4 Methylation. Transl Stroke Res. 2020;11:950–66.PubMedCrossRef
38.
Zurück zum Zitat Xie Z, Wang Q, Hu S. Coordination of PRKCA/PRKCA-AS1 interplay facilitates DNA methyltransferase 1 recruitment on DNA methylation to affect protein kinase C alpha transcription in mitral valve of rheumatic heart disease. Bioengineered. 2021;12:5904–15.PubMedPubMedCentralCrossRef Xie Z, Wang Q, Hu S. Coordination of PRKCA/PRKCA-AS1 interplay facilitates DNA methyltransferase 1 recruitment on DNA methylation to affect protein kinase C alpha transcription in mitral valve of rheumatic heart disease. Bioengineered. 2021;12:5904–15.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Li H, Han S, Sun Q, Yao Y, Li S, Yuan C, et al. Long non-coding RNA CDKN2B-AS1 reduces inflammatory response and promotes cholesterol efflux in atherosclerosis by inhibiting ADAM10 expression. Aging (Albany NY). 2019;11:1695–715.CrossRef Li H, Han S, Sun Q, Yao Y, Li S, Yuan C, et al. Long non-coding RNA CDKN2B-AS1 reduces inflammatory response and promotes cholesterol efflux in atherosclerosis by inhibiting ADAM10 expression. Aging (Albany NY). 2019;11:1695–715.CrossRef
40.
Zurück zum Zitat Wang Y, Yang X, Jiang A, Wang W, Li J, Wen J. Methylation-dependent transcriptional repression of RUNX3 by KCNQ1OT1 regulates mouse cardiac microvascular endothelial cell viability and inflammatory response following myocardial infarction. FASEB J. 2019;33:13145–60.PubMedPubMedCentralCrossRef Wang Y, Yang X, Jiang A, Wang W, Li J, Wen J. Methylation-dependent transcriptional repression of RUNX3 by KCNQ1OT1 regulates mouse cardiac microvascular endothelial cell viability and inflammatory response following myocardial infarction. FASEB J. 2019;33:13145–60.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Chen H, Yang S, Shao R. Long non-coding XIST raises methylation of TIMP-3 promoter to regulate collagen degradation in osteoarthritic chondrocytes after tibial plateau fracture. Arthritis Res Ther. 2019;21:271.PubMedPubMedCentralCrossRef Chen H, Yang S, Shao R. Long non-coding XIST raises methylation of TIMP-3 promoter to regulate collagen degradation in osteoarthritic chondrocytes after tibial plateau fracture. Arthritis Res Ther. 2019;21:271.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Wang Q, Liu J, You Z, Yin Y, Liu L, Kang Y, et al. LncRNA TINCR favors tumorigenesis via STAT3-TINCR-EGFR-feedback loop by recruiting DNMT1 and acting as a competing endogenous RNA in human breast cancer. Cell Death Dis. 2021;12:83.PubMedPubMedCentralCrossRef Wang Q, Liu J, You Z, Yin Y, Liu L, Kang Y, et al. LncRNA TINCR favors tumorigenesis via STAT3-TINCR-EGFR-feedback loop by recruiting DNMT1 and acting as a competing endogenous RNA in human breast cancer. Cell Death Dis. 2021;12:83.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Su SC, Yeh CM, Lin CW, Hsieh YH, Chuang CY, Tang CH, et al. A novel melatonin-regulated lncRNA suppresses TPA-induced oral cancer cell motility through replenishing PRUNE2 expression. J Pineal Res. 2021;71:e12760.PubMedCrossRef Su SC, Yeh CM, Lin CW, Hsieh YH, Chuang CY, Tang CH, et al. A novel melatonin-regulated lncRNA suppresses TPA-induced oral cancer cell motility through replenishing PRUNE2 expression. J Pineal Res. 2021;71:e12760.PubMedCrossRef
44.
Zurück zum Zitat Song H, Chen L, Liu W, Xu X, Zhou Y, Zhu J, et al. Depleting long noncoding RNA HOTAIR attenuates chronic myelocytic leukemia progression by binding to DNA methyltransferase 1 and inhibiting PTEN gene promoter methylation. Cell Death Dis. 2021;12:440.PubMedPubMedCentralCrossRef Song H, Chen L, Liu W, Xu X, Zhou Y, Zhu J, et al. Depleting long noncoding RNA HOTAIR attenuates chronic myelocytic leukemia progression by binding to DNA methyltransferase 1 and inhibiting PTEN gene promoter methylation. Cell Death Dis. 2021;12:440.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Shen T, Xia W, Min S, Yang Z, Cheng L, Wang W, et al. A pair of long intergenic non-coding RNA LINC00887 variants act antagonistically to control Carbonic Anhydrase IX transcription upon hypoxia in tongue squamous carcinoma progression. BMC Biol. 2021;19:192.PubMedPubMedCentralCrossRef Shen T, Xia W, Min S, Yang Z, Cheng L, Wang W, et al. A pair of long intergenic non-coding RNA LINC00887 variants act antagonistically to control Carbonic Anhydrase IX transcription upon hypoxia in tongue squamous carcinoma progression. BMC Biol. 2021;19:192.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Shao G, Fan X, Zhang P, Liu X, Huang L, Ji S. Methylation-dependent MCM6 repression induced by LINC00472 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway. Aging (Albany NY). 2021;13:4962–75.CrossRef Shao G, Fan X, Zhang P, Liu X, Huang L, Ji S. Methylation-dependent MCM6 repression induced by LINC00472 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway. Aging (Albany NY). 2021;13:4962–75.CrossRef
47.
Zurück zum Zitat Li N, Zhao Z, Miao F, Cai S, Liu P, Yu Y, et al. Silencing of long non-coding RNA LINC01270 inhibits esophageal cancer progression and enhances chemosensitivity to 5-fluorouracil by mediating GSTP1methylation. Cancer Gene Ther. 2021;28:471–85.PubMedCrossRef Li N, Zhao Z, Miao F, Cai S, Liu P, Yu Y, et al. Silencing of long non-coding RNA LINC01270 inhibits esophageal cancer progression and enhances chemosensitivity to 5-fluorouracil by mediating GSTP1methylation. Cancer Gene Ther. 2021;28:471–85.PubMedCrossRef
48.
Zurück zum Zitat Zhang S, Zheng F, Zhang L, Huang Z, Huang X, Pan Z, et al. LncRNA HOTAIR-mediated MTHFR methylation inhibits 5-fluorouracil sensitivity in esophageal cancer cells. J Exp Clin Cancer Res. 2020;39:131.PubMedPubMedCentralCrossRef Zhang S, Zheng F, Zhang L, Huang Z, Huang X, Pan Z, et al. LncRNA HOTAIR-mediated MTHFR methylation inhibits 5-fluorouracil sensitivity in esophageal cancer cells. J Exp Clin Cancer Res. 2020;39:131.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Liu D, Wu K, Yang Y, Zhu D, Zhang C, Zhao S. Long noncoding RNA ADAMTS9-AS2 suppresses the progression of esophageal cancer by mediating CDH3 promoter methylation. Mol Carcinog. 2020;59:32–44.PubMedCrossRef Liu D, Wu K, Yang Y, Zhu D, Zhang C, Zhao S. Long noncoding RNA ADAMTS9-AS2 suppresses the progression of esophageal cancer by mediating CDH3 promoter methylation. Mol Carcinog. 2020;59:32–44.PubMedCrossRef
50.
Zurück zum Zitat Li Y, Luo Q, Li Z, Wang Y, Zhu C, Li T, et al. Long Non-coding RNA IRAIN Inhibits VEGFA Expression via Enhancing Its DNA Methylation Leading to Tumor Suppression in Renal Carcinoma. Front Oncol. 2020;10:1082.PubMedPubMedCentralCrossRef Li Y, Luo Q, Li Z, Wang Y, Zhu C, Li T, et al. Long Non-coding RNA IRAIN Inhibits VEGFA Expression via Enhancing Its DNA Methylation Leading to Tumor Suppression in Renal Carcinoma. Front Oncol. 2020;10:1082.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Jin L, Cai Q, Wang S, Wang S, Wang J, Quan Z. Long noncoding RNA PVT1 promoted gallbladder cancer proliferation by epigenetically suppressing miR-18b-5p via DNA methylation. Cell Death Dis. 2020;11:871.PubMedPubMedCentralCrossRef Jin L, Cai Q, Wang S, Wang S, Wang J, Quan Z. Long noncoding RNA PVT1 promoted gallbladder cancer proliferation by epigenetically suppressing miR-18b-5p via DNA methylation. Cell Death Dis. 2020;11:871.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Wang W, Chen G, Wang B, Yuan Z, Liu G, Niu B, et al. Long non-coding RNA BZRAP1-AS1 silencing suppresses tumor angiogenesis in hepatocellular carcinoma by mediating THBS1 methylation. J Transl Med. 2019;17:421.PubMedPubMedCentralCrossRef Wang W, Chen G, Wang B, Yuan Z, Liu G, Niu B, et al. Long non-coding RNA BZRAP1-AS1 silencing suppresses tumor angiogenesis in hepatocellular carcinoma by mediating THBS1 methylation. J Transl Med. 2019;17:421.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Miao H, Wang L, Zhan H, Dai J, Chang Y, Wu F, et al. A long noncoding RNA distributed in both nucleus and cytoplasm operates in the PYCARD-regulated apoptosis by coordinating the epigenetic and translational regulation. PLoS Genet. 2019;15:e1008144.PubMedPubMedCentralCrossRef Miao H, Wang L, Zhan H, Dai J, Chang Y, Wu F, et al. A long noncoding RNA distributed in both nucleus and cytoplasm operates in the PYCARD-regulated apoptosis by coordinating the epigenetic and translational regulation. PLoS Genet. 2019;15:e1008144.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Kang X, Kong F, Huang K, Li L, Li Z, Wang X, et al. LncRNA MIR210HG promotes proliferation and invasion of non-small cell lung cancer by upregulating methylation of CACNA2D2 promoter via binding to DNMT1. Onco Targets Ther. 2019;12:3779–90.PubMedPubMedCentralCrossRef Kang X, Kong F, Huang K, Li L, Li Z, Wang X, et al. LncRNA MIR210HG promotes proliferation and invasion of non-small cell lung cancer by upregulating methylation of CACNA2D2 promoter via binding to DNMT1. Onco Targets Ther. 2019;12:3779–90.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Guo X, Chen Z, Zhao L, Cheng D, Song W, Zhang X. Long non-coding RNA-HAGLR suppressed tumor growth of lung adenocarcinoma through epigenetically silencing E2F1. Exp Cell Res. 2019;382:111461.PubMedCrossRef Guo X, Chen Z, Zhao L, Cheng D, Song W, Zhang X. Long non-coding RNA-HAGLR suppressed tumor growth of lung adenocarcinoma through epigenetically silencing E2F1. Exp Cell Res. 2019;382:111461.PubMedCrossRef
56.
Zurück zum Zitat Merry CR, Forrest ME, Sabers JN, Beard L, Gao XH, Hatzoglou M, et al. DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Hum Mol Genet. 2015;24:6240–53.PubMedPubMedCentralCrossRef Merry CR, Forrest ME, Sabers JN, Beard L, Gao XH, Hatzoglou M, et al. DNMT1-associated long non-coding RNAs regulate global gene expression and DNA methylation in colon cancer. Hum Mol Genet. 2015;24:6240–53.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Somasundaram S, Forrest ME, Moinova H, Cohen A, Varadan V, LaFramboise T, et al. The DNMT1-associated lincRNA DACOR1 reprograms genome-wide DNA methylation in colon cancer. Clin Epigenetics. 2018;10:127.PubMedPubMedCentralCrossRef Somasundaram S, Forrest ME, Moinova H, Cohen A, Varadan V, LaFramboise T, et al. The DNMT1-associated lincRNA DACOR1 reprograms genome-wide DNA methylation in colon cancer. Clin Epigenetics. 2018;10:127.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Xin L, Lu H, Liu C, Zeng F, Yuan YW, Wu Y, et al. Methionine deficiency promoted mitophagy via lncRNA PVT1-mediated promoter demethylation of BNIP3 in gastric cancer. Int J Biochem Cell Biol. 2021;141:106100.PubMedCrossRef Xin L, Lu H, Liu C, Zeng F, Yuan YW, Wu Y, et al. Methionine deficiency promoted mitophagy via lncRNA PVT1-mediated promoter demethylation of BNIP3 in gastric cancer. Int J Biochem Cell Biol. 2021;141:106100.PubMedCrossRef
59.
Zurück zum Zitat Zhao Y, Zhou L, Li H, Sun T, Wen X, Li X, et al. Nuclear-Encoded lncRNA MALAT1 Epigenetically Controls Metabolic Reprogramming in HCC Cells through the Mitophagy Pathway. Mol Ther Nucleic Acids. 2021;23:264–76.PubMedCrossRef Zhao Y, Zhou L, Li H, Sun T, Wen X, Li X, et al. Nuclear-Encoded lncRNA MALAT1 Epigenetically Controls Metabolic Reprogramming in HCC Cells through the Mitophagy Pathway. Mol Ther Nucleic Acids. 2021;23:264–76.PubMedCrossRef
60.
Zurück zum Zitat Zhou W, Xu S, Chen X, Wang C. HOTAIR suppresses PTEN via DNMT3b and confers drug resistance in acute myeloid leukemia. Hematology. 2021;26:170–8.PubMedCrossRef Zhou W, Xu S, Chen X, Wang C. HOTAIR suppresses PTEN via DNMT3b and confers drug resistance in acute myeloid leukemia. Hematology. 2021;26:170–8.PubMedCrossRef
61.
Zurück zum Zitat Wang X, Yu B, Jin Q, Zhang J, Yan B, Yang L, et al. Regulation of laryngeal squamous cell cancer progression by the lncRNA RP11–159K7.2/miR-206/DNMT3A axis. J Cell Mol Med. 2020;24:6781–95.PubMedPubMedCentralCrossRef Wang X, Yu B, Jin Q, Zhang J, Yan B, Yang L, et al. Regulation of laryngeal squamous cell cancer progression by the lncRNA RP11–159K7.2/miR-206/DNMT3A axis. J Cell Mol Med. 2020;24:6781–95.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Jin C, Zhao J, Zhang ZP, Wu M, Li J, Xiao GL, et al. Long non-coding RNA GAS5, by up-regulating PRC2 and targeting the promoter methylation of miR-424, suppresses multiple malignant phenotypes of glioma. J Neurooncol. 2020;148:529–43.PubMedCrossRef Jin C, Zhao J, Zhang ZP, Wu M, Li J, Xiao GL, et al. Long non-coding RNA GAS5, by up-regulating PRC2 and targeting the promoter methylation of miR-424, suppresses multiple malignant phenotypes of glioma. J Neurooncol. 2020;148:529–43.PubMedCrossRef
63.
Zurück zum Zitat Li W, Wang Q, Feng Q, Wang F, Yan Q, Gao SJ, et al. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218–5p network. PLoS Pathog. 2019;15:e1007578.PubMedPubMedCentralCrossRef Li W, Wang Q, Feng Q, Wang F, Yan Q, Gao SJ, et al. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218–5p network. PLoS Pathog. 2019;15:e1007578.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Xu X, Lou Y, Tang J, Teng Y, Zhang Z, Yin Y, et al. The long non-coding RNA Linc-GALH promotes hepatocellular carcinoma metastasis via epigenetically regulating Gankyrin. Cell Death Dis. 2019;10:86.PubMedPubMedCentralCrossRef Xu X, Lou Y, Tang J, Teng Y, Zhang Z, Yin Y, et al. The long non-coding RNA Linc-GALH promotes hepatocellular carcinoma metastasis via epigenetically regulating Gankyrin. Cell Death Dis. 2019;10:86.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Yoon JH, You BH, Park CH, Kim YJ, Nam JW, Lee SK. The long noncoding RNA LUCAT1 promotes tumorigenesis by controlling ubiquitination and stability of DNA methyltransferase 1 in esophageal squamous cell carcinoma. Cancer Lett. 2018;417:47–57.PubMedCrossRef Yoon JH, You BH, Park CH, Kim YJ, Nam JW, Lee SK. The long noncoding RNA LUCAT1 promotes tumorigenesis by controlling ubiquitination and stability of DNA methyltransferase 1 in esophageal squamous cell carcinoma. Cancer Lett. 2018;417:47–57.PubMedCrossRef
66.
Zurück zum Zitat Cheng D, Deng J, Zhang B, He X, Meng Z, Li G, et al. LncRNA HOTAIR epigenetically suppresses miR-122 expression in hepatocellular carcinoma via DNA methylation. EBioMedicine. 2018;36:159–70.PubMedPubMedCentralCrossRef Cheng D, Deng J, Zhang B, He X, Meng Z, Li G, et al. LncRNA HOTAIR epigenetically suppresses miR-122 expression in hepatocellular carcinoma via DNA methylation. EBioMedicine. 2018;36:159–70.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Fang S, Gao H, Tong Y, Yang J, Tang R, Niu Y, et al. Long noncoding RNA-HOTAIR affects chemoresistance by regulating HOXA1 methylation in small cell lung cancer cells. Lab Invest. 2016;96:60–8.PubMedCrossRef Fang S, Gao H, Tong Y, Yang J, Tang R, Niu Y, et al. Long noncoding RNA-HOTAIR affects chemoresistance by regulating HOXA1 methylation in small cell lung cancer cells. Lab Invest. 2016;96:60–8.PubMedCrossRef
68.
Zurück zum Zitat Cao T, Jiang Y, Wang Z, Zhang N, Al-Hendy A, Mamillapalli R, et al. H19 lncRNA identified as a master regulator of genes that drive uterine leiomyomas. Oncogene. 2019;38:5356–66.PubMedPubMedCentralCrossRef Cao T, Jiang Y, Wang Z, Zhang N, Al-Hendy A, Mamillapalli R, et al. H19 lncRNA identified as a master regulator of genes that drive uterine leiomyomas. Oncogene. 2019;38:5356–66.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Qi D, Li J, Que B, Su J, Li M, Zhang C, et al. Long non-coding RNA DBCCR1-003 regulate the expression of DBCCR1 via DNMT1 in bladder cancer. Cancer Cell Int. 2016;16:81.PubMedPubMedCentralCrossRef Qi D, Li J, Que B, Su J, Li M, Zhang C, et al. Long non-coding RNA DBCCR1-003 regulate the expression of DBCCR1 via DNMT1 in bladder cancer. Cancer Cell Int. 2016;16:81.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Lai IL, Chang YS, Chan WL, Lee YT, Yen JC, Yang CA, et al. Male-Specific Long Noncoding RNA TTTY15 Inhibits Non-Small Cell Lung Cancer Proliferation and Metastasis via TBX4. Int J Mol Sci. 2019;20(14):3473.PubMedCentralCrossRef Lai IL, Chang YS, Chan WL, Lee YT, Yen JC, Yang CA, et al. Male-Specific Long Noncoding RNA TTTY15 Inhibits Non-Small Cell Lung Cancer Proliferation and Metastasis via TBX4. Int J Mol Sci. 2019;20(14):3473.PubMedCentralCrossRef
71.
Zurück zum Zitat Li Q, Dong C, Cui J, Wang Y, Hong X. Over-expressed lncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme. J Exp Clin Cancer Res. 2018;37:265.PubMedPubMedCentralCrossRef Li Q, Dong C, Cui J, Wang Y, Hong X. Over-expressed lncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme. J Exp Clin Cancer Res. 2018;37:265.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Vennin C, Spruyt N, Robin YM, Chassat T, Le Bourhis X, Adriaenssens E. The long non-coding RNA 91H increases aggressive phenotype of breast cancer cells and up-regulates H19/IGF2 expression through epigenetic modifications. Cancer Lett. 2017;385:198–206.PubMedCrossRef Vennin C, Spruyt N, Robin YM, Chassat T, Le Bourhis X, Adriaenssens E. The long non-coding RNA 91H increases aggressive phenotype of breast cancer cells and up-regulates H19/IGF2 expression through epigenetic modifications. Cancer Lett. 2017;385:198–206.PubMedCrossRef
73.
Zurück zum Zitat Fang S, Shen Y, Chen B, Wu Y, Jia L, Li Y, et al. H3K27me3 induces multidrug resistance in small cell lung cancer by affecting HOXA1 DNA methylation via regulation of the lncRNA HOTAIR. Ann Transl Med. 2018;6:440.PubMedPubMedCentralCrossRef Fang S, Shen Y, Chen B, Wu Y, Jia L, Li Y, et al. H3K27me3 induces multidrug resistance in small cell lung cancer by affecting HOXA1 DNA methylation via regulation of the lncRNA HOTAIR. Ann Transl Med. 2018;6:440.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Xuan Y, Wang Y. Long non-coding RNA SNHG3 promotes progression of gastric cancer by regulating neighboring MED18 gene methylation. Cell Death Dis. 2019;10:694.PubMedPubMedCentralCrossRef Xuan Y, Wang Y. Long non-coding RNA SNHG3 promotes progression of gastric cancer by regulating neighboring MED18 gene methylation. Cell Death Dis. 2019;10:694.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Xiong Y, Kuang W, Lu S, Guo H, Wu M, Ye M, et al. Long noncoding RNA HOXB13-AS1 regulates HOXB13 gene methylation by interacting with EZH2 in glioma. Cancer Med. 2018;7:4718–28.PubMedPubMedCentralCrossRef Xiong Y, Kuang W, Lu S, Guo H, Wu M, Ye M, et al. Long noncoding RNA HOXB13-AS1 regulates HOXB13 gene methylation by interacting with EZH2 in glioma. Cancer Med. 2018;7:4718–28.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Zhang C, Wang L, Jin C, Zhou J, Peng C, Wang Y, et al. Long non-coding RNA Lnc-LALC facilitates colorectal cancer liver metastasis via epigenetically silencing LZTS1. Cell Death Dis. 2021;12:224.PubMedPubMedCentralCrossRef Zhang C, Wang L, Jin C, Zhou J, Peng C, Wang Y, et al. Long non-coding RNA Lnc-LALC facilitates colorectal cancer liver metastasis via epigenetically silencing LZTS1. Cell Death Dis. 2021;12:224.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Bao X, Ren T, Huang Y, Sun K, Wang S, Liu K, et al. Knockdown of long non-coding RNA HOTAIR increases miR-454–3p by targeting Stat3 and Atg12 to inhibit chondrosarcoma growth. Cell Death Dis. 2017;8:e2605.PubMedPubMedCentralCrossRef Bao X, Ren T, Huang Y, Sun K, Wang S, Liu K, et al. Knockdown of long non-coding RNA HOTAIR increases miR-454–3p by targeting Stat3 and Atg12 to inhibit chondrosarcoma growth. Cell Death Dis. 2017;8:e2605.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Sui CJ, Zhou YM, Shen WF, Dai BH, Lu JJ, Zhang MF, et al. Long noncoding RNA GIHCG promotes hepatocellular carcinoma progression through epigenetically regulating miR-200b/a/429. J Mol Med (Berl). 2016;94:1281–96.CrossRef Sui CJ, Zhou YM, Shen WF, Dai BH, Lu JJ, Zhang MF, et al. Long noncoding RNA GIHCG promotes hepatocellular carcinoma progression through epigenetically regulating miR-200b/a/429. J Mol Med (Berl). 2016;94:1281–96.CrossRef
79.
Zurück zum Zitat Liu F, Huang W, Hong J, Cai C, Zhang W, Zhang J, et al. Long noncoding RNA LINC00630 promotes radio-resistance by regulating BEX1 gene methylation in colorectal cancer cells. IUBMB Life. 2020;72:1404–14.PubMedCrossRef Liu F, Huang W, Hong J, Cai C, Zhang W, Zhang J, et al. Long noncoding RNA LINC00630 promotes radio-resistance by regulating BEX1 gene methylation in colorectal cancer cells. IUBMB Life. 2020;72:1404–14.PubMedCrossRef
80.
Zurück zum Zitat Wang L, Bu P, Ai Y, Srinivasan T, Chen HJ, Xiang K, et al. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division. Elife. 2016;5:e14620.PubMedPubMedCentralCrossRef Wang L, Bu P, Ai Y, Srinivasan T, Chen HJ, Xiang K, et al. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division. Elife. 2016;5:e14620.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Wang J, Xie S, Yang J, Xiong H, Jia Y, Zhou Y, et al. The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy. J Hematol Oncol. 2019;12:81.PubMedPubMedCentralCrossRef Wang J, Xie S, Yang J, Xiong H, Jia Y, Zhou Y, et al. The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy. J Hematol Oncol. 2019;12:81.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Guo T, Gong C, Wu P, Battaglia-Hsu SF, Feng J, Liu P, et al. LINC00662 promotes hepatocellular carcinoma progression via altering genomic methylation profiles. Cell Death Differ. 2020;27:2191–205.PubMedPubMedCentralCrossRef Guo T, Gong C, Wu P, Battaglia-Hsu SF, Feng J, Liu P, et al. LINC00662 promotes hepatocellular carcinoma progression via altering genomic methylation profiles. Cell Death Differ. 2020;27:2191–205.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Guo T, Wang H, Liu P, Xiao Y, Wu P, Wang Y, et al. SNHG6 Acts as a Genome-Wide Hypomethylation Trigger via Coupling of miR-1297-Mediated S-Adenosylmethionine-Dependent Positive Feedback Loops. Cancer Res. 2018;78:3849–64.PubMedCrossRef Guo T, Wang H, Liu P, Xiao Y, Wu P, Wang Y, et al. SNHG6 Acts as a Genome-Wide Hypomethylation Trigger via Coupling of miR-1297-Mediated S-Adenosylmethionine-Dependent Positive Feedback Loops. Cancer Res. 2018;78:3849–64.PubMedCrossRef
84.
Zurück zum Zitat Fu Y, Wang W, Li X, Liu Y, Niu Y, Zhang B, et al. LncRNA H19 interacts with S-adenosylhomocysteine hydrolase to regulate LINE-1 Methylation in human lung-derived cells exposed to Benzo[a]pyrene. Chemosphere. 2018;207:84–90.PubMedCrossRef Fu Y, Wang W, Li X, Liu Y, Niu Y, Zhang B, et al. LncRNA H19 interacts with S-adenosylhomocysteine hydrolase to regulate LINE-1 Methylation in human lung-derived cells exposed to Benzo[a]pyrene. Chemosphere. 2018;207:84–90.PubMedCrossRef
85.
Zurück zum Zitat Chen L, Fan X, Zhu J, Chen X, Liu Y, Zhou H. LncRNA MAGI2-AS3 inhibits the self-renewal of leukaemic stem cells by promoting TET2-dependent DNA demethylation of the LRIG1 promoter in acute myeloid leukaemia. RNA Biol. 2020;17:784–93.PubMedPubMedCentralCrossRef Chen L, Fan X, Zhu J, Chen X, Liu Y, Zhou H. LncRNA MAGI2-AS3 inhibits the self-renewal of leukaemic stem cells by promoting TET2-dependent DNA demethylation of the LRIG1 promoter in acute myeloid leukaemia. RNA Biol. 2020;17:784–93.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Wang B, Zhao L, Chi W, Cao H, Cui W, Meng W. Aberrant methylation-mediated downregulation of lncRNA SSTR5-AS1 promotes progression and metastasis of laryngeal squamous cell carcinoma. Epigenetics Chromatin. 2019;12:35.PubMedPubMedCentralCrossRef Wang B, Zhao L, Chi W, Cao H, Cui W, Meng W. Aberrant methylation-mediated downregulation of lncRNA SSTR5-AS1 promotes progression and metastasis of laryngeal squamous cell carcinoma. Epigenetics Chromatin. 2019;12:35.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Xu M, Xu X, Pan B, Chen X, Lin K, Zeng K, et al. LncRNA SATB2-AS1 inhibits tumor metastasis and affects the tumor immune cell microenvironment in colorectal cancer by regulating SATB2. Mol Cancer. 2019;18:135.PubMedPubMedCentralCrossRef Xu M, Xu X, Pan B, Chen X, Lin K, Zeng K, et al. LncRNA SATB2-AS1 inhibits tumor metastasis and affects the tumor immune cell microenvironment in colorectal cancer by regulating SATB2. Mol Cancer. 2019;18:135.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Hu S, Yao Y, Hu X, Zhu Y. LncRNA DCST1-AS1 downregulates miR-29b through methylation in glioblastoma (GBM) to promote cancer cell proliferation. Clin Transl Oncol. 2020;22:2230–5.PubMedCrossRef Hu S, Yao Y, Hu X, Zhu Y. LncRNA DCST1-AS1 downregulates miR-29b through methylation in glioblastoma (GBM) to promote cancer cell proliferation. Clin Transl Oncol. 2020;22:2230–5.PubMedCrossRef
89.
Zurück zum Zitat Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439:871–4.PubMedCrossRef Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439:871–4.PubMedCrossRef
90.
Zurück zum Zitat Zhu X, Du J, Yu J, Guo R, Feng Y, Qiao L, et al. LncRNA NKILA regulates endothelium inflammation by controlling a NF-kappaB/KLF4 positive feedback loop. J Mol Cell Cardiol. 2019;126:60–9.PubMedCrossRef Zhu X, Du J, Yu J, Guo R, Feng Y, Qiao L, et al. LncRNA NKILA regulates endothelium inflammation by controlling a NF-kappaB/KLF4 positive feedback loop. J Mol Cell Cardiol. 2019;126:60–9.PubMedCrossRef
91.
Zurück zum Zitat Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, et al. A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 2015;27:370–81.PubMedCrossRef Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, et al. A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 2015;27:370–81.PubMedCrossRef
92.
Zurück zum Zitat Artal-Sanz M, Tavernarakis N. Prohibitin and mitochondrial biology. Trends Endocrinol Metab. 2009;20:394–401.PubMedCrossRef Artal-Sanz M, Tavernarakis N. Prohibitin and mitochondrial biology. Trends Endocrinol Metab. 2009;20:394–401.PubMedCrossRef
93.
Zurück zum Zitat Jones R, Wijesinghe S, Wilson C, Halsall J, Liloglou T, Kanhere A. A long intergenic non-coding RNA regulates nuclear localization of DNA methyl transferase-1. iScience. 2021;24:102273.PubMedPubMedCentralCrossRef Jones R, Wijesinghe S, Wilson C, Halsall J, Liloglou T, Kanhere A. A long intergenic non-coding RNA regulates nuclear localization of DNA methyl transferase-1. iScience. 2021;24:102273.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Jia L, Wang Y, Wang C, Du Z, Zhang S, Wen X, et al. Oplr16 serves as a novel chromatin factor to control stem cell fate by modulating pluripotency-specific chromosomal looping and TET2-mediated DNA demethylation. Nucleic Acids Res. 2020;48:3935–48.PubMedPubMedCentralCrossRef Jia L, Wang Y, Wang C, Du Z, Zhang S, Wen X, et al. Oplr16 serves as a novel chromatin factor to control stem cell fate by modulating pluripotency-specific chromosomal looping and TET2-mediated DNA demethylation. Nucleic Acids Res. 2020;48:3935–48.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Du Z, Wen X, Wang Y, Jia L, Zhang S, Liu Y, et al. Chromatin lncRNA Platr10 controls stem cell pluripotency by coordinating an intrachromosomal regulatory network. Genome Biol. 2021;22:233.PubMedPubMedCentralCrossRef Du Z, Wen X, Wang Y, Jia L, Zhang S, Liu Y, et al. Chromatin lncRNA Platr10 controls stem cell pluripotency by coordinating an intrachromosomal regulatory network. Genome Biol. 2021;22:233.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Zhou L, Ren M, Zeng T, Wang W, Wang X, Hu M, et al. TET2-interacting long noncoding RNA promotes active DNA demethylation of the MMP-9 promoter in diabetic wound healing. Cell Death Dis. 2019;10:813.PubMedPubMedCentralCrossRef Zhou L, Ren M, Zeng T, Wang W, Wang X, Hu M, et al. TET2-interacting long noncoding RNA promotes active DNA demethylation of the MMP-9 promoter in diabetic wound healing. Cell Death Dis. 2019;10:813.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Wang C, Jia L, Wang Y, Du Z, Zhou L, Wen X, et al. Genome-wide interaction target profiling reveals a novel Peblr20-eRNA activation pathway to control stem cell pluripotency. Theranostics. 2020;10:353–70.PubMedPubMedCentralCrossRef Wang C, Jia L, Wang Y, Du Z, Zhou L, Wen X, et al. Genome-wide interaction target profiling reveals a novel Peblr20-eRNA activation pathway to control stem cell pluripotency. Theranostics. 2020;10:353–70.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Arab K, Park YJ, Lindroth AM, Schafer A, Oakes C, Weichenhan D, et al. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell. 2014;55:604–14.PubMedCrossRef Arab K, Park YJ, Lindroth AM, Schafer A, Oakes C, Weichenhan D, et al. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell. 2014;55:604–14.PubMedCrossRef
100.
Zurück zum Zitat Arab K, Karaulanov E, Musheev M, Trnka P, Schafer A, Grummt I, et al. GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nat Genet. 2019;51:217–23.PubMedPubMedCentralCrossRef Arab K, Karaulanov E, Musheev M, Trnka P, Schafer A, Grummt I, et al. GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nat Genet. 2019;51:217–23.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Canzio D, Nwakeze CL, Horta A, Rajkumar SM, Coffey EL, Duffy EE, et al. Antisense lncRNA Transcription Mediates DNA Demethylation to Drive Stochastic Protocadherin alpha Promoter Choice. Cell. 2019;177:639-53 e15.PubMedPubMedCentralCrossRef Canzio D, Nwakeze CL, Horta A, Rajkumar SM, Coffey EL, Duffy EE, et al. Antisense lncRNA Transcription Mediates DNA Demethylation to Drive Stochastic Protocadherin alpha Promoter Choice. Cell. 2019;177:639-53 e15.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Lin R, Zhong X, Zhou Y, Geng H, Hu Q, Huang Z, et al. R-loopBase: a knowledgebase for genome-wide R-loop formation and regulation. Nucleic Acids Res. 2021;50(D1):D303–15.PubMedCentralCrossRef Lin R, Zhong X, Zhou Y, Geng H, Hu Q, Huang Z, et al. R-loopBase: a knowledgebase for genome-wide R-loop formation and regulation. Nucleic Acids Res. 2021;50(D1):D303–15.PubMedCentralCrossRef
103.
Zurück zum Zitat Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J, et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature. 2013;503:371–6.PubMedPubMedCentralCrossRef Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J, et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature. 2013;503:371–6.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Lu SC, Mato JM. S-adenosylmethionine in liver health, injury, and cancer. Physiol Rev. 2012;92:1515–42.PubMedCrossRef Lu SC, Mato JM. S-adenosylmethionine in liver health, injury, and cancer. Physiol Rev. 2012;92:1515–42.PubMedCrossRef
105.
Zurück zum Zitat Zhou J, Yang L, Zhong T, Mueller M, Men Y, Zhang N, et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat Commun. 2015;6:10221.PubMedCrossRef Zhou J, Yang L, Zhong T, Mueller M, Men Y, Zhang N, et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nat Commun. 2015;6:10221.PubMedCrossRef
106.
Zurück zum Zitat Zhou J, Xu J, Zhang L, Liu S, Ma Y, Wen X, et al. Combined Single-Cell Profiling of lncRNAs and Functional Screening Reveals that H19 Is Pivotal for Embryonic Hematopoietic Stem Cell Development. Cell Stem Cell. 2019;24:285-98 e5.PubMedCrossRef Zhou J, Xu J, Zhang L, Liu S, Ma Y, Wen X, et al. Combined Single-Cell Profiling of lncRNAs and Functional Screening Reveals that H19 Is Pivotal for Embryonic Hematopoietic Stem Cell Development. Cell Stem Cell. 2019;24:285-98 e5.PubMedCrossRef
107.
Zurück zum Zitat Zeng L, Sun S, Han D, Liu Y, Liu H, Feng H, et al. Long non-coding RNA H19/SAHH axis epigenetically regulates odontogenic differentiation of human dental pulp stem cells. Cell Signal. 2018;52:65–73.PubMedCrossRef Zeng L, Sun S, Han D, Liu Y, Liu H, Feng H, et al. Long non-coding RNA H19/SAHH axis epigenetically regulates odontogenic differentiation of human dental pulp stem cells. Cell Signal. 2018;52:65–73.PubMedCrossRef
108.
Zurück zum Zitat Deng J, Mueller M, Geng T, Shen Y, Liu Y, Hou P, et al. H19 lncRNA alters methylation and expression of Hnf4alpha in the liver of metformin-exposed fetuses. Cell Death Dis. 2017;8:e3175.PubMedPubMedCentralCrossRef Deng J, Mueller M, Geng T, Shen Y, Liu Y, Hou P, et al. H19 lncRNA alters methylation and expression of Hnf4alpha in the liver of metformin-exposed fetuses. Cell Death Dis. 2017;8:e3175.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Spinelli M, Boucard C, Ornaghi S, Schoeberlein A, Irene K, Coman D, et al. Preimplantation factor modulates oligodendrocytes by H19-induced demethylation of NCOR2. JCI Insight. 2021;6(20):e132335.PubMedPubMedCentralCrossRef Spinelli M, Boucard C, Ornaghi S, Schoeberlein A, Irene K, Coman D, et al. Preimplantation factor modulates oligodendrocytes by H19-induced demethylation of NCOR2. JCI Insight. 2021;6(20):e132335.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Chen Z, Zheng J, Hong H, Chen D, Deng L, Zhang X, et al. lncRNA HOTAIRM1 promotes osteogenesis of hDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro. J Cell Physiol. 2020;235:8507–19.PubMedCrossRef Chen Z, Zheng J, Hong H, Chen D, Deng L, Zhang X, et al. lncRNA HOTAIRM1 promotes osteogenesis of hDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro. J Cell Physiol. 2020;235:8507–19.PubMedCrossRef
111.
Zurück zum Zitat Li X, Zhang Y, Pei W, Zhang M, Yang H, Zhong M, et al. LncRNA Dnmt3aos regulates Dnmt3a expression leading to aberrant DNA methylation in macrophage polarization. FASEB J. 2020;34:5077–91.PubMedCrossRef Li X, Zhang Y, Pei W, Zhang M, Yang H, Zhong M, et al. LncRNA Dnmt3aos regulates Dnmt3a expression leading to aberrant DNA methylation in macrophage polarization. FASEB J. 2020;34:5077–91.PubMedCrossRef
112.
Zurück zum Zitat Peng WX, Koirala P, Zhang W, Ni C, Wang Z, Yang L, et al. lncRNA RMST Enhances DNMT3 Expression through Interaction with HuR. Mol Ther. 2020;28:9–18.PubMedCrossRef Peng WX, Koirala P, Zhang W, Ni C, Wang Z, Yang L, et al. lncRNA RMST Enhances DNMT3 Expression through Interaction with HuR. Mol Ther. 2020;28:9–18.PubMedCrossRef
113.
Zurück zum Zitat Li MA, Amaral PP, Cheung P, Bergmann JH, Kinoshita M, Kalkan T, et al. A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation. Elife. 2017;6:e23468.PubMedPubMedCentralCrossRef Li MA, Amaral PP, Cheung P, Bergmann JH, Kinoshita M, Kalkan T, et al. A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation. Elife. 2017;6:e23468.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Zhang FF, Liu YH, Wang DW, Liu TS, Yang Y, Guo JM, et al. Obesity-induced reduced expression of the lncRNA ROIT impairs insulin transcription by downregulation of Nkx6.1 methylation. Diabetologia. 2020;63:811–24.PubMedCrossRef Zhang FF, Liu YH, Wang DW, Liu TS, Yang Y, Guo JM, et al. Obesity-induced reduced expression of the lncRNA ROIT impairs insulin transcription by downregulation of Nkx6.1 methylation. Diabetologia. 2020;63:811–24.PubMedCrossRef
115.
Zurück zum Zitat Geng X, Zhao J, Huang J, Li S, Chu W, Wang WS, et al. lnc-MAP3K13-7:1 Inhibits Ovarian GC Proliferation in PCOS via DNMT1 Downregulation-Mediated CDKN1A Promoter Hypomethylation. Mol Ther. 2021;29:1279–93.PubMedCrossRef Geng X, Zhao J, Huang J, Li S, Chu W, Wang WS, et al. lnc-MAP3K13-7:1 Inhibits Ovarian GC Proliferation in PCOS via DNMT1 Downregulation-Mediated CDKN1A Promoter Hypomethylation. Mol Ther. 2021;29:1279–93.PubMedCrossRef
116.
Zurück zum Zitat Nishiyama A, Mulholland CB, Bultmann S, Kori S, Endo A, Saeki Y, et al. Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation. Nat Commun. 2020;11:1222.PubMedPubMedCentralCrossRef Nishiyama A, Mulholland CB, Bultmann S, Kori S, Endo A, Saeki Y, et al. Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation. Nat Commun. 2020;11:1222.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Petryk N, Bultmann S, Bartke T, Defossez PA. Staying true to yourself: mechanisms of DNA methylation maintenance in mammals. Nucleic Acids Res. 2021;49:3020–32.PubMedCrossRef Petryk N, Bultmann S, Bartke T, Defossez PA. Staying true to yourself: mechanisms of DNA methylation maintenance in mammals. Nucleic Acids Res. 2021;49:3020–32.PubMedCrossRef
118.
Zurück zum Zitat Qin W, Wolf P, Liu N, Link S, Smets M, La Mastra F, et al. DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination. Cell Res. 2015;25:911–29.PubMedPubMedCentralCrossRef Qin W, Wolf P, Liu N, Link S, Smets M, La Mastra F, et al. DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination. Cell Res. 2015;25:911–29.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Liang Y, Peng Y. Gene body methylation facilitates the transcription of CTSG via antisense lncRNA AL136018.1 in dermatomyositic myoideum. Cell Biol Int. 2021;45:456–62.PubMedCrossRef Liang Y, Peng Y. Gene body methylation facilitates the transcription of CTSG via antisense lncRNA AL136018.1 in dermatomyositic myoideum. Cell Biol Int. 2021;45:456–62.PubMedCrossRef
120.
Zurück zum Zitat Hadji F, Boulanger MC, Guay SP, Gaudreault N, Amellah S, Mkannez G, et al. Altered DNA Methylation of Long Noncoding RNA H19 in Calcific Aortic Valve Disease Promotes Mineralization by Silencing NOTCH1. Circulation. 2016;134:1848–62.PubMedCrossRef Hadji F, Boulanger MC, Guay SP, Gaudreault N, Amellah S, Mkannez G, et al. Altered DNA Methylation of Long Noncoding RNA H19 in Calcific Aortic Valve Disease Promotes Mineralization by Silencing NOTCH1. Circulation. 2016;134:1848–62.PubMedCrossRef
121.
Zurück zum Zitat Yang Z, Xu F, Wang H, Teschendorff AE, Xie F, He Y. Pan-cancer characterization of long non-coding RNA and DNA methylation mediated transcriptional dysregulation. EBioMedicine. 2021;68:103399.PubMedPubMedCentralCrossRef Yang Z, Xu F, Wang H, Teschendorff AE, Xie F, He Y. Pan-cancer characterization of long non-coding RNA and DNA methylation mediated transcriptional dysregulation. EBioMedicine. 2021;68:103399.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28.PubMedPubMedCentralCrossRef Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Morenos L, Chatterton Z, Ng JL, Halemba MS, Parkinson-Bates M, Mechinaud F, et al. Hypermethylation and down-regulation of DLEU2 in paediatric acute myeloid leukaemia independent of embedded tumour suppressor miR-15a/16-1. Mol Cancer. 2014;13:123.PubMedPubMedCentralCrossRef Morenos L, Chatterton Z, Ng JL, Halemba MS, Parkinson-Bates M, Mechinaud F, et al. Hypermethylation and down-regulation of DLEU2 in paediatric acute myeloid leukaemia independent of embedded tumour suppressor miR-15a/16-1. Mol Cancer. 2014;13:123.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689–93.PubMedPubMedCentralCrossRef Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689–93.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Fang H, Bonora G, Lewandowski JP, Thakur J, Filippova GN, Henikoff S, et al. Trans- and cis-acting effects of Firre on epigenetic features of the inactive X chromosome. Nat Commun. 2020;11:6053.PubMedPubMedCentralCrossRef Fang H, Bonora G, Lewandowski JP, Thakur J, Filippova GN, Henikoff S, et al. Trans- and cis-acting effects of Firre on epigenetic features of the inactive X chromosome. Nat Commun. 2020;11:6053.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Liu YW, Xia R, Lu K, Xie M, Yang F, Sun M, et al. LincRNAFEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-Mediated H3K4me2 demethylation. Mol Cancer. 2017;16:39.PubMedPubMedCentralCrossRef Liu YW, Xia R, Lu K, Xie M, Yang F, Sun M, et al. LincRNAFEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-Mediated H3K4me2 demethylation. Mol Cancer. 2017;16:39.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Huang MD, Chen WM, Qi FZ, Sun M, Xu TP, Ma P, et al. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer. 2015;14:165.PubMedPubMedCentralCrossRef Huang MD, Chen WM, Qi FZ, Sun M, Xu TP, Ma P, et al. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer. 2015;14:165.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Hanly DJ, Esteller M, Berdasco M. Interplay between long non-coding RNAs and epigenetic machinery: emerging targets in cancer? Philos Trans R Soc Lond B Biol Sci. 2018;373(1748):20170074.PubMedPubMedCentralCrossRef Hanly DJ, Esteller M, Berdasco M. Interplay between long non-coding RNAs and epigenetic machinery: emerging targets in cancer? Philos Trans R Soc Lond B Biol Sci. 2018;373(1748):20170074.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472:120–4.PubMedPubMedCentralCrossRef Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472:120–4.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Gu P, Chen X, Xie R, Han J, Xie W, Wang B, et al. lncRNA HOXD-AS1 Regulates Proliferation and Chemo-Resistance of Castration-Resistant Prostate Cancer via Recruiting WDR5. Mol Ther. 2017;25:1959–73.PubMedPubMedCentralCrossRef Gu P, Chen X, Xie R, Han J, Xie W, Wang B, et al. lncRNA HOXD-AS1 Regulates Proliferation and Chemo-Resistance of Castration-Resistant Prostate Cancer via Recruiting WDR5. Mol Ther. 2017;25:1959–73.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Xia M, Liu J, Liu S, Chen K, Lin H, Jiang M, et al. Ash1l and lnc-Smad3 coordinate Smad3 locus accessibility to modulate iTreg polarization and T cell autoimmunity. Nat Commun. 2017;8:15818.PubMedPubMedCentralCrossRef Xia M, Liu J, Liu S, Chen K, Lin H, Jiang M, et al. Ash1l and lnc-Smad3 coordinate Smad3 locus accessibility to modulate iTreg polarization and T cell autoimmunity. Nat Commun. 2017;8:15818.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Li Y, Tan Z, Zhang Y, Zhang Z, Hu Q, Liang K, et al. A noncoding RNA modulator potentiates phenylalanine metabolism in mice. Science. 2021;373:662–73.PubMedCrossRef Li Y, Tan Z, Zhang Y, Zhang Z, Hu Q, Liang K, et al. A noncoding RNA modulator potentiates phenylalanine metabolism in mice. Science. 2021;373:662–73.PubMedCrossRef
133.
134.
Zurück zum Zitat Sztuba-Solinska J, Chavez-Calvillo G, Cline SE. Unveiling the druggable RNA targets and small molecule therapeutics. Bioorg Med Chem. 2019;27:2149–65.PubMedPubMedCentralCrossRef Sztuba-Solinska J, Chavez-Calvillo G, Cline SE. Unveiling the druggable RNA targets and small molecule therapeutics. Bioorg Med Chem. 2019;27:2149–65.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Hargrove AE. Small molecule-RNA targeting: starting with the fundamentals. Chem Commun (Camb). 2020;56:14744–56.CrossRef Hargrove AE. Small molecule-RNA targeting: starting with the fundamentals. Chem Commun (Camb). 2020;56:14744–56.CrossRef
136.
137.
Zurück zum Zitat Ren Y, Wang YF, Zhang J, Wang QX, Han L, Mei M, et al. Targeted design and identification of AC1NOD4Q to block activity of HOTAIR by abrogating the scaffold interaction with EZH2. Clin Epigenetics. 2019;11:29.PubMedPubMedCentralCrossRef Ren Y, Wang YF, Zhang J, Wang QX, Han L, Mei M, et al. Targeted design and identification of AC1NOD4Q to block activity of HOTAIR by abrogating the scaffold interaction with EZH2. Clin Epigenetics. 2019;11:29.PubMedPubMedCentralCrossRef
Metadaten
Titel
LncRNA-mediated DNA methylation: an emerging mechanism in cancer and beyond
verfasst von
Wanxu Huang
Hua Li
Qingsong Yu
Wei Xiao
Dan Ohtan Wang
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Journal of Experimental & Clinical Cancer Research / Ausgabe 1/2022
Elektronische ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-022-02319-z

Weitere Artikel der Ausgabe 1/2022

Journal of Experimental & Clinical Cancer Research 1/2022 Zur Ausgabe

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.