Skip to main content
Erschienen in: Experimental Hematology & Oncology 1/2021

Open Access 01.12.2021 | Letter to the Editor

The degree of microsatellite instability predicts response to PD-1 blockade immunotherapy in mismatch repair-deficient/microsatellite instability-high colorectal cancers

verfasst von: Qiao-Xuan Wang, Chun-Hua Qu, Yuan-Hong Gao, Pei-Rong Ding, Jing-Ping Yun, Dan Xie, Mu-Yan Cai

Erschienen in: Experimental Hematology & Oncology | Ausgabe 1/2021

Abstract

The development of programmed cell death-1 inhibitor (PD-1) has shed light on the treatment of tumors with deficiencies in DNA mismatch repair system or microsatellite instability (dMMR/MSI). However, predicting the subset in this group that will benefit from PD-1 blockade remains a challenge. In this study, we aimed to investigate the relationship between the degree of microsatellite instability and the responses to anti-PD-1 immunotherapy. 33 patients with colorectal adenocarcinoma who had a known MSI status and received anti-PD-1 immunotherapy were included. PCR results for MSI of the whole cohort were collected and treatment response was evaluated. Our data indicated that objective response rate (ORR) in instability-high group (instability loci ≥ 3) was significantly higher than ORR in instability-intermediate group (13/16 versus 6/17, P = 0.008). Besides, patients in instability-high group had significant longer progression-free survival (log-rank test, P = 0.004), and a significant increase in T lymphocyte infiltration and cytolytic activity in tumors. Future study might implement the intensity of microsatellite instability for more delicate selection for anti-PD-1 therapy in patient with dMMR/MSI-H tumors.

To the Editor

Defects in DNA mismatch repair (dMMR) promote a frequent insertion and/or deletion hypermutable state in nucleotide repeats regions termed microsatellite instability-high (MSI-H) [1]. Colorectal cancers (CRCs) with dMMR/MSI-H have favorable response to the programmed cell death-1 (PD-1) blockade immunotherapy [2]. However, there are still 45–70% of such tumors which do not respond to immune checkpoint blockade, so predicting the subset that will benefit from PD-1 blockade remains a challenge [35]. In the current study, we aimed to evaluate whether the degree of microsatellite instability can predict the diversity of responses to anti-PD-1 immunotherapy in dMMR/MSI-H colorectal cancers.

Methods

Patients’ data were collected from a prospectively maintained database in Sun Yat-sen University Cancer Center, Guangzhou, China. Inclusion criteria were as follows: (1) pathologically confirmed colorectal adenocarcinoma; (2) a known MSI status; (3) received at least one dose of anti-PD-1 therapy. Patients with tumors demonstrating no instability loci (microsatellite stable, MSS) were excluded, except for those whose tumor was proved to be dMMR. MSI or dMMR status was prospectively determined using the American National Cancer Institute-recommended Polymerase Chain Reaction (PCR) for MSI or immunohistochemistry (IHC) for dMMR. IHC analyses of CD3 and CD8 were performed using the standard methods on pretreatment specimens. The ethical committees in our center approved this study procedure and waive the necessity of informed consult.
Treatment response was evaluated every two cycles of treatment according to RECIST v1.1. Objective response rate (ORR) was defined as the portion of patients with complete response (CR) or partial response (PR). Progression-free survival (PFS) was calculated from the date of initial anti-PD-1 treatment to either the date of the first progression or death due to CRC. ORRs between groups were compared by χ2 test. PFS was estimated using the Kaplan–Meier method and compared between groups with the log-rank test. Multivariate analyses were performed using the Cox proportional hazards model.

Results

Thirty-three patients were included in the study, with eighteen men and a median age of 45 years (range, 19 to 67). Baseline characteristics were shown in Table 1. Two patients were diagnosed with stage II disease (one local recurrent), seven patients were with stage III disease, while 24 patients were with stage IV disease. Among them, nineteen patients had received ≥ 2 lines of prior systemic therapies before anti-PD-1 immunotherapy. Thirteen patients were treated with a single-agent anti-PD-1 antibody, and the median cycles of therapy given were 8 (range 1–31).
Table 1
Baseline characteristics of patients according to the degrees of MSI
Variables
Instability loci < 3
Instability loci ≥ 3
P value
n
17
16
 
Age-median (range), year
45.0 (19.0–64.0)
45.5 (30.0–67.0)
0.783
Sex-n
  
0.112
 Male
7
11
 
 Female
10
5
 
Tumor stage-n
  
0.619
 II/III
4
5
 
 IV
13
11
 
Lines of therapy-n
  
0.119
 First line
5
9
 
 Second or late line
12
7
 
Combined with chemotherapy-n
  
0.055
 Yes
13
7
 
 No
4
9
 
As shown in Table 2, we found that three patients identified as d-MMR but with microsatellite stability (MSS) disease had no response to anti-PD-1 treatment. By contrast, all patients with five instability loci achieved PR or CR (Additional file 1: Figure S1). To investigate the relationship between the degree of MSI and responses to anti-PD-1 therapy, we classified the patients into instability-intermediate (instability loci < 3) and instability-high subgroups (instability loci ≥ 3) according to the degrees of MSI. Baseline characteristics were comparable between the two groups (Table 1). However, ORR in instability-high group was significantly higher than ORR in instability-intermediate group (13/16 versus 6/17, P = 0.008).
Table 2
Treatment response and ORR of patients stratified by the number of instability loci
Number of instability loci
Number of cases
CR*
PR
SD
PD
ORR
0
3
0
0
2
1
0
1
5
0
0
2
3
0
2
9
2
4
1
2
0.67
3
9
5
2
1
1
0.78
4
4
2
1
1
0
0.75
5
3
1
2
0
0
1
CR complete response, PR partial response, SD stable disease, PD progressive disease, ORR objective response rate
*For patients who underwent surgical resection and had a pathological confirmed complete response, treatment response was recorded as CR
During a median follow-up of 11.2 months (range, 2.0–36.3), twelve patients had the disease progression. All patients remained alive at the wrighting of this article. Univariable analysis showed that the degree of microsatellite instability was associated with PFS after anti-PD-1 immunotherapy (Additional file 1: Table S1). Patients in instability-high subgroup have significant longer PFS (log-rank test, P = 0.004, Fig. 1). After excluding the confounding effects of sex, age and combined treatment by multivariate Cox proportional hazard model, instability-high was demonstrated to be an independent predictor for the longer PFS (HR = 0.136 [0.024–0.781], P = 0.025; Additional file 1: Table S2). Further univariable analysis of the location of the MSI loci showed that mutation in the loci of BAT25 and BAT26 were associated with longer PFS (Additional file 1: Table S3). To exclude the confounding effect of the number of instability loci, we did the multivariate cox regression for PFS, and BAT25 retains its predictive capability (HR = 0.037 [0.002–0.571], P = 0.018; Additional file 1: Table S4).
IHC analyses of CD3 and CD8 were performed and the number of CD3+ and CD8+ T cell infiltration per mm2 was counted in each group. A significant increase in CD3+ and CD8+ T lymphocyte infiltration and cytolytic activity were also found in tumors in instability-high subgroup (Fig. 2).

Discussion

Our study indicated that the degree of microsatellite instability could predict a patient’s response to anti-PD-1 immunotherapy, and was an independent predictor for PFS in dMMR/MSI-H CRCs. This is in line with the recent finding in mouse models of microsatellite instability [6]. Underling mechanisms might involve the increased tumors immunogenicity and lymphocytic infiltration, as MSI-H reflects a genome-wide instability which eventually results in high mutational burden.
The main limitation of this study is the small sample size. But our data suggest that responds to anti-PD-1 are substantially diverse within dMMR tumors and that it highlights the possibility of more delicate selection for anti-PD-1 therapy in patients with dMMR/MSI-H.

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s40164-020-00193-z.

Acknowledgements

None.
The ethical committees in Sun Yat-sen University Center approved this study procedure and waive the necessity of informed consult for the retrospective design of this study.
Not applicable.

Competing interests

All authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Kim TM, Laird PW, Park PJ. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell. 2013;155(4):858–68.CrossRef Kim TM, Laird PW, Park PJ. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell. 2013;155(4):858–68.CrossRef
2.
Zurück zum Zitat Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.CrossRef Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.CrossRef
3.
Zurück zum Zitat Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36(8):773–9.CrossRef Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36(8):773–9.CrossRef
4.
Zurück zum Zitat Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.CrossRef Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.CrossRef
5.
Zurück zum Zitat Le DT, Kim TW, Van Cutsem E, Geva R, Jäger D, Hara H, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 2020;38(1):11–9.CrossRef Le DT, Kim TW, Van Cutsem E, Geva R, Jäger D, Hara H, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol. 2020;38(1):11–9.CrossRef
6.
Zurück zum Zitat Mandal R, Samstein RM, Lee KW, Havel JJ, Wang H, Krishna C, et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science. 2019;364(6439):485–91.CrossRef Mandal R, Samstein RM, Lee KW, Havel JJ, Wang H, Krishna C, et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science. 2019;364(6439):485–91.CrossRef
Metadaten
Titel
The degree of microsatellite instability predicts response to PD-1 blockade immunotherapy in mismatch repair-deficient/microsatellite instability-high colorectal cancers
verfasst von
Qiao-Xuan Wang
Chun-Hua Qu
Yuan-Hong Gao
Pei-Rong Ding
Jing-Ping Yun
Dan Xie
Mu-Yan Cai
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Experimental Hematology & Oncology / Ausgabe 1/2021
Elektronische ISSN: 2162-3619
DOI
https://doi.org/10.1186/s40164-020-00193-z

Weitere Artikel der Ausgabe 1/2021

Experimental Hematology & Oncology 1/2021 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.