Skip to main content
Erschienen in: Respiratory Research 1/2011

Open Access 01.12.2011 | Research

Reduction of exacerbations by the PDE4 inhibitor roflumilast - the importance of defining different subsets of patients with COPD

verfasst von: Stephen I Rennard, Peter MA Calverley, Udo M Goehring, Dirk Bredenbröker, Fernando J Martinez

Erschienen in: Respiratory Research | Ausgabe 1/2011

Abstract

Background

As chronic obstructive pulmonary disease (COPD) is a heterogeneous disease it is unlikely that all patients will benefit equally from a given therapy. Roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor, has been shown to improve lung function in moderate and severe COPD but its effect on exacerbations in unselected populations was inconclusive. This led to the question of whether a responsive subset existed that could be investigated further.

Methods

The datasets of two previous replicate, randomized, double-blind, placebo-controlled, parallel-group studies (oral roflumilast 500 μg or placebo once daily for 52 weeks) that were inconclusive regarding exacerbations were combined in a post-hoc, pooled analysis to determine whether roflumilast reduced exacerbations in a more precisely defined patient subset.

Results

The pooled analysis included 2686 randomized patients. Roflumilast significantly decreased exacerbations by 14.3% compared with placebo (p = 0.026). Features associated with this reduction were: presence of chronic bronchitis with or without emphysema (26.2% decrease, p = 0.001), presence of cough (20.9% decrease, p = 0.006), presence of sputum (17.8% decrease, p = 0.03), and concurrent use of inhaled corticosteroids (ICS; 18.8% decrease, p = 0.014). The incidence of adverse events was similar with roflumilast and placebo (81.5% vs 80.1%), but more patients in the roflumilast group had events assessed as likely or definitely related to the study drug (21.5% vs 8.3%).

Conclusions

This post-hoc, pooled analysis showed that roflumilast reduced exacerbation frequency in a subset of COPD patients whose characteristics included chronic bronchitis with/without concurrent ICS. These observations aided the design of subsequent phase 3 studies that prospectively confirmed the reduction in exacerbations with roflumilast treatment.

Trials registration

ClinicalTrials.gov identifiers: NCT00076089 and NCT00430729.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1465-9921-12-18) contains supplementary material, which is available to authorized users.

Competing interests

SIR has served on advisory boards and as a consultant for Almirall Prodesfarma, Aradigm Corporation; AstraZeneca, Boehringer Ingelheim, Defined Health, Eaton Associates, GlaxoSmithKline, MEDACorp, Mpex Pharmaceuticals, Novartis, Nycomed, Otsuka Pharmaceutical, Pfizer, Pulmatrix, Theravance, United BioSource Corporation, Uptake Medical, and VantagePoint. He has served as a speaker or a member of a speaker's bureau for: AstraZeneca, Novartis, Network for Continuing Education, Pfizer, and SOMA. He has also received research funding from AstraZeneca, BioMarck, Centocor, Novartis, and Nycomed.
PMAC has served on advisory boards for AstraZeneca, GlaxoSmithKline, Nycomed, and Novartis. He has received research funding from GlaxoSmithKline, Nycomed, and Boehringer Ingelheim, and has spoken at meetings supported by AstraZeneca, GlaxoSmithKline, and Nycomed.
FJM has been a member of advisory boards for GlaxoSmithKline, Schering Plough, Novartis, Nycomed, Genzyme, Forest/Almirall, MedImmune, AstraZeneca, Potomac, Bayer, Elan, Talecris, and Roche. He has been on the speaker's bureau for Boehringer Ingelheim, GlaxoSmithKline, France Foundation, MedEd, NACE, and AstraZeneca. He has also been a member of steering committees for studies supported by Altana/Nycomed, GlaxoSmithKline, Gilead, Actelion, Johnson/Johnson, Mpex, UCB, and the National Institutes of Health. He has been an investigator in trials supported by Boehringer Ingelheim and Actelion.
UMG and DB are employees of Nycomed GmbH, Konstanz, Germany.

Authors' contributions

SIR contributed to the conception and design of these studies, the acquisition of study data, and the analysis and interpretation of these data. He was fully involved in the drafting and revision of this manuscript, and provided final approval of its content ahead of submission. PMAC contributed to the conception and design of these studies, the acquisition of study data, and the analysis and interpretation of these data. He was fully involved in the drafting and revision of this manuscript, and provided final approval of its content ahead of submission. U-MG contributed to the conception and design of these studies, the acquisition of study data, and the analysis and interpretation of these data. He was fully involved in the drafting and revision of this manuscript, and provided final approval of its content ahead of submission. He had full access to all of the data in the study and he takes full responsibility for the integrity of all of the data and the accuracy of the data analysis, including and especially any adverse effects. DB contributed to the conception and design of these studies, the acquisition of study data, and the analysis and interpretation of these data. He was fully involved in the drafting and revision of this manuscript, and provided final approval of its content ahead of submission. FJM contributed to the conception and design of these studies, as well as the analysis and interpretation of these data. He was fully involved in the drafting and revision of this manuscript, and provided final approval of its content ahead of submission.
Abkürzungen
ANCOVA
Analysis of covariance
COPD
chronic obstructive pulmonary disease
FEV1
forced expiratory volume in 1 second
ICS
inhaled corticosteroids
PDE4
phosphodiesterase 4
SD
standard deviation
SE
standard error
SGRQ
St George's Respiratory Questionnaire.

Background

Chronic obstructive pulmonary disease (COPD) is a highly prevalent condition and a major cause of morbidity and mortality worldwide [13]. As the disease progresses, patients with COPD report more frequent exacerbations, which are associated with an increased mortality risk and greater health care utilization, hospital admissions and costs [4]. Worse, frequent exacerbations are associated with a faster decline in lung function and increased mortality [5].
Phosphodiesterase 4 (PDE4) inhibitors are effective anti-inflammatory agents in animal models and have been shown to reduce markers of inflammation in COPD [6, 7]. In a 6-month study in patients with moderate-to-severe COPD (post-bronchodilator mean forced expiratory volume in 1 second [FEV1] 54% predicted [8]), the PDE4 inhibitor roflumilast improved lung function and reduced exacerbations [9]. This led to two subsequent 12-month studies (M2-111, reported here for the first time, and M2-112 [10]) in patients with severe-to-very-severe COPD, which confirmed the positive effect of roflumilast on lung function. Although neither study demonstrated a significant effect on exacerbations, which was a co-primary endpoint, a trend towards lower overall exacerbation rates with roflumilast was seen in each study.
As COPD is a highly heterogeneous disease [11], the possibility that a subset of the COPD population might be more responsive to roflumilast-induced reduction in exacerbations was entertained. To test this hypothesis, the results from the two 12-month studies, that were inconclusive with regard to exacerbations, were pooled and a series of post-hoc analyses performed. The results of these analyses are presented in the current report. The heterogeneity of the COPD patient population is well recognized. However, clinically meaningful subsets of patients with COPD have been difficult to define and several large observational studies are currently underway to attempt to address this problem [1214]. The current post-hoc analysis of pooled clinical trial data was conducted in order to define a subset of patients with COPD who are likely to respond to a specific therapy - a 'hypothesis-generating' exercise that has been confirmed in subsequent clinical trials [15]. The approach described in the current study may be applicable to define other meaningful subsets of patients with COPD.

Methods

Patients and study design

M2-111 was conducted between December 2003 and December 2005 in 188 centers in 6 countries, and M2-112 between January 2003 and October 2004 in 159 centers in 14 countries. Full details of the methodology, patient selection and efficacy assessments have been published previously for M2-112 [10]. (For details of the clinical design of both trials, and a CONSORT diagram for the unpublished study M2-111, see Additional file 1, Appendix 1, and Additional file 1, Figure S1).
The studies were approved by local ethical review committees (see Additional file 1, Appendix 2 for a list of committee names and approval numbers) and performed in accordance with the Declaration of Helsinki and Good Clinical Practice Guidelines.

Statistical analysis

The statistical analysis was performed as described previously [10] with some modifications (i.e., all data were re-analyzed based on the methods used in two other 52-week studies) [15]. The primary endpoint (pre-bronchodilator FEV1) and main secondary lung function endpoint (post-bronchodilator FEV1) were evaluated using a repeated measures analysis of covariance (ANCOVA, mixed effects model). This model is able to handle missing data points by taking into account all available data from scheduled visits of the treatment period and the correlation in repeated measurements. The co-primary endpoint of rate of moderate or severe exacerbations per patient per year was defined by the need for oral or parenteral corticosteroid treatment, hospitalization, or death, and was evaluated using a Poisson regression model with a correction for over-dispersion. The natural logarithm of the trial duration, in terms of years, was included in this model as an offset variable to correct for the time a patient participated in the trial. Rate ratios from this model were expressed as percent reductions. Time to onset of exacerbations was analyzed using a Cox proportional hazards regression model. For the regression models (ANCOVA, Poisson, and Cox), the covariates included treatment (roflumilast/placebo), age, sex, smoking status (current/former smoker), study, concomitant treatment with inhaled corticosteroids (ICS) and country pool (only for the overall population). In the Poisson regression analysis, baseline post-bronchodilator FEV1 (% of predicted value) was also included as a covariate. Adverse events were analyzed using descriptive statistics.
Data are presented as mean and standard deviation (SD), unless otherwise indicated. Safety endpoints were analyzed using descriptive statistics. Results are presented as mean ± SD or standard error (SE) as appropriate, with data derived from the statistical modeling being adjusted means. All p values are reported two-sided with a level of significance of 0.05.
To identify subpopulations, the two primary endpoints were analyzed additionally in subgroups stratified by sex, smoking status, concomitant use of ICS, concomitant use of anticholinergics, study completion status, COPD severity (severe, very severe), history of chronic bronchitis or emphysema (investigator-diagnosed), as well as cough and sputum score during the week before randomization.

Results

Patients

Of 3630 patients enrolled into the run-in period, 2686 patients met the inclusion criteria and were randomized to treatment; 1905 patients completed the studies (Figure 1). The reasons for withdrawal were similar between groups except for adverse events, which occurred more frequently with roflumilast.
Demographics and baseline characteristics of the randomized patients were comparable between treatments (Table 1). Patients were predominantly male, and spirometric severity was consistent with severe-to-very-severe disease [8]. FEV1 reversibility to short-acting β2-agonists was similar in both treatment groups. As the inclusion criterion of FEV1 reversibility to short-acting β2-agonists ≤15% was defined only in study M2-112, mean reversibility was lower in M2-112 (11%) than in M2-111 (19%). All other demographic and baseline characteristics were comparable (or with only small differences not considered clinically relevant) between the two studies. On study entry and during the course of the studies, about 60% of the patients continued to receive ICS, while 60% continued to receive short-acting anticholinergics (Table 1).
Table 1
Demographics and baseline characteristics
 
Pooled study population
M2-111
M2-112
Characteristics
Roflumilast
Placebo
Roflumilast
Placebo
Roflumilast
Placebo
No. of patients
1327
1359
567
606
760
753
Age (years)
64.7 (9.2)
64.4 (8.9)
64 (8.7)
64 (8.8)
65 (9.6)
64 (9.1)
Male sex, n (%)
958 (72.2)
974 (71.7)
387 (68.3)
400 (66.0)
571 (75.1)
574 (76.2)
Body mass index, kg/m2
25.7 (5.3)
25.7 (5.4)
26.0 (5.7)
25.8 (5.7)
25.4 (5.0)
25.6 (5.1)
Smoking status
      
   Current smokers, n (%)
529 (40)
530 (39)
240 (42)
265 (44)
289 (38)
265 (35)
   Former smokers, n (%)
798 (60)
829 (61)
327 (58)
341 (56)
471 (62)
488 (65)
   Pack-years (± SD)
46 (25.6)
48 (26.6)
50 (28.2)
51 (26.7)
42 (22.9)
45 (26.2)
Pre-bronchodilator FEV1 (L)
1.0 (0.4)
1.0 (0.3)
0.96 (0.4)
0.93 (0.3)
1.04 (0.4)
1.06 (0.3)
Post-bronchodilator FEV1 (L)
1.13 (0.4)
1.13 (0.4)
1.12 (0.4)
1.09 (0.4)
1.13 (0.4)
1.15 (0.4)
Post-bronchodilator FEV1 (% predicted)
37.1 (10.5)
36.8 (9.9)
36.8 (10.7)
36.1 (9.7)
37.3 (10.3)
37.3 (9.9)
Reversibility:
      
   Change in FEV1 (mL)
126.9 (140.1)
125.8 (149.1)
165.6 (142.8)
160.9 (150.0)
98.1 (130.9)
97.6 (142.4)
   Change in FEV1 (%)
14.6 (16.4)
14.4 (16.4)
19.4 (17.1)
19.1 (17.6)
11.0 (14.8)
10.6 (14.4)
FEV1/FVC (%)
41.8 (11.3)
41.8 (10.7)
43.3 (10.7)
43.1 (10.1)
40.6 (11.5)
40.7 (11.2)
COPD severity, n (%)
      
   Very severe COPD
329 (24.8)
345 (25.4)
148 (26.1)
169 (27.9)
181 (23.8)
176 (23.4)
   Severe COPD
864 (65.1)
909 (66.9)
356 (62.8)
399 (65.8)
508 (66.8)
510 (67.7)
COPD history, n (%)
      
   Emphysema
352 (26.5)
413 (30.4)
193 (34.0)
234 (38.6)
159 (20.9)
179 (23.8)
   Chronic bronchitis ± emphysema
817 (61.6)
847 (62.3)
374 (66.0)
372 (61.4)
443 (58.3)
475 (63.1)
Pre-study medication for COPD, n (%)*
1273 (96)
1291 (95)
537 (95)
557 (92)
736 (97)
734 (98)
   Inhaled short-acting β agonists
729 (55)
734 (54)
315 (56)
333 (55)
414 (55)
401 (53)
   Inhaled corticosteroids
579 (44)
588 (43)
218 (38)
225 (37)
361 (48)
363 (48)
   Inhaled short-acting anticholinergics
549 (41)
570 (42)
189 (33)
192 (32)
360 (47)
378 (50)
   Inhaled long-acting β2-agonists
353 (27)
379 (28)
143 (25)
140 (23)
210 (28)
239 (32)
   Xanthines
320 (24)
316 (23)
113 (20)
118 (20)
207 (27)
198 (26)
   Inhaled combination of β2-agonists and short-acting anticholinergics
323 (24)
314 (23)
168 (30)
174 (29)
155 (20)
140 (19)
   Inhaled combination of corticosteroids and long-acting β2-agonists
260 (20)
263 (19)
131 (23)
139 (23)
129 (17)
124 (17)
Concomitant short-acting anticholinergics, n (%)
786 (59)
818 (60)
334 (59)
350 (58)
452 (60)
468 (62)
Concomitant inhaled corticosteroids, n (%)
809 (61)
813 (60)
328 (58)
332 (55)
481 (63)
481 (64)
Data are expressed as mean (SD), unless otherwise stated.
* Patients could have received more than one of these medications.

Exacerbations

The rate of moderate-to-severe exacerbations in the pooled analysis was 14.3% lower with roflumilast compared with placebo (0.52 vs 0.61 exacerbations per year; p = 0.026, Table 2 and Figure 2). However, the median time to first moderate or severe exacerbation was comparable in the roflumilast and placebo groups (120 and 126 days, respectively, p = 0.236).
Table 2
Analysis of exacerbations (moderate to severe)
 
Roflumilast
Placebo
Effect size
Characteristic
n
Rate
n
Rate
Rate ratio (SE)
Change (%)
p value
   M2-111
567
0.595
606
0.692
0.860 (0.085)
-14.0
0.129
   M2-112
760
0.455
753
0.537
0.848 (0.081)
-15.2
0.085
Pooled results
       
Overall
1327
0.523
1359
0.610
0.857 (0.059)
-14.3
0.026
Sex
       
   Female
369
0.612
385
0.648
0.943 (0.117)
-5.7
0.637
   Male
958
0.495
974
0.609
0.813 (0.071)
-18.7
0.018
Smoking status
       
   Current smoker
529
0.529
530
0.643
0.823 (0.094)
-17.7
0.086
   Former smoker
798
0.568
829
0.663
0.857 (0.078)
-14.3
0.092
Concomitant treatment
      
   ICS
809
0.720
813
0.886
0.812 (0.068)
-18.8
0.014
   No ICS
518
0.424
546
0.460
0.923 (0.124)
-7.7
0.550
Concomitant treatment
     
   Short-acting anticholinergics
786
0.706
818
0.864
0.817 (0.066)
-18.3
0.012
   No short-acting anticholinergics
541
0.368
541
0.370
0.995 (0.147)
-0.5
0.974
COPD severity
       
   Very severe COPD
329
0.738
345
0.885
0.833 (0.101)
-16.7
0.132
   Severe COPD
864
0.526
909
0.609
0.864 (0.080)
-13.6
0.113
COPD history
       
Emphysema
352
0.579
413
0.586
0.989 (0.120)
-1.1
0.925
Chronic bronchitis ± emphysema
817
0.486
847
0.659
0.738 (0.068)
-26.2
0.001
Chronic bronchitis ± emphysema with concomitant ICS
492
0.608
493
0.871
0.698 (0.077)
-30.2
0.001
Chronic bronchitis ± emphysema: no ICS
325
0.391
354
0.462
0.845 (0.140)
-15.5
0.310
Cough score at Week 0
      
   ≥ 1 (average/day)
896
0.560
939
0.708
0.791 (0.067)
-20.9
0.006
   < 1 (average/day)
395
0.523
385
0.508
1.030 (0.142)
3.0
0.830
Sputum score at Week 0
      
   ≥ 1 (average/day)
829
0.576
862
0.700
0.822 (0.074)
-17.8
0.030
   < 1 (average/day)
458
0.512
460
0.549
0.933 (0.113)
-6.7
0.565
Study completion status
       
   Completers
894
0.453
1011
0.573
0.790 (0.064)
-21
0.004
   Non-completers
433
1.126
348
1.155
0.975 (0.113)
-2.5
0.826
Rates (per patient/year), Rate ratio and two-sided p-values (significance level 5%) are based on a Poisson regression model with the following factors and covariates: treatment, age, sex, smoking status, baseline post-bronchodilator FEV1 (% predicted), study, concomitant treatment with ICS and country pool (only for the overall population).
There were several subgroups in which the exacerbation rate appeared lower with roflumilast compared with placebo (Table 2), including patients with chronic bronchitis with or without emphysema (26.2% reduction in exacerbation rate vs placebo; p = 0.001). Other subgroups, such as current vs former smokers or those based on spirometrically defined COPD severity, showed no or little difference in the exacerbation rate with roflumilast. Patients receiving concomitant ICS experienced an 18.8% reduction in exacerbations compared with placebo (p = 0.014). Patients not receiving ICS exhibited no clinical benefit compared with placebo (Table 2). A significant reduction in exacerbation rate in favor of roflumilast was also seen in the subgroup of patients receiving concomitant short-acting anticholinergic treatment (18.3%, p = 0.012).

Lung function

Treatment with roflumilast resulted in significant improvement in pre-bronchodilator FEV1 compared with placebo. In the combined analysis, the improvement was evident at Week 4 (first measured time point) and maintained throughout the 52 weeks of the studies. After 52 weeks, the change in pre-bronchodilator FEV1 from baseline with roflumilast versus placebo was 51 mL (SE 7 mL, p < 0.0001), while the change in post-bronchodilator FEV1 with roflumilast vs placebo was 53 mL (SE 8 mL, p < 0.0001) (Figure 3; and see Additional file 1, Table S1). In contrast to the effect on exacerbations, roflumilast consistently showed a significant improvement compared with placebo in pre-bronchodilator FEV1 in all subgroups; the same was seen for post-bronchodilator FEV1 (see Additional file 1, Table S1). In the group of patients with COPD associated with chronic bronchitis or combined emphysema and chronic bronchitis, those patients receiving concomitant ICS showed a greater improvement from baseline with roflumilast vs placebo (see Additional file 1, Table S1).

Health status

In the combined analysis, treatment with roflumilast resulted in no significant improvement in St George's Respiratory Questionnaire (SGRQ) total score compared with placebo. In contrast, in the subgroup analysis (Figure 4; and see Additional file 1, Table S2), a significant improvement in SGRQ total score was observed for individuals with chronic bronchitis (p = 0.0265). This difference was also evident in patients with chronic bronchitis who were concurrently treated with ICS (p = 0.0397).

Safety

Adverse events were similar to those reported for roflumilast in previous studies (see Additional file 1, Appendix 3). Importantly, roflumilast (compared with placebo) was not associated with an increase in adverse events in the subgroups that experienced a greater reduction in exacerbations with roflumilast compared with placebo (Table 3; and see Additional file 1, Appendix 3). Concomitant ICS did not affect the adverse event profile of roflumilast.
Table 3
Adverse events
Subgroup
All patients
COPD history
CB ± emphysema and ICS treatment
   
Emphysema
CB ± emphysema
With ICS
Without ICS
Treatment (n)
Rof (1327)
Pbo (1359)
Rof (352)
Pbo (413)
Rof (817)
Pbo (847)
Rof (492)
Pbo (493)
Rof (325)
Pbo (354)
Adverse events, n (% of patients)
All adverse events
1081 (81.5)
1089 (80.1)
309 (87.8)
344 (83.3)
642 (78.6)
673 (79.5)
402 (81.7)
399 (80.9)
240 (73.8)
274 (77.4)
All serious adverse events
263 (19.8)
264 (19.4)
73 (20.7)
81 (19.6)
154 (18.8)
152 (17.9)
112 (22.8)
109 (22.1)
42 (12.9)
43 (12.1)
Adverse events related to study medication
285 (21.5)
113 (8.3)
91 (25.9)
39 (9.4)
134 (16.4)
67 (7.9)
77 (15.7)
35 (7.1)
57 (17.5)
32 (9.0)
Adverse events leading to study discontinuation
235 (17.7)
136 (10.0)
52 (14.8)
40 (9.7)
94 (11.5)
56 (6.6)
65 (13.2)
40 (8.1)
29 (8.9)
16 (4.5)
Most common adverse events (≥ 5% of patients in any treatment group), %
COPD exacerbation
42.9
48.0
45.5
47.7
43.0
48.5
49.8
54.4
32.6
40.4
Diarrhea
12.1
2.9
18.5
3.4
7.1
3.1
8.3
3.2
5.2
2.8
Nausea
6.0
1.5
8.0
1.9
4.4
1.3
4.7
1.0
4.0
1.7
Weight loss
7.5
2.8
11.9
4.1
6.1
2.5
5.3
1.6
7.4
3.7
Nasopharyngitis
6.8
7.4
7.7
8.2
7.5
7.7
6.5
7.3
8.9
8.2
Pneumonia
2.8
4.0
1.7
2.9
3.5
4.1
4.3
5.7
2.5
2.0
Upper respiratory tract infection
5.4
6.3
7.4
9.2
5.4
5.5
4.5
5.1
6.8
6.2
Headache
6.9
3.0
8.5
5.3
5.6
2.1
6.1
2.2
4.9
2.0
Influenza
4.4
4.0
5.4
5.3
4.4
3.7
4.5
2.2
4.3
5.6
Rof = roflumilast; pbo = placebo

Discussion

PDE4 inhibitors have demonstrated an anti-inflammatory effect in animal models and patients with COPD [6, 7]. In two previous 12-month studies, in patients with severe-to-very-severe COPD, roflumilast improved lung function, although neither study demonstrated a significant effect on exacerbations [10]. Given the pleiotropic effects of PDE4 inhibition [16], we hypothesized that a roflumilast effect could be present in specific subgroups of patients with COPD. In addition, exacerbation rates in the individual trials were lower than expected. Combining the datasets of the two studies improved statistical power and allowed definition of the patients more likely to respond to roflumilast. In the combined dataset, a significant effect of roflumilast was observed for the entire population but, importantly, the subgroup analysis showed a preferential effect in patients with chronic bronchitis or with high cough or sputum scores in the week prior to randomization, and in patients taking concomitant ICS or anticholinergics. These results suggested that it is possible to identify a subset of patients that is more likely to benefit from roflumilast with regard to reduced exacerbations.
In subjects with chronic bronchitis, this post-hoc, pooled analysis suggested a benefit of roflumilast on health status as measured by the SGRQ. The difference, compared with placebo, of -1.073 units did not achieve the conventional minimum important difference of 4 units, but was statistically significant and similar to differences seen between therapy in other 1-year trials [17]. This is consistent with the benefit in SGRQ resulting from the reduction in exacerbations.
Interestingly, roflumilast demonstrated a consistent effect on airflow, assessed as both pre- and post-bronchodilator FEV1 across all subgroups. There are several possibilities why the effect on exacerbations may be limited to a subset of patients. First, the subsets may identify those individuals at greater risk for exacerbations. A therapeutic benefit can be observed only if the individuals are at risk. Alternatively, as roflumilast can affect many aspects of the inflammatory response, it is possible that an anti-inflammatory effect, such as reduction in airway edema, may account for the improved airflow and a different mechanism accounts for the reduced exacerbations.
The effects seen with roflumilast in symptomatic patients and in patients with chronic bronchitis are comparable with those obtained by ICS/long-acting bronchodilator combination therapy [1820]. The enhanced benefit of roflumilast in patients with chronic bronchitis is particularly interesting as this phenotype has been shown to be associated with serum markers indicative of increased systemic inflammation [21]. These patients are also at higher risk for mortality at a younger age [21]. The trend for a greater benefit in patients receiving concomitant ICS may be a marker of disease severity. This patient subgroup is at higher risk for exacerbations, indicated by the higher exacerbation rate in the placebo group in ICS-treated patients vs non ICS-treated patients (0.886 vs 0.460). That these individuals had been identified by their clinicians for treatment with ICS suggests that they were recognized as being at risk clinically and that further reductions in exacerbations and improved airflow were observed with roflumilast in this group suggests that a PDE4 inhibitor may add incremental value to ICS therapy.
Although the incidence of adverse events was comparable between treatment groups, there were more discontinuations due to adverse events with roflumilast compared with placebo. The majority of adverse events in both groups lasted less than 4 weeks and resolved with continued treatment. The incidence of treatment-related adverse events was low and similar to those reported previously [9, 18]. These treatment-related events included diarrhea, nausea, and headache, which are all adverse events known to be associated with PDE4 inhibitors [22]. Weight loss was more frequent with roflumilast treatment. Several serious adverse events and deaths occurred, as would be expected in this patient population. The number of deaths was higher in the placebo group and most fatal events were related to COPD. A slightly higher incidence of adverse events and serious adverse events was seen in patients receiving ICS; this was seen in both the roflumilast and placebo groups. Oropharyngeal adverse events typically associated with ICS treatment, such as oral candidiasis, dysphonia, and pharyngitis, as well as pneumonia, were more frequently reported in patients treated with ICS, but there was no indication that roflumilast increased ICS-associated adverse events. Importantly, subjects with chronic bronchitis who were more likely to benefit from roflumilast did not experience an increased incidence of adverse events. On the contrary, there was a trend for these individuals to have fewer of the adverse events (nausea, diarrhea, and weight loss) that are associated with PDE4 inhibitors.
There are limitations to the pooled analysis presented in this manuscript, which includes both fully published and previously unpublished results. The post-hoc nature of the comparisons, particularly those in various subsets, must be interpreted with caution and serve principally as hypothesis generating. However, these results were used to design two additional randomized trials that specifically evaluated patients with severe COPD associated with chronic bronchitis, a group expected to be more likely to experience reductions in exacerbations with roflumilast. In this defined population, a significant beneficial effect of roflumilast compared with placebo in both lung function and exacerbation rate was observed in both studies [15]. In this context, the sequence of studies is crucial. Following a phase 2 trial that showed promising results [9], two 'conventional' 12-month phase 2 trials (Study M2-111, reported here for the first time, and M2-112 [10]) were conducted, both of which showed improvements in FEV1 but demonstrated only a trend toward exacerbation reduction. The pooled analysis presented here demonstrated that a subset of the COPD population appeared to account for all the benefit with regard to exacerbations. This 'hypothesis' formed the basis of two subsequent trials [15] which demonstrated the efficacy of roflumilast for exacerbation reduction in this subset.
Novel therapies for COPD are urgently needed [11]. The current manuscript describes the successful use of a strategy for identification of a responding subset from clinical trial data that was then confirmed in two prospective, randomized, placebo-controlled clinical trials. At present, segmentation of meaningful sub-populations of COPD patients is difficult, although several large observational studies are addressing this question. The current study demonstrates that this goal can also be achieved by post-hoc analysis of responses to a clinical intervention.

Conclusions

This post-hoc, pooled analysis of two large-scale trials in patients with severe and very severe COPD showed a significant reduction in exacerbations with roflumilast treatment and identified a subgroup of patients who are most likely to benefit from treatment with roflumilast, namely those patients with chronic bronchitis. In addition there was a greater effect in those patients taking concomitant ICS. Identification of a subgroup of patients more likely to respond to therapy is consistent with the concept that the COPD population includes multiple phenotypes and is a step towards personalized medicine, matching therapy to phenotype [11, 23, 24]. Importantly, identification of a responding subset can facilitate drug development by increasing the ability of clinical trials to show a benefit. In this regard, the analysis presented in the current report was used to design subsequent clinical trials that have demonstrated the clinical efficacy of roflumilast in reducing COPD exacerbations. This is the first time such an approach has been used successfully to aid a drug development program in COPD.

Acknowledgements

The authors would like to thank all of the investigators who recruited and treated patients at the centers involved in these studies (see Additional file 2 for M2-111 and M2-112 investigators), and Manja Brose (Nycomed GmbH, Konstanz, Germany) for statistical analysis.
The studies in this report were supported by Nycomed GmbH, Konstanz, Germany, who provided funding for the design, collection, analysis and interpretation of data, and the writing and submission of the manuscript. Christine Groves and Caroline Howell, medical writers, and Paul Wilmott, a medical editor, for and on behalf of Caudex Medical, Oxford, UK, provided editorial assistance with the manuscript, supported by Nycomed GmbH, Konstanz, Germany.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

SIR has served on advisory boards and as a consultant for Almirall Prodesfarma, Aradigm Corporation; AstraZeneca, Boehringer Ingelheim, Defined Health, Eaton Associates, GlaxoSmithKline, MEDACorp, Mpex Pharmaceuticals, Novartis, Nycomed, Otsuka Pharmaceutical, Pfizer, Pulmatrix, Theravance, United BioSource Corporation, Uptake Medical, and VantagePoint. He has served as a speaker or a member of a speaker's bureau for: AstraZeneca, Novartis, Network for Continuing Education, Pfizer, and SOMA. He has also received research funding from AstraZeneca, BioMarck, Centocor, Novartis, and Nycomed.
PMAC has served on advisory boards for AstraZeneca, GlaxoSmithKline, Nycomed, and Novartis. He has received research funding from GlaxoSmithKline, Nycomed, and Boehringer Ingelheim, and has spoken at meetings supported by AstraZeneca, GlaxoSmithKline, and Nycomed.
FJM has been a member of advisory boards for GlaxoSmithKline, Schering Plough, Novartis, Nycomed, Genzyme, Forest/Almirall, MedImmune, AstraZeneca, Potomac, Bayer, Elan, Talecris, and Roche. He has been on the speaker's bureau for Boehringer Ingelheim, GlaxoSmithKline, France Foundation, MedEd, NACE, and AstraZeneca. He has also been a member of steering committees for studies supported by Altana/Nycomed, GlaxoSmithKline, Gilead, Actelion, Johnson/Johnson, Mpex, UCB, and the National Institutes of Health. He has been an investigator in trials supported by Boehringer Ingelheim and Actelion.
UMG and DB are employees of Nycomed GmbH, Konstanz, Germany.

Authors' contributions

SIR contributed to the conception and design of these studies, the acquisition of study data, and the analysis and interpretation of these data. He was fully involved in the drafting and revision of this manuscript, and provided final approval of its content ahead of submission. PMAC contributed to the conception and design of these studies, the acquisition of study data, and the analysis and interpretation of these data. He was fully involved in the drafting and revision of this manuscript, and provided final approval of its content ahead of submission. U-MG contributed to the conception and design of these studies, the acquisition of study data, and the analysis and interpretation of these data. He was fully involved in the drafting and revision of this manuscript, and provided final approval of its content ahead of submission. He had full access to all of the data in the study and he takes full responsibility for the integrity of all of the data and the accuracy of the data analysis, including and especially any adverse effects. DB contributed to the conception and design of these studies, the acquisition of study data, and the analysis and interpretation of these data. He was fully involved in the drafting and revision of this manuscript, and provided final approval of its content ahead of submission. FJM contributed to the conception and design of these studies, as well as the analysis and interpretation of these data. He was fully involved in the drafting and revision of this manuscript, and provided final approval of its content ahead of submission.
Literatur
1.
Zurück zum Zitat Chapman KR, Mannino DM, Soriano JB, Vermeire PA, Buist AS, Thun MJ, Connell C, Jemal A, Lee TA, Miravitlles M, Aldington S, Beasley R: Epidemiology and costs of chronic obstructive pulmonary disease. Eur Respir J. 2006, 27: 188-207. 10.1183/09031936.06.00024505.CrossRefPubMed Chapman KR, Mannino DM, Soriano JB, Vermeire PA, Buist AS, Thun MJ, Connell C, Jemal A, Lee TA, Miravitlles M, Aldington S, Beasley R: Epidemiology and costs of chronic obstructive pulmonary disease. Eur Respir J. 2006, 27: 188-207. 10.1183/09031936.06.00024505.CrossRefPubMed
2.
Zurück zum Zitat Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM: Global burden of COPD: systematic review and meta-analysis. Eur Respir J. 2006, 28: 523-532. 10.1183/09031936.06.00124605.CrossRefPubMed Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM: Global burden of COPD: systematic review and meta-analysis. Eur Respir J. 2006, 28: 523-532. 10.1183/09031936.06.00124605.CrossRefPubMed
3.
Zurück zum Zitat Pauwels RA, Rabe KF: Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet. 2004, 364: 613-620. 10.1016/S0140-6736(04)16855-4.CrossRefPubMed Pauwels RA, Rabe KF: Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet. 2004, 364: 613-620. 10.1016/S0140-6736(04)16855-4.CrossRefPubMed
4.
Zurück zum Zitat Spencer S, Calverley PM, Burge PS, Jones PW: Impact of preventing exacerbations on deterioration of health status in COPD. Eur Respir J. 2004, 23: 698-702. 10.1183/09031936.04.00121404.CrossRefPubMed Spencer S, Calverley PM, Burge PS, Jones PW: Impact of preventing exacerbations on deterioration of health status in COPD. Eur Respir J. 2004, 23: 698-702. 10.1183/09031936.04.00121404.CrossRefPubMed
5.
Zurück zum Zitat Soler-Cataluna JJ, Martinez-Garcia MA, Roman SP, Salcedo E, Navarro M, Ochando R: Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax. 2005, 60: 925-931. 10.1136/thx.2005.040527.CrossRefPubMedPubMedCentral Soler-Cataluna JJ, Martinez-Garcia MA, Roman SP, Salcedo E, Navarro M, Ochando R: Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax. 2005, 60: 925-931. 10.1136/thx.2005.040527.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Gamble E, Grootendorst DC, Brightling CE, Troy S, Qiu Y, Zhu J, Parker D, Matin D, Majumdar S, Vignola AM, Kroegel C, Morell F, Hansel TT, Rennard SI, Compton C, Amit O, Tat T, Edelson J, Pavord ID, Rabe KF, Barnes NC, Jeffery PK: Antiinflammatory effects of the phosphodiesterase-4 inhibitor cilomilast (Ariflo) in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003, 168: 976-982. 10.1164/rccm.200212-1490OC.CrossRefPubMed Gamble E, Grootendorst DC, Brightling CE, Troy S, Qiu Y, Zhu J, Parker D, Matin D, Majumdar S, Vignola AM, Kroegel C, Morell F, Hansel TT, Rennard SI, Compton C, Amit O, Tat T, Edelson J, Pavord ID, Rabe KF, Barnes NC, Jeffery PK: Antiinflammatory effects of the phosphodiesterase-4 inhibitor cilomilast (Ariflo) in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003, 168: 976-982. 10.1164/rccm.200212-1490OC.CrossRefPubMed
7.
Zurück zum Zitat Grootendorst DC, Gauw SA, Verhoosel RM, Sterk PJ, Hospers JJ, Bredenbroker D, Bethke TD, Hiemstra PS, Rabe KF: Reduction in sputum neutrophil and eosinophil numbers by the PDE4 inhibitor roflumilast in patients with COPD. Thorax. 2007, 62: 1081-1087. 10.1136/thx.2006.075937.CrossRefPubMedPubMedCentral Grootendorst DC, Gauw SA, Verhoosel RM, Sterk PJ, Hospers JJ, Bredenbroker D, Bethke TD, Hiemstra PS, Rabe KF: Reduction in sputum neutrophil and eosinophil numbers by the PDE4 inhibitor roflumilast in patients with COPD. Thorax. 2007, 62: 1081-1087. 10.1136/thx.2006.075937.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Global Initiative for Chronic Obstructive Lung Disease: Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease (updated 2009). 2009, Bethesda: National Heart, Lung and Blood Institute Global Initiative for Chronic Obstructive Lung Disease: Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease (updated 2009). 2009, Bethesda: National Heart, Lung and Blood Institute
9.
Zurück zum Zitat Rabe KF, Bateman ED, O'Donnell D, Witte S, Bredenbroker D, Bethke TD: Roflumilast - an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2005, 366: 563-571. 10.1016/S0140-6736(05)67100-0.CrossRefPubMed Rabe KF, Bateman ED, O'Donnell D, Witte S, Bredenbroker D, Bethke TD: Roflumilast - an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2005, 366: 563-571. 10.1016/S0140-6736(05)67100-0.CrossRefPubMed
10.
Zurück zum Zitat Calverley PM, Sanchez-Toril F, McIvor A, Teichmann P, Bredenbroeker D, Fabbri LM: Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007, 176: 154-161. 10.1164/rccm.200610-1563OC.CrossRefPubMed Calverley PM, Sanchez-Toril F, McIvor A, Teichmann P, Bredenbroeker D, Fabbri LM: Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007, 176: 154-161. 10.1164/rccm.200610-1563OC.CrossRefPubMed
11.
Zurück zum Zitat Rennard SI, Vestbo J: The many "small COPDs": COPD should be an orphan disease. Chest. 2008, 134: 623-627. 10.1378/chest.07-3059.CrossRefPubMed Rennard SI, Vestbo J: The many "small COPDs": COPD should be an orphan disease. Chest. 2008, 134: 623-627. 10.1378/chest.07-3059.CrossRefPubMed
13.
Zurück zum Zitat Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, Curran-Everett D, Silverman EK, Crapo JD: Genetic epidemiology of COPD (COPDGene) study design 2. COPD. 2010, 7: 32-43. 10.3109/15412550903499522.CrossRefPubMedPubMedCentral Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, Curran-Everett D, Silverman EK, Crapo JD: Genetic epidemiology of COPD (COPDGene) study design 2. COPD. 2010, 7: 32-43. 10.3109/15412550903499522.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Vestbo J, Anderson W, Coxson HO, Crim C, Dawber F, Edwards L, Hagan G, Knobil K, Lomas DA, MacNee W, Silverman EK, Tal-Singer R: Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE). Eur Respir J. 2008, 31: 869-873. 10.1183/09031936.00111707.CrossRefPubMed Vestbo J, Anderson W, Coxson HO, Crim C, Dawber F, Edwards L, Hagan G, Knobil K, Lomas DA, MacNee W, Silverman EK, Tal-Singer R: Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE). Eur Respir J. 2008, 31: 869-873. 10.1183/09031936.00111707.CrossRefPubMed
15.
Zurück zum Zitat Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ: Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009, 374: 685-694. 10.1016/S0140-6736(09)61255-1.CrossRefPubMed Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ: Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet. 2009, 374: 685-694. 10.1016/S0140-6736(09)61255-1.CrossRefPubMed
16.
Zurück zum Zitat Soto FJ, Hanania NA: Selective phosphodiesterase-4 inhibitors in chronic obstructive lung disease. Curr Opin Pulm Med. 2005, 11: 129-134.PubMed Soto FJ, Hanania NA: Selective phosphodiesterase-4 inhibitors in chronic obstructive lung disease. Curr Opin Pulm Med. 2005, 11: 129-134.PubMed
17.
Zurück zum Zitat Calverley P, Pauwels R, Vestbo J, Jones P, Pride N, Gulsvik A, Anderson J, Maden C: Combined salmeterol and fluticasone in the treatment of chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2003, 361: 449-456. 10.1016/S0140-6736(03)12459-2.CrossRefPubMed Calverley P, Pauwels R, Vestbo J, Jones P, Pride N, Gulsvik A, Anderson J, Maden C: Combined salmeterol and fluticasone in the treatment of chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 2003, 361: 449-456. 10.1016/S0140-6736(03)12459-2.CrossRefPubMed
18.
Zurück zum Zitat Calverley PM, Boonsawat W, Cseke Z, Zhong N, Peterson S, Olsson H: Maintenance therapy with budesonide and formoterol in chronic obstructive pulmonary disease. Eur Respir J. 2003, 22: 912-919. 10.1183/09031936.03.00027003.CrossRefPubMed Calverley PM, Boonsawat W, Cseke Z, Zhong N, Peterson S, Olsson H: Maintenance therapy with budesonide and formoterol in chronic obstructive pulmonary disease. Eur Respir J. 2003, 22: 912-919. 10.1183/09031936.03.00027003.CrossRefPubMed
19.
Zurück zum Zitat Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, Barczyk A, Hayashi S, Adcock IM, Hogg JC, Barnes PJ: Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med. 2005, 352: 1967-1976. 10.1056/NEJMoa041892.CrossRefPubMed Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, Barczyk A, Hayashi S, Adcock IM, Hogg JC, Barnes PJ: Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med. 2005, 352: 1967-1976. 10.1056/NEJMoa041892.CrossRefPubMed
20.
Zurück zum Zitat Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA: Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998, 157: 1418-1422.CrossRefPubMed Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA: Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998, 157: 1418-1422.CrossRefPubMed
21.
Zurück zum Zitat Guerra S, Sherrill DL, Venker C, Ceccato CM, Halonen M, Martinez FD: Chronic bronchitis before age 50 years predicts incident airflow limitation and mortality risk. Thorax. 2009, 64: 894-900. 10.1136/thx.2008.110619.CrossRefPubMedPubMedCentral Guerra S, Sherrill DL, Venker C, Ceccato CM, Halonen M, Martinez FD: Chronic bronchitis before age 50 years predicts incident airflow limitation and mortality risk. Thorax. 2009, 64: 894-900. 10.1136/thx.2008.110619.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Hebenstreit GF, Fellerer K, Fichte K, Fischer G, Geyer N, Meya U, Hernandez M, Schony W, Schratzer M, Soukop W: Rolipram in major depressive disorder: results of a double-blind comparative study with imipramine. Pharmacopsychiatry. 1989, 22: 156-160. 10.1055/s-2007-1014599.CrossRefPubMed Hebenstreit GF, Fellerer K, Fichte K, Fischer G, Geyer N, Meya U, Hernandez M, Schony W, Schratzer M, Soukop W: Rolipram in major depressive disorder: results of a double-blind comparative study with imipramine. Pharmacopsychiatry. 1989, 22: 156-160. 10.1055/s-2007-1014599.CrossRefPubMed
23.
Zurück zum Zitat Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, Fabbri LM, Goldin JG, Jones PW, MacNee W, Make BJ, Rabe KF, Rennard SI, Sciurba FC, Silverman EK, Vestbo J, Washko GR, Wouters EF, Martinez FJ: Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med. 2010, 182: 598-604. 10.1164/rccm.200912-1843CC.CrossRefPubMed Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, Fabbri LM, Goldin JG, Jones PW, MacNee W, Make BJ, Rabe KF, Rennard SI, Sciurba FC, Silverman EK, Vestbo J, Washko GR, Wouters EF, Martinez FJ: Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med. 2010, 182: 598-604. 10.1164/rccm.200912-1843CC.CrossRefPubMed
Metadaten
Titel
Reduction of exacerbations by the PDE4 inhibitor roflumilast - the importance of defining different subsets of patients with COPD
verfasst von
Stephen I Rennard
Peter MA Calverley
Udo M Goehring
Dirk Bredenbröker
Fernando J Martinez
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Respiratory Research / Ausgabe 1/2011
Elektronische ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-12-18

Weitere Artikel der Ausgabe 1/2011

Respiratory Research 1/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.