Skip to main content
Erschienen in: BMC Infectious Diseases 1/2006

Open Access 01.12.2006 | Research article

Antibiotic susceptibility of Atopobium vaginae

verfasst von: Ellen De Backer, Rita Verhelst, Hans Verstraelen, Geert Claeys, Gerda Verschraegen, Marleen Temmerman, Mario Vaneechoutte

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2006

Abstract

Background

Previous studies have indicated that a recently described anaerobic bacterium, Atopobium vaginae is associated with bacterial vaginosis (BV). Thus far the four isolates of this fastidious micro-organism were found to be highly resistant to metronidazole and susceptible for clindamycin, two antibiotics preferred for the treatment of BV.

Methods

Nine strains of Atopobium vaginae, four strains of Gardnerella vaginalis, two strains of Lactobacillus iners and one strain each of Bifidobacterium breve, B. longum, L. crispatus, L. gasseri and L. jensenii were tested against 15 antimicrobial agents using the Etest.

Results

All nine strains of A. vaginae were highly resistant to nalidixic acid and colistin while being inhibited by low concentrations of clindamycin (range: < 0.016 μg/ml), rifampicin (< 0.002 μg/ml), azithromycin (< 0.016 – 0.32 μg/ml), penicillin (0.008 – 0.25 μg/ml), ampicillin (< 0.016 – 0.94 μg/ml), ciprofloxacin (0.023 – 0.25 μg/ml) and linezolid (0.016 – 0.125 μg/ml). We found a variable susceptibility for metronidazole, ranging from 2 to more than 256 μg/ml. The four G. vaginalis strains were also susceptible for clindamycin (< 0.016 – 0.047 μg/ml) and three strains were susceptible to less than 1 μg/ml of metronidazole. All lactobacilli were resistant to metronidazole (> 256 μg/ml) but susceptible to clindamycin (0.023 – 0.125 μg/ml).

Conclusion

Clindamycin has higher activity against G. vaginalis and A. vaginae than metronidazole, but not all A. vaginae isolates are metronidazole resistant, as seemed to be a straightforward conclusion from previous studies on a more limited number of strains.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2334-6-51) contains supplementary material, which is available to authorized users.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

EDB, RV, GC, GV and MV participated in the development of the study design, the analysis of the study samples, analysis and interpretation of the data, and in the writing of the report. HV and MT participated in the development of the study design, analysis and interpretation of the data, and in the writing of the report. All authors read and approved the final manuscript.

Background

Bacterial vaginosis is considered a common vaginal disorder in women of reproductive age. Whereas normal vaginal microflora consists of lactobacilli, especially L. crispatus [14], the disturbed vaginal microflora is characterized by the overgrowth of Gardnerella vaginalis and anaerobic bacteria such as Mobiluncus spp., Mycoplasma hominis and Prevotella spp. Recently several research groups showed – by means of cloning of the 16S rRNA-gene [3, 5], by Terminal Restriction Fragment Length Polymorphism analysis of the 16S rRNA gene (T-RFLP) [6, 7], by specific PCR [5, 8, 9], by Denaturing Gradient Gel Electrophoresis of the 16S rRNA gene (DGGE) [10] and by FISH [3, 11] – that a previously unrecognized organism, Atopobium vaginae, was strongly associated with bacterial vaginosis and with Gardnerella vaginalis.
During the last decade, the interest for bacterial vaginosis increased because of reports of adverse sequelae of this disorder, such as preterm birth [1214], pelvic inflammatory disease [15, 16] and postpartum endometritis [17]. In addition, several publications showed that an altered vaginal microflora is linked to an increased susceptibility to the acquisition of HIV [18, 19] and other sexually transmitted infectious agents such as Neisseria gonorrhoeae and Chlamydia trachomatis [18, 20].
The severity of the consequences of such sequelae asks for an adequate treatment of bacterial vaginosis. Currently the preferred antibiotic treatment regimen consists of clindamycin or metronidazole (oral or intravaginal). Recurrence rates of up to 30% within 3 months after treatment have been reported [21, 22]. This recurrence might be due to the survival of metronidazole or clindamycin resistant bacteria in the vagina, although Beigi et al. [23] showed recently that less than one percent of the cultivable vaginal anaerobic bacteria is resistant to metronidazole.
Another possible explanation might be the presence of some fastidious to unculturable, metronidazole resistant organism, a role for which A. vaginae is a likely candidate, since Geißdörfer et al. [24] and Ferris et al. [10] reported an MIC of > 32 μg/ml for metronidazole for the four isolates that were tested.
Here, we studied the susceptibility of nine other A. vaginae isolates for 15 antimicrobial agents by using the Etest and for comparison we included a limited number of other important vaginal bacteria such as lactobacilli, G. vaginalis and bifidobacteria and we compared our results with those of previously published articles.

Methods

Nine strains of Atopobium vaginae, four strains of Gardnerella vaginalis, two strains of Lactobacillus iners and one strain each of Bifidobacterium breve, B. longum, Lactobacillus crispatus, L. gasseri and L. jensenii were tested against 15 antibiotics (ampicillin, azithromycin, bacitracin, cefuroxime, ciprofloxacin, clindamycin, colistin, doxycycline, kanamycin, linezolid, metronidazole, nalidixic acid, penicillin, rifampicin and vancomycin) [see Additional file 1]. Six strains of A. vaginae (CCUG 42099, CCUG 44116, CCUG 44258, CCUG 38953T, CCUG 44125, CCUG 44061) were kindly provided by the Culture Collection of Göteborg (Sweden). The other strains were obtained from studies by cultivating vaginal samples (with informed consent) and identified by tDNA-PCR and 16S rRNA gene sequencing [4].
Strains were cultivated anaerobically using the GasPak anaerobic envelope system (Becton Dickinson, Erembodegem, Belgium) at 37°C on Trypticase Soy Agar (TSA) + 5 % sheep blood (Becton Dickinson). Epsilometer tests (Etest AB Biodisk, Solna, Sweden) were used to determine the minimal inhibitory concentrations (MIC). An inoculum taken from TSA + 5% sheep blood was suspended in 0.5 ml of physiological water and adjusted to the turbidity of a 1 McFarland standard. Before inoculating the plates and testing for metronidazole, plates were anaerobically incubated during 24 h. After application of the epsilometer, test plates were anaerobically incubated at 37°C. The inhibitory concentration was defined as the value on the test strip scale at which the inhibition zone intersected the strip edge, according to the manufacturers' instructions. MIC-values were read after 48 h for G. vaginalis, Lactobacillus spp. and Bifidobacterium spp. and after 72 h for A. vaginae.

Results and discussion

Value and reproducibility of Etest for MIC-determination of anaerobes

In this study we used the Etest for MIC-determination of vaginal bacteria towards 15 antibiotics. Croco et al. [25] concluded, from a study whereby the Etest was compared with the reference agar dilution method, that the Etest was a quantitatively accurate and reproducible method for routinely testing the antimicrobial susceptibilities of anaerobes, in particular of organisms associated with BV. Discordances were reported only for clindamycin susceptibility testing of lactobacilli and chloramphenicol susceptibility testing of the Bacteroides fragilis group. Schieven et al. [26] reported an agreement between the Etest and the reference agar dilution method within 1 log2 dilution of 87.4% for clindamycin and 85.1% for metronidazole for a total of 150 anaerobic isolates tested.

Antimicrobial susceptibility testing of Atopobium vaginae

The antibiotic susceptibility for ampicillin, azithromycin, bacitracin, cefuroxime, ciprofloxacin, clindamycin, colistin, doxycycline, kanamycin, linezolid, metronidazole, nalidixic acid, penicillin, rifampicin and vancomycin obtained for nine Atopobium vaginae isolates in this study is listed in additional file 1 [see Additional file 1].
We focused our research on the antibiotic susceptibility profile of Atopobium vaginae. In contrast to the results of Ferris et al. [10] and Geißdörfer et al. [24], who reported MIC-values of more than 32 μg/ml for all four A. vaginae isolates tested (Table 1), we found a great variability in susceptibility for metronidazole, ranging from 2 to more than 256 μg/ml. When taking into account 16 μg/ml as the breakpoint between sensitive and resistant (NCCLS guidelines), only four out of 9 strains in our study could be accounted as intermediately susceptible or resistant. All nine A. vaginae isolates in our study showed MIC-values of more than 256 μg/ml for nalidixic acid and colistin while being inhibited by low concentrations of clindamycin (range: < 0.016 μg/ml), rifampicin (< 0.002 μg/ml), azithromycin (< 0.016 – 0.32 μg/ml), penicillin (0.008 – 0.25 μg/ml), ampicillin (< 0.016 – 0.94 μg/ml), ciprofloxacin (0.023 – 0.25 μg/ml) and linezolid (0.016 – 0.125 μg/ml) (Table 1).
Table 1
Comparison of MIC-values as determined for Atopobium vaginae by Ferris et al. [8] and Geißdörfer et al. [24] and in this study.
 
This study
Geißdörfer et al. [24] a
Ferris et al. [8] b
Number of strains
9
1
3
Antimicrobial agent
MIC50 c
Rangec
MICc
Rangec
Ampicillin
0.023
< 0.016 – 0.94
0.032
 
Ampicillin/sulbactam
   
0.06 – 0.25
Azitromycin
< 0.016
< 0.016 – 0.32
  
Bacitracin
3
1 – 4
  
Cefoxitin
  
2
2
Ceftriaxone
   
0.5 – 2
Cefuroxime
0.125
0.016 – 0.25
0.19
 
Ciprofloxacin
0.064
0.023 – 0.25
  
Clindamycin
< 0.016
< 0.016
 
< 0.015
Colistin
> 1024
> 1024
  
Doxycyclin
0.38
0.19 – 0.75
  
Imipenem
  
0.016
< 0.015 – 0.5
Kanamycin
12
8 – 16
  
Linezolid
0.047
0.016 – 0.125
 
0.06 – 0.25
Meropenem
   
< 0.015 – 0.5
Metronidazole
8
2 - > 256
>16
> 32
Moxifloxacin
   
0.06 – 1
Nalidixic acid
> 256
> 256
  
Penicillin
0.094
0.008 – 0.25
0.125
 
Rifampicin
< 0.002
< 0.002
  
Trovafloxacin
   
< 0.015 – 2
Vancomycin
1.5
1 – 4
  
Legend
a. Tested with Etest and agar dilution method.
b. Tested with broth microdilution method for anaerobic bacteria with Brucella Broth supplemented with vitamin K (1 μg/ml), hemin (5 μg/ml) and laked horse blood (5%).
c. Data in μg/ml.
We previously described the existence of a second genotype within A. vaginae. To this genotype belongs isolate PB2003/189-T1-4, of which the 16S rRNA gene sequence differs at 23 positions compared to the type strain, but is identical to that of an isolate no longer in our collection of which the sequence was submitted [Genbank: AJ585206] [5]. This genotype 2 isolate showed a marked difference only for azithromycin (i.e. MIC of 0.32 μg/ml) with the other isolates (MIC of < 0.016 μg/ml).

Antimicrobial susceptibility testing of Gardnerella vaginalis

We tested 4 strains of Gardnerella vaginalis. By using the Etest method in an anaerobic environment we found in general slightly lower values for ampicillin (range: < 0.016 – 0.047 μg/ml), penicillin (0.004 – 0.047 μg/ml), cefuroxim (< 0.016 – 0.125 μg/ml) and rifampicin (0.5 – 0.75 μg/ml) (Table 1), compared to other publications [25, 27, 28] [see Additional file 2]. The range of the MIC-values of Gardnerella vaginalis for clindamycin (range: < 0.016 – 0.047 μg/ml), colistin (> 1024 μg/ml), doxycycline (0.25 – 32 μg/ml), kanamycin (16 – 32 μg/ml), metronidazole (0.75 – 16 μg/ml), nalidixic acid (> 256 μg/ml) and vancomycin (0.125 – 0.38 μg/ml) is comparable with other studies [25, 2731] [see Additional file 2]. G. vaginalis is, according to NCCLS standards for anaerobic bacteria, susceptible to ampicillin (range: < 0.016 – 0.047 μg/ml), penicillin (0.004 – 0.047 μg/ml) and azithromycin (< 0.016 – 0.047 μg/ml). In 1993, Goldstein et al. [29] reported that 20% of G. vaginalis strains were resistant to metronidazole (MIC ≥ 16 μg/ml). In 2002, the same group reported a resistance of 29% to metronidazole for G. vaginalis [30]. All four strains in our study were susceptible.

Antimicrobial susceptibility testing of Lactobacillusspp

Most of the Lactobacillus spp. we tested show a low MIC-value for ampicillin (range for all lactobacilli: 0.064 – 0.5 μg/ml), azithromycin (0.023 – 0.125 μg/ml), cefuroxim (< 0.016 – 1 μg/ml), linezolid (0.19 – 1.5 μg/ml), penicillin (0.047 – 0.19 μg/ml), rifampicin (0.016 – 2 μg/ml) and vancomycin (0.38 – 1 μg/ml) [see Additional file 1]. All strains were resistant to metronidazole (range for all lactobacilli: > 256 μg/ml). The strains of the species L. crispatus, L. jensenii and L. gasseri were all highly resistant to ciprofloxacin (range: > 32 μg/ml) in contrast to both L. iners strains (range: 0.25 – 0.38 μg/ml).
The single strain of L. crispatus tested yielded a very low MIC-value for clindamycin (< 0.016 μg/ml) and a high MIC-value for rifampicin compared to the other lactobacilli. The strain of L. gasseri tested showed comparable results to those of previous publications [32, 33] for clindamycin, metronidazole, penicillin and vancomycin [see Additional file 2], indicating that this species is much more resistant to clindamycin than L. crispatus.
All lactobacilli were resistant to metronidazole (> 256 μg/ml) but susceptible for clindamycin (0.023 – 0.125 μg/ml). There were no literature data to compare the susceptibility of L. iners and L. jensenii for the antimicrobial agents tested in this study.

Antimicrobial susceptibility testing of Bifidobacteriumspp

Both of the tested Bifidobacterium strains are sensitive to a low amount of ampicillin (B. longum: 0.25 μg/ml, B. breve: 0.38 μg/ml), azithromycin (B. longum: 0.064 μg/ml, B. breve: 0.25 μg/ml), clindamycin (B. breve and B. longum: < 0.016 μg/ml), linezolid (B. longum: 0.25 μg/ml, B. breve: 0.38 μg/ml), penicillin (B. longum: 0.19 μg/ml, B. breve: 0.5 μg/ml), rifampicin (B. longum: 0.25 μg/ml, B. breve: 0.19 μg/ml) and vancomycin (B. longum: 0.38 μg/ml, B. breve: 1 μg/ml) [see Additional file 1]. The strains tested showed comparable results with previous publications except for linezolid and kanamycin [see Additional file 2], where we obtained a lower value than described [3335].

Conclusion

Bacterial vaginosis is a polymicrobial disease and the organisms involved are likely to be in symbiotic relationship to each other for various metabolic requirements. Antimicrobial treatment may affect susceptible members of the consortia which may negatively alter the microenvironment for resistant organisms, such as A. vaginae and G. vaginalis.
By knowing the antibiotic susceptibility of the vaginal species it might be possible to develop new regimens for the treatment of recurrent bacterial vaginosis.
For example, this study showed that metronidazole resistance of A. vaginae is not an intrinsic feature. Further research needs to make clear whether this metronidazole resistance might be acquired by the presence and activation of nim-genes [36]. Metronidazole resistance up to 29% [30] has been described for G. vaginalis but mechanisms are not yet clarified. Possibly this could be due to the lack of nitroreductases necessary to produce the hydroxymetabolite of metronidazole, which has stronger antibiotic activity than the parent compound.
Lactobacilli are resistant to metronidazole and it has been demonstrated that recolonistation of the vagina by H2O2-producing lactobacilli after metronidazole treatment occurs more frequently compared to clindamycin treatment [37].
Clindamycin, which is frequently used as a treatment for bacterial vaginosis, has indeed higher activity against G. vaginalis and A. vaginae than metronidazole, but L. crispatus is more susceptible to clindamycin than L. gasseri with as a consequence that a regimen of clindamycin can remove also the H2O2-producing lactobacilli from the vaginal microflora (Table 2). Hydrogen peroxide production is generally believed to be an important factor in the preservation of a normal vaginal microflora [1], i.e. in the build up of vaginal colonisation resistance. Therefore, it is possible that clindamycin treatment may diminish the vaginal colonisation resistance. Moreover, resistance to clindamycin seems to develop more readily than resistance to metronidazole, as becomes apparent from clinical studies comparing both antibiotics [23, 37].
Table 2
Overview of the MIC-value ranges for Atopobium vaginae and Gardnerella vaginalis for 15 antimicrobial agents.
 
Atopobium vaginae (n = 9)
Gardnerella vaginalis (n = 4)
Antimicrobial agent
Rangea
Rangea
Ampicillin
< 0.016 – 0.94
< 0.016 – 0.047
Azithromycin
< 0.016 – 0.32
< 0.016 – 0.047
Bacitracin
1 – 4
0.75 – 2
Cefuroxim
0.016 – 0.25
< 0.016 – 0.125
Ciprofloxacin
0.023 – 0.25
0.75 – 2
Clindamycin
< 0.016
< 0.016 – 0.047
Colistin
> 1024
> 1024
Doxycycline
0.19 – 0.75
0.25 – 32
Kanamycin
8 – 16
16 – 32
Linezolid
0.016 – 0.125
0.125 – 0.19
Metronidazole
2 – 256
0.75 – 16
Nalidixic acid
> 256
> 256
Penicillin
0.008 – 0.25
0.004 – 0.047
Rifampicin
< 0.002
0.5 – 0.75
Vancomycin
1 – 4
0.125 – 0.38
Legend
a. Data in μg/ml.

Acknowledgements

This work was supported through a research grant of the Bijzonder Onderzoeksfonds of the University of Gent (UGent) and the Fund for Scientific Research Flanders (Belgium). We thank the Culture Collection of the University of Göteborg, Sweden for kindly providing Atopobium vaginae isolates.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

EDB, RV, GC, GV and MV participated in the development of the study design, the analysis of the study samples, analysis and interpretation of the data, and in the writing of the report. HV and MT participated in the development of the study design, analysis and interpretation of the data, and in the writing of the report. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Antonio MA, Hawes SE, Hillier SL: The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J Infect Dis. 1999, 180: 1950-1956. 10.1086/315109.CrossRefPubMed Antonio MA, Hawes SE, Hillier SL: The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J Infect Dis. 1999, 180: 1950-1956. 10.1086/315109.CrossRefPubMed
2.
Zurück zum Zitat Vallor AC, Antonio MA, Hawes SE, Hillier SL: Factors associated with acquisition of, or persistent colonization by, vaginal lactobacilli: role of hydrogen peroxide production. J Infect Dis. 2001, 184: 1431-1436. 10.1086/324445.CrossRefPubMed Vallor AC, Antonio MA, Hawes SE, Hillier SL: Factors associated with acquisition of, or persistent colonization by, vaginal lactobacilli: role of hydrogen peroxide production. J Infect Dis. 2001, 184: 1431-1436. 10.1086/324445.CrossRefPubMed
3.
Zurück zum Zitat Fredricks DN, Fiedler TL, Marrazzo JM: Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med. 2005, 353: 1899-1911. 10.1056/NEJMoa043802.CrossRefPubMed Fredricks DN, Fiedler TL, Marrazzo JM: Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med. 2005, 353: 1899-1911. 10.1056/NEJMoa043802.CrossRefPubMed
4.
Zurück zum Zitat Verhelst R, Verstraelen H, Claeys G, Verschraegen G, Van Simaey L, De Ganck C, De Backer E, Temmerman M, Vaneechoutte M: Comparison between Gram stain and culture for the characterization of vaginal microflora: Definition of a distinct grade that resembles grade I microflora and revised categorization of grade I microflora. BMC Microbiol. 2004, 5: 61-10.1186/1471-2180-5-61.CrossRef Verhelst R, Verstraelen H, Claeys G, Verschraegen G, Van Simaey L, De Ganck C, De Backer E, Temmerman M, Vaneechoutte M: Comparison between Gram stain and culture for the characterization of vaginal microflora: Definition of a distinct grade that resembles grade I microflora and revised categorization of grade I microflora. BMC Microbiol. 2004, 5: 61-10.1186/1471-2180-5-61.CrossRef
5.
Zurück zum Zitat Verhelst R, Verstraelen H, Claeys G, Verschraegen G, Delanghe J, Van Simaey L, De Ganck C, Temmerman M, Vaneechoutte M: Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol. 2004, 4: 16-10.1186/1471-2180-4-16.CrossRefPubMedPubMedCentral Verhelst R, Verstraelen H, Claeys G, Verschraegen G, Delanghe J, Van Simaey L, De Ganck C, Temmerman M, Vaneechoutte M: Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol. 2004, 4: 16-10.1186/1471-2180-4-16.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Verhelst R, Verstraelen H, De Backer E, Claeys G, Verschraegen G, Van Simaey L, De Ganck C, Temmerman M, Vaneechoutte M: Characterization of vaginal microflora at three time points in pregnancy by Gram stain, culture and T-RFLP identifies L. gasseri as the Lactobacillus species most present in bacterial vaginosis. Submitted to BMC infectious diseases. Verhelst R, Verstraelen H, De Backer E, Claeys G, Verschraegen G, Van Simaey L, De Ganck C, Temmerman M, Vaneechoutte M: Characterization of vaginal microflora at three time points in pregnancy by Gram stain, culture and T-RFLP identifies L. gasseri as the Lactobacillus species most present in bacterial vaginosis. Submitted to BMC infectious diseases.
7.
Zurück zum Zitat Verstraelen H, Verhelst R, Claeys G, Temmerman M, Vaneechoutte M: Culture-independent analysis of vaginal microflora: the unrecognized association of Atopobium vaginae with bacterial vaginosis. Am J Obstet Gynecol. 2004, 191: 1130-1132. 10.1016/j.ajog.2004.04.013.CrossRefPubMed Verstraelen H, Verhelst R, Claeys G, Temmerman M, Vaneechoutte M: Culture-independent analysis of vaginal microflora: the unrecognized association of Atopobium vaginae with bacterial vaginosis. Am J Obstet Gynecol. 2004, 191: 1130-1132. 10.1016/j.ajog.2004.04.013.CrossRefPubMed
8.
Zurück zum Zitat Ferris MJ, Masztal A, Aldridge KE, Fortenberry JD, Fidel PL Jr, Martin DH: Association of Atopobium vaginae, a recently described metronidazole resistant anaerobe, with bacterial vaginosis. BMC Infect Dis. 2004, 4: 5-10.1186/1471-2334-4-5.CrossRefPubMedPubMedCentral Ferris MJ, Masztal A, Aldridge KE, Fortenberry JD, Fidel PL Jr, Martin DH: Association of Atopobium vaginae, a recently described metronidazole resistant anaerobe, with bacterial vaginosis. BMC Infect Dis. 2004, 4: 5-10.1186/1471-2334-4-5.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Burton JP, Chilcott CN, Al-Qumber M, Brooks HJ, Wilson D, Tagg JR, Devenish C: A preliminary survey of Atopobium vaginae in women attending the Dunedin gynaecology out-patients clinic: Is the contribution of the hard-to-culture microbiota overlooked in gynaecological disorders?. Aust N Z J Obstet Gynaecol. 2005, 45: 450-452. 10.1111/j.1479-828X.2005.00456.x.CrossRefPubMed Burton JP, Chilcott CN, Al-Qumber M, Brooks HJ, Wilson D, Tagg JR, Devenish C: A preliminary survey of Atopobium vaginae in women attending the Dunedin gynaecology out-patients clinic: Is the contribution of the hard-to-culture microbiota overlooked in gynaecological disorders?. Aust N Z J Obstet Gynaecol. 2005, 45: 450-452. 10.1111/j.1479-828X.2005.00456.x.CrossRefPubMed
10.
Zurück zum Zitat Ferris MJ, Masztal A, Martin DH: Use of species-directed 16S rRNA gene PCR primers for detection of Atopobium vaginae in patients with bacterial vaginosis. J Clin Microbiol. 2004, 42: 5892-5894. 10.1128/JCM.42.12.5892-5894.2004.CrossRefPubMedPubMedCentral Ferris MJ, Masztal A, Martin DH: Use of species-directed 16S rRNA gene PCR primers for detection of Atopobium vaginae in patients with bacterial vaginosis. J Clin Microbiol. 2004, 42: 5892-5894. 10.1128/JCM.42.12.5892-5894.2004.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Swidsinski A, Mendling W, Loening-Baucke V, Ladhoff A, Swidsinski S, Hale LP, Lochs H: Adherent biofilms in bacterial vaginosis. Obstet Gynecol. 2005, 106: 1013-1023.CrossRefPubMed Swidsinski A, Mendling W, Loening-Baucke V, Ladhoff A, Swidsinski S, Hale LP, Lochs H: Adherent biofilms in bacterial vaginosis. Obstet Gynecol. 2005, 106: 1013-1023.CrossRefPubMed
12.
Zurück zum Zitat Hay PE, Lamont RF, Taylor-Robinson D, Morgan DJ, Ison C, Pearson J: Abnormal bacterial colonisation of the genital tract and subsequent preterm delivery and late miscarriage. Brit Med J. 1994, 308: 295-298.CrossRefPubMedPubMedCentral Hay PE, Lamont RF, Taylor-Robinson D, Morgan DJ, Ison C, Pearson J: Abnormal bacterial colonisation of the genital tract and subsequent preterm delivery and late miscarriage. Brit Med J. 1994, 308: 295-298.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Hillier SL, Nugent RP, Eschenbach DA, Krohn MA, Gibbs RS, Martin DH, Klebanoff MA: Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. N Engl J Med. 1995, 333: 1737-1742. 10.1056/NEJM199512283332604.CrossRefPubMed Hillier SL, Nugent RP, Eschenbach DA, Krohn MA, Gibbs RS, Martin DH, Klebanoff MA: Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. N Engl J Med. 1995, 333: 1737-1742. 10.1056/NEJM199512283332604.CrossRefPubMed
14.
Zurück zum Zitat Leitich H, Bodner-Adler B, Brunbauer M, Kaider A, Egarter C, Husslein P: Bacterial vaginosis as a risk factor for preterm delivery: A meta-analysis. Am J Obstet Gynecol. 2003, 189: 139-147. 10.1067/mob.2003.339.CrossRefPubMed Leitich H, Bodner-Adler B, Brunbauer M, Kaider A, Egarter C, Husslein P: Bacterial vaginosis as a risk factor for preterm delivery: A meta-analysis. Am J Obstet Gynecol. 2003, 189: 139-147. 10.1067/mob.2003.339.CrossRefPubMed
15.
Zurück zum Zitat Haggerty CL, Hillier SL, Bass DC, Ness RB: PID evaluation and clinical health study investigators. Bacterial vaginosis and anaerobic bacteria are associated with endometritis. Clin Infect Dis. 2004, 39: 990-995. 10.1086/423963.CrossRefPubMed Haggerty CL, Hillier SL, Bass DC, Ness RB: PID evaluation and clinical health study investigators. Bacterial vaginosis and anaerobic bacteria are associated with endometritis. Clin Infect Dis. 2004, 39: 990-995. 10.1086/423963.CrossRefPubMed
16.
Zurück zum Zitat Ness RB, Kip KE, Hillier SL, Soper DE, Stamm CA, Sweet RL, Rice P, Richter HE: A cluster analysis of bacterial vaginosis-associated microflora and pelvic inflammatory disease. Am J Epidemiol. 2005, 162: 585-590. 10.1093/aje/kwi243.CrossRefPubMed Ness RB, Kip KE, Hillier SL, Soper DE, Stamm CA, Sweet RL, Rice P, Richter HE: A cluster analysis of bacterial vaginosis-associated microflora and pelvic inflammatory disease. Am J Epidemiol. 2005, 162: 585-590. 10.1093/aje/kwi243.CrossRefPubMed
17.
Zurück zum Zitat Watts DH, Krohn MA, Hillier SL, Eschenbach DA: Bacterial vaginosis as a risk factor for post-cesarean endometritis. Obstet Gynecol. 1990, 75: 52-58.PubMed Watts DH, Krohn MA, Hillier SL, Eschenbach DA: Bacterial vaginosis as a risk factor for post-cesarean endometritis. Obstet Gynecol. 1990, 75: 52-58.PubMed
18.
Zurück zum Zitat Martin HL, Richardson BA, Nyange PM, Lavreys L, Hillier SL, Chohan B, Mandaliya K, Ndinya-Achola JO, Bwayo J, Kreiss J: Vaginal lactobacilli, microbial flora, and risk of human immunodeficiency virus type 1 and sexually transmitted disease acquisition. J Infect Dis. 1999, 180: 1863-1868. 10.1086/315127.CrossRefPubMed Martin HL, Richardson BA, Nyange PM, Lavreys L, Hillier SL, Chohan B, Mandaliya K, Ndinya-Achola JO, Bwayo J, Kreiss J: Vaginal lactobacilli, microbial flora, and risk of human immunodeficiency virus type 1 and sexually transmitted disease acquisition. J Infect Dis. 1999, 180: 1863-1868. 10.1086/315127.CrossRefPubMed
19.
Zurück zum Zitat Sewankambo N, Gray RH, Wawer MJ, Paxton L, McNaim D, Wabwire-Mangen F, Serwadda D, Li C, Kiwanuka N, Hillier SL, Rabe L, Gaydos CA, Quinn TC, Konde-Lule J: HIV-1 infection associated with abnormal vaginal flora morphology and bacterial vaginosis. Lancet. 1997, 350: 546-550. 10.1016/S0140-6736(97)01063-5.CrossRefPubMed Sewankambo N, Gray RH, Wawer MJ, Paxton L, McNaim D, Wabwire-Mangen F, Serwadda D, Li C, Kiwanuka N, Hillier SL, Rabe L, Gaydos CA, Quinn TC, Konde-Lule J: HIV-1 infection associated with abnormal vaginal flora morphology and bacterial vaginosis. Lancet. 1997, 350: 546-550. 10.1016/S0140-6736(97)01063-5.CrossRefPubMed
20.
Zurück zum Zitat Hawes SE, Hillier SL, Benedetti J, Stevens CE, Koutsky LA, Wolner-Hanssen P, Holmes KK: Hydrogen peroxide-producing lactobacilli and acquisition of vaginal infections. J Infect Dis. 1996, 174: 1058-1063.CrossRefPubMed Hawes SE, Hillier SL, Benedetti J, Stevens CE, Koutsky LA, Wolner-Hanssen P, Holmes KK: Hydrogen peroxide-producing lactobacilli and acquisition of vaginal infections. J Infect Dis. 1996, 174: 1058-1063.CrossRefPubMed
22.
Zurück zum Zitat Larsson PG, Forsum U: Bacterial vaginosis, a disturbed bacterial flora and treatment enigma. APMIS. 2005, 113: 305-316. 10.1111/j.1600-0463.2005.apm_113501.x.CrossRefPubMed Larsson PG, Forsum U: Bacterial vaginosis, a disturbed bacterial flora and treatment enigma. APMIS. 2005, 113: 305-316. 10.1111/j.1600-0463.2005.apm_113501.x.CrossRefPubMed
23.
Zurück zum Zitat Beigi RH, Austin MN, Meyn LA, Krohn MA, Hillier SL: Antimicrobial resistance associated with the treatment of bacterial vaginosis. Am J Obstet Gynecol. 2004, 191: 1124-1129. 10.1016/j.ajog.2004.05.033.CrossRefPubMed Beigi RH, Austin MN, Meyn LA, Krohn MA, Hillier SL: Antimicrobial resistance associated with the treatment of bacterial vaginosis. Am J Obstet Gynecol. 2004, 191: 1124-1129. 10.1016/j.ajog.2004.05.033.CrossRefPubMed
24.
Zurück zum Zitat Geissdorfer W, Bohmer C, Pelz K, Schoerner C, Frobenius W, Bogdan C: Tuboovarian abscess caused by Atopobium vaginae following transvaginal oocyte recovery. J Clin Microbiol. 2003, 41: 2788-2790. 10.1128/JCM.41.6.2788-2790.2003.CrossRefPubMedPubMedCentral Geissdorfer W, Bohmer C, Pelz K, Schoerner C, Frobenius W, Bogdan C: Tuboovarian abscess caused by Atopobium vaginae following transvaginal oocyte recovery. J Clin Microbiol. 2003, 41: 2788-2790. 10.1128/JCM.41.6.2788-2790.2003.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Croco JL, Erwin ME, Jennings JM, Putnam LR, Jones RN: Evaluation of the Etest for antimicrobial spectrum and potency determinations of anaerobes associated with bacterial vaginosis and peritonitis. Diagn Microbiol Infect Dis. 1994, 20: 213-219. 10.1016/0732-8893(94)90006-X.CrossRefPubMed Croco JL, Erwin ME, Jennings JM, Putnam LR, Jones RN: Evaluation of the Etest for antimicrobial spectrum and potency determinations of anaerobes associated with bacterial vaginosis and peritonitis. Diagn Microbiol Infect Dis. 1994, 20: 213-219. 10.1016/0732-8893(94)90006-X.CrossRefPubMed
26.
Zurück zum Zitat Schieven BC, Massey VE, Lannigan R, Hussain Z: Evaluation of susceptibility of anaerobic organisms by the Etest and the reference agar dilution method. Clin Infect Dis. 1995, 20: S337-S338.CrossRefPubMed Schieven BC, Massey VE, Lannigan R, Hussain Z: Evaluation of susceptibility of anaerobic organisms by the Etest and the reference agar dilution method. Clin Infect Dis. 1995, 20: S337-S338.CrossRefPubMed
27.
Zurück zum Zitat Kharsany AB, Hoosen AA, Van den Ende J: Antimicrobial susceptibilities of Gardnerella vaginalis. Antimicrob Agents Chemother. 1993, 37: 2733-2735.CrossRefPubMedPubMedCentral Kharsany AB, Hoosen AA, Van den Ende J: Antimicrobial susceptibilities of Gardnerella vaginalis. Antimicrob Agents Chemother. 1993, 37: 2733-2735.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat McCarthy LR, Mickelsen PA, Smith EG: Antibiotic susceptibility of Haemophilus vaginalis (Corynebacterium vaginale) to 21 antibiotics. Antimicrob Agents Chemother. 1979, 16: 186-189.CrossRefPubMedPubMedCentral McCarthy LR, Mickelsen PA, Smith EG: Antibiotic susceptibility of Haemophilus vaginalis (Corynebacterium vaginale) to 21 antibiotics. Antimicrob Agents Chemother. 1979, 16: 186-189.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Goldstein EJ, Citron DM, Cherubin CE, Hillier SH: Comparative susceptibility of the Bacteroides fragilis group species and other anaerobic bacteria to meropenem, imipenem, piperacillin, cefoxitin, ampicillin/sulbactam, clindamycin and metronidazole. J Antimicrob Chemother. 1993, 31: 363-372.CrossRefPubMed Goldstein EJ, Citron DM, Cherubin CE, Hillier SH: Comparative susceptibility of the Bacteroides fragilis group species and other anaerobic bacteria to meropenem, imipenem, piperacillin, cefoxitin, ampicillin/sulbactam, clindamycin and metronidazole. J Antimicrob Chemother. 1993, 31: 363-372.CrossRefPubMed
30.
Zurück zum Zitat Goldstein EJ, Citron DM, Merriam CV, Warren YA, Tyrrell KL, Fernandez HT: In vitro activities of Garenoxacin(BMS 284756) against 108 clinical isolates of Gardnerella vaginalis. Antimicrob Agents Chemother. 2002, 46: 3995-3996. 10.1128/AAC.46.12.3995-3996.2002.CrossRefPubMedPubMedCentral Goldstein EJ, Citron DM, Merriam CV, Warren YA, Tyrrell KL, Fernandez HT: In vitro activities of Garenoxacin(BMS 284756) against 108 clinical isolates of Gardnerella vaginalis. Antimicrob Agents Chemother. 2002, 46: 3995-3996. 10.1128/AAC.46.12.3995-3996.2002.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Jones BM, Geary I, Lee ME, Duerden BI: Comparison of the in vitro activities of fenticonazole, other imidazoles, metronidazole, and tetracycline against organisms associated with bacterial vaginosis and skin infections. Antimicrob Agents Chemother. 1989, 33: 970-972.CrossRefPubMedPubMedCentral Jones BM, Geary I, Lee ME, Duerden BI: Comparison of the in vitro activities of fenticonazole, other imidazoles, metronidazole, and tetracycline against organisms associated with bacterial vaginosis and skin infections. Antimicrob Agents Chemother. 1989, 33: 970-972.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Danielsen M, Wind A: Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol. 2003, 82: 1-11. 10.1016/S0168-1605(02)00254-4.CrossRefPubMed Danielsen M, Wind A: Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol. 2003, 82: 1-11. 10.1016/S0168-1605(02)00254-4.CrossRefPubMed
33.
Zurück zum Zitat Delgado S, Florez AB, Mayo B: Antibiotic susceptibility of Lactobacillus and Bifidobacterium species from the human gastrointestinal tract. Curr Microbiol. 2005, 50: 202-207. 10.1007/s00284-004-4431-3.CrossRefPubMed Delgado S, Florez AB, Mayo B: Antibiotic susceptibility of Lactobacillus and Bifidobacterium species from the human gastrointestinal tract. Curr Microbiol. 2005, 50: 202-207. 10.1007/s00284-004-4431-3.CrossRefPubMed
34.
Zurück zum Zitat Lim KS, Huh CS, Baek YI: Antimicrobial susceptibility of bifidobacteria. J Dairy Sci. 1993, 76: 2168-2174.CrossRefPubMed Lim KS, Huh CS, Baek YI: Antimicrobial susceptibility of bifidobacteria. J Dairy Sci. 1993, 76: 2168-2174.CrossRefPubMed
35.
Zurück zum Zitat Moubareck C, Gavini F, Vaugien L, Butel MJ, Doucet-Populaire F: Antimicrobial susceptibility of bifidobacteria. J Antimicrob Chemother. 2005, 55: 38-44. 10.1093/jac/dkh495.CrossRefPubMed Moubareck C, Gavini F, Vaugien L, Butel MJ, Doucet-Populaire F: Antimicrobial susceptibility of bifidobacteria. J Antimicrob Chemother. 2005, 55: 38-44. 10.1093/jac/dkh495.CrossRefPubMed
36.
Zurück zum Zitat Theron MM, Janse Van Rensburg MN, Chalkley LJ: Nitroimidazole resistance genes (nimB) in anaerobic Gram-positive cocci (previously Peptostreptococcus spp.). J Antimicrob Chemother. 2004, 54: 240-242. 10.1093/jac/dkh270.CrossRefPubMed Theron MM, Janse Van Rensburg MN, Chalkley LJ: Nitroimidazole resistance genes (nimB) in anaerobic Gram-positive cocci (previously Peptostreptococcus spp.). J Antimicrob Chemother. 2004, 54: 240-242. 10.1093/jac/dkh270.CrossRefPubMed
37.
Zurück zum Zitat Austin MN, Beigi RH, Meyn LA, Hillier SL: Microbiologic response to treatment of bacterial vaginosis with topical clindamycin or metronidazole. J Clin Microbiol. 2005, 43: 4492-4497. 10.1128/JCM.43.9.4492-4497.2005.CrossRefPubMedPubMedCentral Austin MN, Beigi RH, Meyn LA, Hillier SL: Microbiologic response to treatment of bacterial vaginosis with topical clindamycin or metronidazole. J Clin Microbiol. 2005, 43: 4492-4497. 10.1128/JCM.43.9.4492-4497.2005.CrossRefPubMedPubMedCentral
Metadaten
Titel
Antibiotic susceptibility of Atopobium vaginae
verfasst von
Ellen De Backer
Rita Verhelst
Hans Verstraelen
Geert Claeys
Gerda Verschraegen
Marleen Temmerman
Mario Vaneechoutte
Publikationsdatum
01.12.2006
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2006
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-6-51

Weitere Artikel der Ausgabe 1/2006

BMC Infectious Diseases 1/2006 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Strenge Blutdruckeinstellung lohnt auch im Alter noch

30.04.2024 Arterielle Hypertonie Nachrichten

Ältere Frauen, die von chronischen Erkrankungen weitgehend verschont sind, haben offenbar die besten Chancen, ihren 90. Geburtstag zu erleben, wenn ihr systolischer Blutdruck < 130 mmHg liegt. Das scheint selbst für 80-Jährige noch zu gelten.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.