Skip to main content
Erschienen in: BMC Cancer 1/2013

Open Access 01.12.2013 | Review

Functional significance of erythropoietin in renal cell carcinoma

verfasst von: Christudas Morais, David W Johnson, David A Vesey, Glenda C Gobe

Erschienen in: BMC Cancer | Ausgabe 1/2013

Abstract

One of the molecules regulated by the transcription factor, hypoxia inducible factor (HIF), is the hypoxia-responsive hematopoietic factor, erythropoietin (EPO). This may have relevance to the development of renal cell carcinoma (RCC), where mutations of the von Hippel-Lindau (VHL) gene are major risk factors for the development of familial and sporadic RCC. VHL mutations up-regulate and stabilize HIF, which in turn activates many downstream molecules, including EPO, that are known to promote angiogenesis, drug resistance, proliferation and progression of solid tumours. HIFs typically respond to hypoxic cellular environment. While the hypoxic microenvironment plays a critical role in the development and progression of tumours in general, it is of special significance in the case of RCC because of the link between VHL, HIF and EPO. EPO and its receptor, EPOR, are expressed in many cancers, including RCC. This limits the use of recombinant human EPO (rhEPO) to treat anaemia in cancer patients, because the rhEPO may be stimulatory to the cancer. EPO may also stimulate epithelial-mesenchymal transition (EMT) in RCC, and pathological EMT has a key role in cancer progression. In this mini review, we summarize the current knowledge of the role of EPO in RCC. The available data, either for or against the use of EPO in RCC patients, are equivocal and insufficient to draw a definitive conclusion.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2407-13-14) contains supplementary material, which is available to authorized users.

Competing interests

Professor David Johnson is a current recipient of a Queensland Government Health Research Fellowship. He has received consultancy fees, research funds, speaking honoraria and travel sponsorships from Jannsen-Cilag, Amgen, Pfizer and Roche. All other authors verify that they have nothing to disclose.

Authors’ contributions

CM and GCG contributed to the conception of the idea, literature search and drafting the manuscript. DWJ and DAV contributed to the interpretation of findings, critical evaluation and editing of the manuscript. All authors critically reviewed and accepted the final version of the manuscript.
Abkürzungen
EMT
Epithelial-mesenchymal transition
EPO
Erythropoietin
EPOR
Erythropoietin receptor
HIF
Hypoxia-inducible factor
IL-2
Interleukin-2
PTEC
Proximal tubular epithelial cells
RCC
Renal cell carcinoma
rhEPO
Recombinant human erythropoietin
VEGF
Vascular endothelial growth factor
VHL
von Hipple-Lindau.

Background

Renal cell carcinoma (RCC) accounts for 3% of all adult cancers, and 90-95% of neoplasms of the kidney. It is a highly heterogeneous disease with many distinct histologic subtypes [1, 2]. Clear cell RCC, arising from the proximal tubular epithelial cells (PTEC) is the most common sporadic subtype constituting 70-80% of RCC, followed by papillary (10-15%) and chromophobe (5%) RCC [3]. RCC can be either familial or sporadic. Both forms are often associated with distinct genetic mutations, of which the most prominent are the von Hippel-Lindau (VHL) gene mutations. The VHL syndrome, which is the result of a germ line mutation in the VHL gene, is the major predisposing factor for familial RCC [47]. In sporadic RCC, biallelic inactivation of the VHL gene, either through hyper-methylation or mutation, is the predominant risk factor. The VHL gene is hyper-methylated in about 19% and mutated in 34-56% of sporadic clear cell RCC [5, 813]. Clear cell RCC is the leading cause of death in patients with VHL mutations [14]. Despite the recent advancements in the management of RCC patients, death rates have remained unchanged [15, 16]

The VHL-HIF-EPO pathway

As the tumour microenvironment is often hypoxic, tumour cells undergo adaptive changes to facilitate their survival. One such survival mechanism under hypoxic conditions is the up-regulation of the transcription factor hypoxia inducible factor (HIF). HIF has two subunits, HIF-α (which has three further subunits HIF-1α, HIF-2α and HIF-3α) and HIF-β [17, 18]. While both subunits are constitutively expressed, the tissue levels of HIF-α, unlike HIF-β, are determined by the intracellular oxygen tension. Under normoxic conditions, HIF-α is rapidly degraded, an event largely mediated by a functional VHL [1923]. The functional protein of VHL, pVHL, forms complexes with elongin B, elongin C, Rbx1 and cullin 2 to form a pVHL- E3 ubiquitin ligase complex (pVHL-E3 complex) [2427]. The pVHL-E3 complex then binds to HIF-α, leading to its polyubiquitination and proteasomal degradation [25, 2832] (Figure 1). In the absence of a functional pVHL, secondary to VHL mutations, the formation of the pVHL-E3 complex and its binding to HIF-α are inhibited and therefore, the degradation of HIF-α is prevented even in normoxic conditions [23]. This leads to the stabilization and accumulation of HIF-α in cells. As a result, HIF-α is translocated to the nucleus, where it dimerizes with HIF-β, binds to hypoxia-responsive elements of the DNA and transactivates many downstream hypoxia-inducible molecules that are known to promote angiogenesis, proliferation, drug resistance and tumour progression [6, 7, 23, 25, 28] (Figure 1).
One such hypoxia-inducible molecule is the glycoprotein hormone erythropoietin (EPO). Apart from inducing EPO production through HIF, VHL mutations can directly up-regulate EPO without HIF activation [33, 34]. Although clear cell RCC is thought to arise from the PTEC, normal PTEC do not express detectable levels of EPO even under hypoxic conditions [3537]. Therefore, it is believed that VHL mutations play a key role in transforming a non-EPO expressing PTEC into an EPO-producing RCC [3537]. While the hypoxic trigger of EPO is a major problem in cancer biology in general, this is of special significance in the case of RCC, because of the direct regulation of EPO by HIF. EPO is the only hematopoietic growth factor whose production is regulated by local hypoxia [38]. If that is the case, EPO is more likely to be a local player in cancer progression, rather than contributor of metastatic progression.

EPO

The liver is the major site of EPO production in the foetus. At birth, there is a liver to kidney switch and, in adults, the peritubular fibroblasts of the renal cortex are the major sites of EPO production [3945]. The hepatocytes and perisinusoidal Ito cells of the liver (hepatic stellate cells known for storage of vitamin A) are the major extrarenal sites of EPO production [4345]. Other than the kidneys and the liver, EPO and EPOR are expressed in various non-hematopoietic tissues, such as vascular endothelial cells, the uterus, central nervous system and solid tumours [46]. While EPO is the essential hematopoietic growth factor for erythropoiesis in hematopoietic tissues, in non-hematopoietic tissues, and especially tumours, it inhibits apoptosis, stimulates angiogenesis, promotes drug resistance and increases cell proliferation [4750]. The biological or oncogenic effects of EPO are mediated through interactions with its receptor, EPOR [51]. The EPO/EPOR interaction activates the cytoplasmic tyrosine kinase, Janus kinase 2 (JAK2), which in turn phosphorylates several cytoplasmic tyrosine residues in the cytoplasmic tail of Epo-R [41, 5255]. The phosphorylated cytoplasmic tail of EPOR acts as a docking site for proteins that contain Src-homology 2 (SH2) domains, for example STAT1, STAT3 and STAT5a/b, and initiates a cascade of signalling pathways that either promote erythropoiesis or tumour progression, depending on the target site [41, 5255].
Two important issues remain to be elucidated. First, it is not clear whether or not there is a difference in the production of EPO between RCC with a normal VHL and a mutated VHL. Second, irrespective of any difference in production, it is not clear whether or not there is a difference between the biological activity of EPO produced by a VHL wild type and a VHL mutant RCC.

EPO and EPOR expression in RCC

Many studies have reported the over expression of EPO and EPOR in human RCC (Table 1) especially clear cell RCC [11, 50, 5671]. This is because of the high rate of VHL mutations, and the subsequent overproduction and stabilization of HIF in clear cell RCC compared with any other subtypes [37]. RCC cells isolated from patients also express EPO and EPOR in culture [7279], although conflicting findings have also been reported [37, 58]. One unresolved issue is the correlation between EPO/EPOR expression and prognosis. With one exception [50], all studies to date [11, 5662] (Table 1) have failed to find an association between EPO/EPOR expression and survival. Despite the frequent expression of EPO and EPOR in RCC, approximately 35% of RCC patients develop anaemia, whilst only 1-5% experience paraneoplastic polycythaemia [37, 47, 62, 8083]. Possible explanations for this seemingly paradoxical finding in the face of elevated EPO blood levels include tumour-induced EPO inactivity (or reduced activity), EPO hyporesponsiveness, iron deficiency and inflammation.
Table 1
Expression of EPO and EPOR in RCC*
Samples
Parameters
Method
Number of samples
% expression
References
Serum
EPO
ELISA
165
33
[57]
Serum
EPO
ELISA
49
8
[58]
Tissues
EPO
IHC#
19
52
[59]
Tissues
EPO & EPOR
IHC
11
100
[60]
Tissues
EPO
IHC
20
100
[61]
Tissues
EPO
IHC
113
33
[50]
Tissues
EPO
IHC
82
88
[11, 56]
Serum
EPO & EPOR
IHC
195
83 (tissue EPO)
[62]
Tissues
 
ELISA
 
33 (serum EPO)?
 
    
56 (tissue EPOR)
 
*Apart from the publications that are listed in the table, there are many case reports involving one or two patients [6371].
#IHC, immunohistochemistry.

Does the EPO/EPOR pathway have functional significance in RCC?

Because EPO and EPOR are expressed in RCC (and in other cancers [46]), the use of recombinant human EPO (rhEPO) to treat anaemia in cancer patients has been subject to considerable debate. It is argued that the binding of exogenous rhEPO with EPOR might attenuate tumour growth by decreasing hypoxia (through erythrocyotosis), and thereby HIF, and the subsequent expression of downstream molecules that facilitate angiogenesis and other features of cancer progression [46]. The alternative argument is that binding of exogenous rhEPO with EPOR might, theoretically, initiate autocrine/paracrine effects that will promote tumour progression through inhibiting apoptosis, accelerating proliferation, promoting angiogenesis and enhancing drug resistance [46]. There are data available to support both views.

Beneficial effects of EPO in RCC

Immunotherapy with interleukin-2 (IL-2), which offers a short term response in 10-15% of RCC patients, is routinely used in the management of metastatic RCC. A high circulating level of vascular endothelial growth factor (VEGF) has been shown to predict IL-2 resistance in patients with metastatic RCC [84]. As hypoxia is one of the stimulators of VEGF, the correction of anaemia (or anaemia-induced hypoxia) with EPO would counteract the pro-angiogenic actions of VEGF and reverse IL-2 resistance [85]. Based on these assumptions, in a Phase II trial, Lissoni and colleagues [85] treated metastatic RCC patients, who had already been on IL-2, with a combination of IL-2 and EPO (10,000 units, 3 times a week). Apart from counteracting VEGF-related IL-2 resistance, EPO controlled cancer growth and reduced the toxicity of IL-2. A case report by Rubins [69] shows that treatment with EPO of a large volume metastatic RCC, which was refractory to immunotherapy, resulted in complete remission of all metastatic lesions. A French study that treated 20 patients with subcutaneous EPO for metastatic RCC demonstrated a complete response in one, partial response in three and disease stabilization in ten patients [86]. Janik and colleagues [87] reported that two polycythemic patients with EPO-producing RCC obtained partial or complete response to a combination of IL-2 and interferon-α treatment, suggesting that EPO-producing RCC may be an indicator of immunotherapy response. Carvalho and colleagues [88] reported that concomitant treatment with EPO enhanced the cytotoxicity of vinblastine and daunorubicin in RCC cell lines. Furthermore primary cultures of RCC transfected with erythropoietin-cDNA were more susceptible to lysis by lymphokine-activated killer cells [89].

Adverse effects of EPO in RCC

To the best of our knowledge, there are two reports that show adverse effects of EPO in RCC patients. In a case report, Sungur [70] describes of a patient who developed local recurrence of RCC while on EPO treatment. The patient had a left radical nephrectomy for RCC and the disease recurred 2 years later in the right kidney, for which a partial nephrectomy was performed. Subsequently, the patient received hemodialysis three times per week along with EPO, 12000U/week, for the first 6 weeks and then a maintenance dose of 4000U/week for 1 year [70]. Fourteen months later, ultrasonography showed a recurrent tumour in the adrenal gland, which was cured by right adrenalectomy. Interestingly through, the patient continued on EPO (4000 u/WK) and remained tumour-free for more than 9 months. Given the case history, it is difficult to conclude whether EPO was the cause of the recurrent tumour. Apart from this report, in the French study mentioned above [86], the remaining six of the 20 patients displayed progressive disease in response to EPO. In vitro studies from our laboratory showed that RCC cells treated with EPO developed resistance to cisplatin treatment [49].
Although not in RCC, it is worth mentioning the adverse effects of EPO administration in other cancers, especially breast cancer and head and neck cancer. In breast cancer, a phase III study on the use of EPO was stopped because of increased mortality, tumour progression and increased incidence of thrombotic and vascular events [90]. In a double-blind, placebo-controlled study, Henke and colleagues reported a poorer outcome for head and neck cancer patients who were treated with EPO [91]. These studies prompted the FDA to issue a black box warning on the use of EPO or erythroid-stimulating agents in cancer patients [92]. A review by Hadland and Longmore details the potential dangers of erythroid-stimulating agents in cancer therapy [93].
None of the clinical trials has explored the molecular mechanism of the EPO-mediated adverse events. While such mechanisms will undoubtedly be multifactorial, one common pathway by which HIF and EPO could potentially enhance cancer progression is by phosphatidylinositol3-kinase/Protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR)–mediated EMT. This is best known in head and neck cancer but may well apply to RCC as well. HIF plays a crucial role in EMT of cancer cells and the PI3K/Akt/mTOR pathway plays a central role in this process. Both HIF and EPO activate this pathway. Phosphorylation of PI3K leads to the activation of Akt, which in turn activates mTOR [94, 95]. This can be executed directly by HIF per se or through one of the many pro-inflammatory cytokines that are up-regulated in cancer patients, for example tumour necrosis factor-α [9497]. To support this view, two recent studies have shown that hypoxia induced-EPO [98] and exogenous rhEPO [99] activate the PI3K/Akt/mTOR in retinal, and head and neck cancer cells respectively.

Neutral effects of EPO in RCC

There is at least one study that shows a neutral effect of EPO in cultured RCC cell lines. Treatment of 22 different cell lines, including 2 RCC cell lines, with rhEPO (dose range 0.01-100 U/ml) did not induce any significant changes in clonal growth or proliferation. Furthermore, a neutralizing anti-human EPO antibody had no effect on the clonal growth of these RCC cell lines thereby ruling out any autocrine effects of EPO [100].

Conclusions and future directions

EPO is of special interest in RCC because of its direct regulation by the VHL-HIF pathway. As rhEPO is widely used in clinical practice for the treatment of anaemia associated with various disorders including cancer, the expression of EPO and EPOR in the kidney and especially in RCC has been a cause for concern. There are two schools of thought. One argues that exogenous rhEPO would correct hypoxia by increasing oxygenation, and therefore, would prevent or stabilize cancer progression. The other school argues that the binding of rhEPO with EPOR would enhance the progression of cancer. While each view has its own merit, a review of the available information on RCC is inconclusive. There are many reasons for this. First, and perhaps the most important, is the lack of an adequate number of studies. This is surprising given the direct link between RCC and VHL mutations, the direct or indirect regulation of EPO expression by VHL and the involvement of HIF. Second, the sample size of the available studies is inadequate to evaluate the prognostic significance of EPO and EPOR expression in RCC. Third, the effects of EPO administration in RCC patients (or in other cancers), either beneficial or adverse, cannot be correlated to the expression status of EPO or EPOR, because the criteria for patient selection were not based on the expression status of either of these molecules, and to date no studies have explored this aspect. More comprehensive studies using human samples are warranted. In particular, further information on the baseline level of EPO and EPOR in RCC would be of value in monitoring the effect of exogenous rhEPO on the progression of RCC.

Acknowledgements

The National Health and Medical Research Council (NHMRC) of Australia is acknowledged for providing funding for the salary of Dr Christudas Morais (Project Grant Number 631576).
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

Professor David Johnson is a current recipient of a Queensland Government Health Research Fellowship. He has received consultancy fees, research funds, speaking honoraria and travel sponsorships from Jannsen-Cilag, Amgen, Pfizer and Roche. All other authors verify that they have nothing to disclose.

Authors’ contributions

CM and GCG contributed to the conception of the idea, literature search and drafting the manuscript. DWJ and DAV contributed to the interpretation of findings, critical evaluation and editing of the manuscript. All authors critically reviewed and accepted the final version of the manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Eble J, Sauter G, Epstein J, Sesterhenn I: Pathology and genetics. Tumours of the urinary system and male genital organs. 2001, Lyon: IARC Press Eble J, Sauter G, Epstein J, Sesterhenn I: Pathology and genetics. Tumours of the urinary system and male genital organs. 2001, Lyon: IARC Press
2.
Zurück zum Zitat Lopez-Beltran A, Scarpelli M, Montironi R, Kirkali Z: 2004 WHO classification of the renal tumors of the adults. Eur Urol. 2006, 49 (5): 798-805. 10.1016/j.eururo.2005.11.035.CrossRefPubMed Lopez-Beltran A, Scarpelli M, Montironi R, Kirkali Z: 2004 WHO classification of the renal tumors of the adults. Eur Urol. 2006, 49 (5): 798-805. 10.1016/j.eururo.2005.11.035.CrossRefPubMed
4.
Zurück zum Zitat Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Farmer GE, Lamiell JM, Haines J, Yuen JW, Collins D, Majoor-Krakauer D, et al: Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature. 1988, 332 (6161): 268-269. 10.1038/332268a0.CrossRefPubMed Seizinger BR, Rouleau GA, Ozelius LJ, Lane AH, Farmer GE, Lamiell JM, Haines J, Yuen JW, Collins D, Majoor-Krakauer D, et al: Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature. 1988, 332 (6161): 268-269. 10.1038/332268a0.CrossRefPubMed
5.
Zurück zum Zitat Kim WY, Kaelin WG: Role of VHL gene mutation in human cancer. J Clin Oncol. 2004, 22 (24): 4991-5004. 10.1200/JCO.2004.05.061.CrossRefPubMed Kim WY, Kaelin WG: Role of VHL gene mutation in human cancer. J Clin Oncol. 2004, 22 (24): 4991-5004. 10.1200/JCO.2004.05.061.CrossRefPubMed
6.
Zurück zum Zitat Clark PE: The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney Int. 2009, 76 (9): 939-945. 10.1038/ki.2009.296.CrossRefPubMedPubMedCentral Clark PE: The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney Int. 2009, 76 (9): 939-945. 10.1038/ki.2009.296.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Ohh M, Kaelin WG: VHL and kidney cancer. Methods Mol Biol. 2003, 222: 167-183.PubMed Ohh M, Kaelin WG: VHL and kidney cancer. Methods Mol Biol. 2003, 222: 167-183.PubMed
8.
Zurück zum Zitat Arai E, Kanai Y: Genetic and epigenetic alterations during renal carcinogenesis. Int J Clin Exp Pathol. 2010, 4 (1): 58-73.PubMedPubMedCentral Arai E, Kanai Y: Genetic and epigenetic alterations during renal carcinogenesis. Int J Clin Exp Pathol. 2010, 4 (1): 58-73.PubMedPubMedCentral
9.
Zurück zum Zitat Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, et al: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA. 1994, 91 (21): 9700-9704. 10.1073/pnas.91.21.9700.CrossRefPubMedPubMedCentral Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, et al: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA. 1994, 91 (21): 9700-9704. 10.1073/pnas.91.21.9700.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Kondo K, Yao M, Yoshida M, Kishida T, Shuin T, Miura T, Moriyama M, Kobayashi K, Sakai N, Kaneko S, et al: Comprehensive mutational analysis of the VHL gene in sporadic renal cell carcinoma: relationship to clinicopathological parameters. Genes Chromosomes Cancer. 2002, 34 (1): 58-68. 10.1002/gcc.10054.CrossRefPubMed Kondo K, Yao M, Yoshida M, Kishida T, Shuin T, Miura T, Moriyama M, Kobayashi K, Sakai N, Kaneko S, et al: Comprehensive mutational analysis of the VHL gene in sporadic renal cell carcinoma: relationship to clinicopathological parameters. Genes Chromosomes Cancer. 2002, 34 (1): 58-68. 10.1002/gcc.10054.CrossRefPubMed
11.
Zurück zum Zitat Gong K, Zhang N, Zhang Z, Na Y: Coexpression of erythopoietin and erythopoietin receptor in sporadic clear cell renal cell carcinoma. Cancer Biol Ther. 2006, 5 (6): 582-585. 10.4161/cbt.5.6.2709.CrossRefPubMed Gong K, Zhang N, Zhang Z, Na Y: Coexpression of erythopoietin and erythopoietin receptor in sporadic clear cell renal cell carcinoma. Cancer Biol Ther. 2006, 5 (6): 582-585. 10.4161/cbt.5.6.2709.CrossRefPubMed
12.
Zurück zum Zitat Prowse AH, Webster AR, Richards FM, Richard S, Olschwang S, Resche F, Affara NA, Maher ER: Somatic inactivation of the VHL gene in Von Hippel-Lindau disease tumors. Am J Hum Genet. 1997, 60 (4): 765-771.PubMedPubMedCentral Prowse AH, Webster AR, Richards FM, Richard S, Olschwang S, Resche F, Affara NA, Maher ER: Somatic inactivation of the VHL gene in Von Hippel-Lindau disease tumors. Am J Hum Genet. 1997, 60 (4): 765-771.PubMedPubMedCentral
13.
Zurück zum Zitat Brauch H, Weirich G, Brieger J, Glavac D, Rodl H, Eichinger M, Feurer M, Weidt E, Puranakanitstha C, Neuhaus C, et al: VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res. 2000, 60 (7): 1942-1948.PubMed Brauch H, Weirich G, Brieger J, Glavac D, Rodl H, Eichinger M, Feurer M, Weidt E, Puranakanitstha C, Neuhaus C, et al: VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res. 2000, 60 (7): 1942-1948.PubMed
14.
Zurück zum Zitat Hes FJ, Hoppener JW, Lips CJ: Clinical review 155: Pheochromocytoma in Von Hippel-Lindau disease. J Clin Endocrinol Metab. 2003, 88 (3): 969-974. 10.1210/jc.2002-021466.CrossRefPubMed Hes FJ, Hoppener JW, Lips CJ: Clinical review 155: Pheochromocytoma in Von Hippel-Lindau disease. J Clin Endocrinol Metab. 2003, 88 (3): 969-974. 10.1210/jc.2002-021466.CrossRefPubMed
15.
Zurück zum Zitat Jonasch E, Futreal PA, Davis IJ, Bailey ST, Kim WY, Brugarolas J, Giaccia AJ, Kurban G, Pause A, Frydman J, et al: State of the science: an update on renal cell carcinoma. Mol Cancer Res. 2012, 10 (7): 859-880. 10.1158/1541-7786.MCR-12-0117.CrossRefPubMedPubMedCentral Jonasch E, Futreal PA, Davis IJ, Bailey ST, Kim WY, Brugarolas J, Giaccia AJ, Kurban G, Pause A, Frydman J, et al: State of the science: an update on renal cell carcinoma. Mol Cancer Res. 2012, 10 (7): 859-880. 10.1158/1541-7786.MCR-12-0117.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Procopio G, Verzoni E, Iacovelli R, Guadalupi V, Gelsomino F, Buzzoni R: Targeted therapies used sequentially in metastatic renal cell cancer: overall results from a large experience. Expert Rev Anticancer Ther. 2011, 11 (11): 1631-1640. 10.1586/era.11.154.CrossRefPubMed Procopio G, Verzoni E, Iacovelli R, Guadalupi V, Gelsomino F, Buzzoni R: Targeted therapies used sequentially in metastatic renal cell cancer: overall results from a large experience. Expert Rev Anticancer Ther. 2011, 11 (11): 1631-1640. 10.1586/era.11.154.CrossRefPubMed
17.
Zurück zum Zitat Wang GL, Jiang BH, Rue EA, Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995, 92 (12): 5510-5514. 10.1073/pnas.92.12.5510.CrossRefPubMedPubMedCentral Wang GL, Jiang BH, Rue EA, Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995, 92 (12): 5510-5514. 10.1073/pnas.92.12.5510.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Kaluz S, Kaluzova M, Stanbridge EJ: Does inhibition of degradation of hypoxia-inducible factor (HIF) alpha always lead to activation of HIF? Lessons learnt from the effect of proteasomal inhibition on HIF activity. J Cell Biochem. 2008, 104 (2): 536-544. 10.1002/jcb.21644.CrossRefPubMed Kaluz S, Kaluzova M, Stanbridge EJ: Does inhibition of degradation of hypoxia-inducible factor (HIF) alpha always lead to activation of HIF? Lessons learnt from the effect of proteasomal inhibition on HIF activity. J Cell Biochem. 2008, 104 (2): 536-544. 10.1002/jcb.21644.CrossRefPubMed
19.
Zurück zum Zitat Semenza GL: Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999, 15: 551-578. 10.1146/annurev.cellbio.15.1.551.CrossRefPubMed Semenza GL: Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol. 1999, 15: 551-578. 10.1146/annurev.cellbio.15.1.551.CrossRefPubMed
20.
Zurück zum Zitat Huang LE, Bunn HF: Hypoxia-inducible factor and its biomedical relevance. J Biol Chem. 2003, 278 (22): 19575-19578. 10.1074/jbc.R200030200.CrossRefPubMed Huang LE, Bunn HF: Hypoxia-inducible factor and its biomedical relevance. J Biol Chem. 2003, 278 (22): 19575-19578. 10.1074/jbc.R200030200.CrossRefPubMed
21.
Zurück zum Zitat Maynard MA, Ohh M: Von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer. Am J Nephrol. 2004, 24 (1): 1-13. 10.1159/000075346.CrossRefPubMed Maynard MA, Ohh M: Von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer. Am J Nephrol. 2004, 24 (1): 1-13. 10.1159/000075346.CrossRefPubMed
22.
Zurück zum Zitat Maynard MA, Qi H, Chung J, Lee EH, Kondo Y, Hara S, Conaway RC, Conaway JW, Ohh M: Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem. 2003, 278 (13): 11032-11040. 10.1074/jbc.M208681200.CrossRefPubMed Maynard MA, Qi H, Chung J, Lee EH, Kondo Y, Hara S, Conaway RC, Conaway JW, Ohh M: Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem. 2003, 278 (13): 11032-11040. 10.1074/jbc.M208681200.CrossRefPubMed
23.
Zurück zum Zitat Baldewijns MM, Van VIJ, Vermeulen PB, Soetekouw PM, Van EM, De BAP: VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 2010, 221 (2): 125-138. 10.1002/path.2689.CrossRefPubMed Baldewijns MM, Van VIJ, Vermeulen PB, Soetekouw PM, Van EM, De BAP: VHL and HIF signalling in renal cell carcinogenesis. J Pathol. 2010, 221 (2): 125-138. 10.1002/path.2689.CrossRefPubMed
24.
Zurück zum Zitat Stebbins CE, Kaelin WG, Pavletich NP: Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science. 1999, 284 (5413): 455-461. 10.1126/science.284.5413.455.CrossRefPubMed Stebbins CE, Kaelin WG, Pavletich NP: Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science. 1999, 284 (5413): 455-461. 10.1126/science.284.5413.455.CrossRefPubMed
25.
Zurück zum Zitat Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG: Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000, 2 (7): 423-427. 10.1038/35017054.CrossRefPubMed Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG: Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000, 2 (7): 423-427. 10.1038/35017054.CrossRefPubMed
26.
Zurück zum Zitat Kaelin WG: The von Hippel-Lindau tumor suppressor protein: roles in cancer and oxygen sensing. Cold Spring Harb Symp Quant Biol. 2005, 70: 159-166. 10.1101/sqb.2005.70.001.CrossRefPubMed Kaelin WG: The von Hippel-Lindau tumor suppressor protein: roles in cancer and oxygen sensing. Cold Spring Harb Symp Quant Biol. 2005, 70: 159-166. 10.1101/sqb.2005.70.001.CrossRefPubMed
27.
Zurück zum Zitat Tanimoto K, Makino Y, Pereira T, Poellinger L: Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 2000, 19 (16): 4298-4309. 10.1093/emboj/19.16.4298.CrossRefPubMedPubMedCentral Tanimoto K, Makino Y, Pereira T, Poellinger L: Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 2000, 19 (16): 4298-4309. 10.1093/emboj/19.16.4298.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999, 399 (6733): 271-275. 10.1038/20459.CrossRefPubMed Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999, 399 (6733): 271-275. 10.1038/20459.CrossRefPubMed
30.
Zurück zum Zitat Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, et al: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001, 292 (5516): 468-472. 10.1126/science.1059796.CrossRefPubMed Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, et al: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001, 292 (5516): 468-472. 10.1126/science.1059796.CrossRefPubMed
31.
Zurück zum Zitat Salceda S, Caro J: Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997, 272 (36): 22642-22647. 10.1074/jbc.272.36.22642.CrossRefPubMed Salceda S, Caro J: Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem. 1997, 272 (36): 22642-22647. 10.1074/jbc.272.36.22642.CrossRefPubMed
32.
Zurück zum Zitat Huang LE, Gu J, Schau M, Bunn HF: Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA. 1998, 95 (14): 7987-7992. 10.1073/pnas.95.14.7987.CrossRefPubMedPubMedCentral Huang LE, Gu J, Schau M, Bunn HF: Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA. 1998, 95 (14): 7987-7992. 10.1073/pnas.95.14.7987.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Rankin EB, Tomaszewski JE, Haase VH: Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res. 2006, 66 (5): 2576-2583. 10.1158/0008-5472.CAN-05-3241.CrossRefPubMedPubMedCentral Rankin EB, Tomaszewski JE, Haase VH: Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res. 2006, 66 (5): 2576-2583. 10.1158/0008-5472.CAN-05-3241.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Rad FH, Ulusakarya A, Gad S, Sibony M, Juin F, Richard S, Machover D, Uzan G: Novel somatic mutations of the VHL gene in an erythropoietin-producing renal carcinoma associated with secondary polycythemia and elevated circulating endothelial progenitor cells. Am J Hematol. 2008, 83 (2): 155-158. 10.1002/ajh.21019.CrossRefPubMed Rad FH, Ulusakarya A, Gad S, Sibony M, Juin F, Richard S, Machover D, Uzan G: Novel somatic mutations of the VHL gene in an erythropoietin-producing renal carcinoma associated with secondary polycythemia and elevated circulating endothelial progenitor cells. Am J Hematol. 2008, 83 (2): 155-158. 10.1002/ajh.21019.CrossRefPubMed
35.
Zurück zum Zitat Wiesener MS, Eckardt KU: Erythropoietin, tumours and the von Hippel-Lindau gene: towards identification of mechanisms and dysfunction of oxygen sensing. Nephrol Dial Transplant. 2002, 17 (3): 356-359. 10.1093/ndt/17.3.356.CrossRefPubMed Wiesener MS, Eckardt KU: Erythropoietin, tumours and the von Hippel-Lindau gene: towards identification of mechanisms and dysfunction of oxygen sensing. Nephrol Dial Transplant. 2002, 17 (3): 356-359. 10.1093/ndt/17.3.356.CrossRefPubMed
36.
Zurück zum Zitat Wiesener MS, Seyfarth M, Warnecke C, Jurgensen JS, Rosenberger C, Morgan NV, Maher ER, Frei U, Eckardt KU: Paraneoplastic erythrocytosis associated with an inactivating point mutation of the von Hippel-Lindau gene in a renal cell carcinoma. Blood. 2002, 99 (10): 3562-3565. 10.1182/blood.V99.10.3562.CrossRefPubMed Wiesener MS, Seyfarth M, Warnecke C, Jurgensen JS, Rosenberger C, Morgan NV, Maher ER, Frei U, Eckardt KU: Paraneoplastic erythrocytosis associated with an inactivating point mutation of the von Hippel-Lindau gene in a renal cell carcinoma. Blood. 2002, 99 (10): 3562-3565. 10.1182/blood.V99.10.3562.CrossRefPubMed
37.
Zurück zum Zitat Wiesener MS, Munchenhagen P, Glaser M, Sobottka BA, Knaup KX, Jozefowski K, Jurgensen JS, Roigas J, Warnecke C, Grone HJ, et al: Erythropoietin gene expression in renal carcinoma is considerably more frequent than paraneoplastic polycythemia. Int J Cancer. 2007, 121 (11): 2434-2442. 10.1002/ijc.22961.CrossRefPubMed Wiesener MS, Munchenhagen P, Glaser M, Sobottka BA, Knaup KX, Jozefowski K, Jurgensen JS, Roigas J, Warnecke C, Grone HJ, et al: Erythropoietin gene expression in renal carcinoma is considerably more frequent than paraneoplastic polycythemia. Int J Cancer. 2007, 121 (11): 2434-2442. 10.1002/ijc.22961.CrossRefPubMed
38.
Zurück zum Zitat Lacombe C, Mayeux P: The molecular biology of erythropoietin. Nephrol Dial Transplant. 1999, 14 (Suppl 2): 22-28.CrossRefPubMed Lacombe C, Mayeux P: The molecular biology of erythropoietin. Nephrol Dial Transplant. 1999, 14 (Suppl 2): 22-28.CrossRefPubMed
39.
Zurück zum Zitat Fisher JW, Koury S, Ducey T, Mendel S: Erythropoietin production by interstitial cells of hypoxic monkey kidneys. Br J Haematol. 1996, 95 (1): 27-32. 10.1046/j.1365-2141.1996.d01-1864.x.CrossRefPubMed Fisher JW, Koury S, Ducey T, Mendel S: Erythropoietin production by interstitial cells of hypoxic monkey kidneys. Br J Haematol. 1996, 95 (1): 27-32. 10.1046/j.1365-2141.1996.d01-1864.x.CrossRefPubMed
40.
Zurück zum Zitat Koury ST, Bondurant MC, Koury MJ: Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood. 1988, 71 (2): 524-527.PubMed Koury ST, Bondurant MC, Koury MJ: Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood. 1988, 71 (2): 524-527.PubMed
41.
Zurück zum Zitat Chateauvieux S, Grigorakaki C, Morceau F, Dicato M, Diederich M: Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol. 2011, 82 (10): 1291-1303. 10.1016/j.bcp.2011.06.045.CrossRefPubMed Chateauvieux S, Grigorakaki C, Morceau F, Dicato M, Diederich M: Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol. 2011, 82 (10): 1291-1303. 10.1016/j.bcp.2011.06.045.CrossRefPubMed
42.
Zurück zum Zitat Lacombe C, Da SJL, Bruneval P, Fournier JG, Wendling F, Casadevall N, Camilleri JP, Bariety J, Varet B, Tambourin P: Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J Clin Invest. 1988, 81 (2): 620-623. 10.1172/JCI113363.CrossRefPubMedPubMedCentral Lacombe C, Da SJL, Bruneval P, Fournier JG, Wendling F, Casadevall N, Camilleri JP, Bariety J, Varet B, Tambourin P: Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J Clin Invest. 1988, 81 (2): 620-623. 10.1172/JCI113363.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Eckardt KU: Erythropoietin production in liver and kidneys. Curr Opin Nephrol Hypertens. 1996, 5 (1): 28-34. 10.1097/00041552-199601000-00007.CrossRefPubMed Eckardt KU: Erythropoietin production in liver and kidneys. Curr Opin Nephrol Hypertens. 1996, 5 (1): 28-34. 10.1097/00041552-199601000-00007.CrossRefPubMed
44.
Zurück zum Zitat Zanjani ED, Ascensao JL, McGlave PB, Banisadre M, Ash RC: Studies on the liver to kidney switch of erythropoietin production. J Clin Invest. 1981, 67 (4): 1183-1188. 10.1172/JCI110133.CrossRefPubMedPubMedCentral Zanjani ED, Ascensao JL, McGlave PB, Banisadre M, Ash RC: Studies on the liver to kidney switch of erythropoietin production. J Clin Invest. 1981, 67 (4): 1183-1188. 10.1172/JCI110133.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Lacombe C, Da SJL, Bruneval P, Casadevall N, Camilleri JP, Bariety J, Tambourin P, Varet B: Erythropoietin: sites of synthesis and regulation of secretion. Am J Kidney Dis. 1991, 18 (4 Suppl 1): 14-19.PubMed Lacombe C, Da SJL, Bruneval P, Casadevall N, Camilleri JP, Bariety J, Tambourin P, Varet B: Erythropoietin: sites of synthesis and regulation of secretion. Am J Kidney Dis. 1991, 18 (4 Suppl 1): 14-19.PubMed
46.
Zurück zum Zitat Farrell F, Lee A: The erythropoietin receptor and its expression in tumor cells and other tissues. Oncologist. 2004, 9 (Suppl 5): 18-30.CrossRefPubMed Farrell F, Lee A: The erythropoietin receptor and its expression in tumor cells and other tissues. Oncologist. 2004, 9 (Suppl 5): 18-30.CrossRefPubMed
47.
Zurück zum Zitat Westenfelder C, Baranowski RL: Erythropoietin stimulates proliferation of human renal carcinoma cells. Kidney Int. 2000, 58 (2): 647-657. 10.1046/j.1523-1755.2000.00211.x.CrossRefPubMed Westenfelder C, Baranowski RL: Erythropoietin stimulates proliferation of human renal carcinoma cells. Kidney Int. 2000, 58 (2): 647-657. 10.1046/j.1523-1755.2000.00211.x.CrossRefPubMed
48.
Zurück zum Zitat Ribatti D, Presta M, Vacca A, Ria R, Giuliani R, Dell'Era P, Nico B, Roncali L, Dammacco F: Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood. 1999, 93 (8): 2627-2636.PubMed Ribatti D, Presta M, Vacca A, Ria R, Giuliani R, Dell'Era P, Nico B, Roncali L, Dammacco F: Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood. 1999, 93 (8): 2627-2636.PubMed
49.
Zurück zum Zitat Li J, Vesey DA, Johnson DW, Gobe G: Erythropoietin reduces cisplatin-induced apoptosis in renal carcinoma cells via a PKC dependent pathway. Cancer Biol Ther. 2007, 6 (12): 1944-1950. 10.4161/cbt.6.12.4975.CrossRefPubMed Li J, Vesey DA, Johnson DW, Gobe G: Erythropoietin reduces cisplatin-induced apoptosis in renal carcinoma cells via a PKC dependent pathway. Cancer Biol Ther. 2007, 6 (12): 1944-1950. 10.4161/cbt.6.12.4975.CrossRefPubMed
50.
Zurück zum Zitat Michael A, Politi E, Havranek E, Corbishley C, Karapanagiotou L, Anderson C, Relph K, Syrigos KN, Pandha H: Prognostic significance of erythropoietin expression in human renal cell carcinoma. BJU Int. 2007, 100 (2): 291-294. 10.1111/j.1464-410X.2007.06978.x.CrossRefPubMed Michael A, Politi E, Havranek E, Corbishley C, Karapanagiotou L, Anderson C, Relph K, Syrigos KN, Pandha H: Prognostic significance of erythropoietin expression in human renal cell carcinoma. BJU Int. 2007, 100 (2): 291-294. 10.1111/j.1464-410X.2007.06978.x.CrossRefPubMed
51.
52.
Zurück zum Zitat Witthuhn BA, Quelle FW, Silvennoinen O, Yi T, Tang B, Miura O, Ihle JN: JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 1993, 74 (2): 227-236. 10.1016/0092-8674(93)90414-L.CrossRefPubMed Witthuhn BA, Quelle FW, Silvennoinen O, Yi T, Tang B, Miura O, Ihle JN: JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 1993, 74 (2): 227-236. 10.1016/0092-8674(93)90414-L.CrossRefPubMed
53.
Zurück zum Zitat Frank SJ: Receptor dimerization in GH and erythropoietin action–it takes two to tango, but how?. Endocrinology. 2002, 143 (1): 2-10. 10.1210/en.143.1.2.PubMed Frank SJ: Receptor dimerization in GH and erythropoietin action–it takes two to tango, but how?. Endocrinology. 2002, 143 (1): 2-10. 10.1210/en.143.1.2.PubMed
54.
Zurück zum Zitat Bao H, Jacobs-Helber SM, Lawson AE, Penta K, Wickrema A, Sawyer ST: Protein kinase B (c-Akt), phosphatidylinositol 3-kinase, and STAT5 are activated by erythropoietin (EPO) in HCD57 erythroid cells but are constitutively active in an EPO-independent, apoptosis-resistant subclone (HCD57-SREI cells). Blood. 1999, 93 (11): 3757-3773.PubMed Bao H, Jacobs-Helber SM, Lawson AE, Penta K, Wickrema A, Sawyer ST: Protein kinase B (c-Akt), phosphatidylinositol 3-kinase, and STAT5 are activated by erythropoietin (EPO) in HCD57 erythroid cells but are constitutively active in an EPO-independent, apoptosis-resistant subclone (HCD57-SREI cells). Blood. 1999, 93 (11): 3757-3773.PubMed
55.
Zurück zum Zitat Wojchowski DM, Gregory RC, Miller CP, Pandit AK, Pircher TJ: Signal transduction in the erythropoietin receptor system. Exp Cell Res. 1999, 253 (1): 143-156. 10.1006/excr.1999.4673.CrossRefPubMed Wojchowski DM, Gregory RC, Miller CP, Pandit AK, Pircher TJ: Signal transduction in the erythropoietin receptor system. Exp Cell Res. 1999, 253 (1): 143-156. 10.1006/excr.1999.4673.CrossRefPubMed
56.
Zurück zum Zitat Gong K, Zhang N, Zhang K, Na Y: The relationship of erythropoietin overexpression with von Hippel-Lindau tumour suppressor gene mutations between hypoxia-inducible factor-1alpha and -2alpha in sporadic clear cell renal carcinoma. Int J Mol Med. 2010, 26 (6): 907-912.CrossRefPubMed Gong K, Zhang N, Zhang K, Na Y: The relationship of erythropoietin overexpression with von Hippel-Lindau tumour suppressor gene mutations between hypoxia-inducible factor-1alpha and -2alpha in sporadic clear cell renal carcinoma. Int J Mol Med. 2010, 26 (6): 907-912.CrossRefPubMed
57.
Zurück zum Zitat Ljungberg B, Rasmuson T, Grankvist K: Erythropoietin in renal cell carcinoma: evaluation of its usefulness as a tumor marker. Eur Urol. 1992, 21 (2): 160-163.PubMed Ljungberg B, Rasmuson T, Grankvist K: Erythropoietin in renal cell carcinoma: evaluation of its usefulness as a tumor marker. Eur Urol. 1992, 21 (2): 160-163.PubMed
58.
Zurück zum Zitat Gross AJ, Wolff M, Fandrey J, Miersch WD, Dieckmann KP, Jelkmann W: Prevalence of paraneoplastic erythropoietin production by renal cell carcinomas. Clin Investig. 1994, 72 (5): 337-340.CrossRefPubMed Gross AJ, Wolff M, Fandrey J, Miersch WD, Dieckmann KP, Jelkmann W: Prevalence of paraneoplastic erythropoietin production by renal cell carcinomas. Clin Investig. 1994, 72 (5): 337-340.CrossRefPubMed
59.
Zurück zum Zitat Clark D, Kersting R, Rojiani AM: Erythropoietin immunolocalization in renal cell carcinoma. Mod Pathol. 1998, 11 (1): 24-28.PubMed Clark D, Kersting R, Rojiani AM: Erythropoietin immunolocalization in renal cell carcinoma. Mod Pathol. 1998, 11 (1): 24-28.PubMed
60.
Zurück zum Zitat Lee YS, Vortmeyer AO, Lubensky IA, Vogel TW, Ikejiri B, Ferlicot S, Benoit G, Giraud S, Oldfield EH, Linehan WM, et al: Coexpression of erythropoietin and erythropoietin receptor in von Hippel-Lindau disease-associated renal cysts and renal cell carcinoma. Clin Cancer Res. 2005, 11 (3): 1059-1064.PubMed Lee YS, Vortmeyer AO, Lubensky IA, Vogel TW, Ikejiri B, Ferlicot S, Benoit G, Giraud S, Oldfield EH, Linehan WM, et al: Coexpression of erythropoietin and erythropoietin receptor in von Hippel-Lindau disease-associated renal cysts and renal cell carcinoma. Clin Cancer Res. 2005, 11 (3): 1059-1064.PubMed
61.
Zurück zum Zitat Butnor KJ, Nicholson AG, Allred DC, Zander DS, Henderson DW, Barrios R, Haque AK, Allen TC, Killen DE, Cagle PT: Expression of renal cell carcinoma-associated markers erythropoietin, CD10, and renal cell carcinoma marker in diffuse malignant mesothelioma and metastatic renal cell carcinoma. Arch Pathol Lab Med. 2006, 130 (6): 823-827.PubMed Butnor KJ, Nicholson AG, Allred DC, Zander DS, Henderson DW, Barrios R, Haque AK, Allen TC, Killen DE, Cagle PT: Expression of renal cell carcinoma-associated markers erythropoietin, CD10, and renal cell carcinoma marker in diffuse malignant mesothelioma and metastatic renal cell carcinoma. Arch Pathol Lab Med. 2006, 130 (6): 823-827.PubMed
62.
Zurück zum Zitat Papworth K, Bergh A, Grankvist K, Ljungberg B, Rasmuson T: Expression of erythropoietin and its receptor in human renal cell carcinoma. Tumour Biol. 2009, 30 (2): 86-92. 10.1159/000216844.CrossRefPubMed Papworth K, Bergh A, Grankvist K, Ljungberg B, Rasmuson T: Expression of erythropoietin and its receptor in human renal cell carcinoma. Tumour Biol. 2009, 30 (2): 86-92. 10.1159/000216844.CrossRefPubMed
63.
Zurück zum Zitat Murphy GP, Kenny GM, Mirand EA: Erythropoietin levels in patients with renal tumors or cysts. Cancer. 1970, 26 (1): 191-194. 10.1002/1097-0142(197007)26:1<191::AID-CNCR2820260124>3.0.CO;2-S.CrossRefPubMed Murphy GP, Kenny GM, Mirand EA: Erythropoietin levels in patients with renal tumors or cysts. Cancer. 1970, 26 (1): 191-194. 10.1002/1097-0142(197007)26:1<191::AID-CNCR2820260124>3.0.CO;2-S.CrossRefPubMed
64.
Zurück zum Zitat Noguchi Y, Goto T, Yufu Y, Uike N, Hasegawa Y, Fukuda T, Jimi A, Funakoshi A: Gene expression of erythropoietin in renal cell carcinoma. Intern Med. 1999, 38 (12): 991-994. 10.2169/internalmedicine.38.991.CrossRefPubMed Noguchi Y, Goto T, Yufu Y, Uike N, Hasegawa Y, Fukuda T, Jimi A, Funakoshi A: Gene expression of erythropoietin in renal cell carcinoma. Intern Med. 1999, 38 (12): 991-994. 10.2169/internalmedicine.38.991.CrossRefPubMed
65.
Zurück zum Zitat Nielsen OJ, Jespersen FF, Hilden M: Erythropoietin-induced secondary polycythemia in a patient with a renal cell carcinoma. A case report. Apmis. 1988, 96 (8): 688-694.CrossRefPubMed Nielsen OJ, Jespersen FF, Hilden M: Erythropoietin-induced secondary polycythemia in a patient with a renal cell carcinoma. A case report. Apmis. 1988, 96 (8): 688-694.CrossRefPubMed
66.
Zurück zum Zitat Hanada T, Mimata H, Ohno H, Nasu N, Nakagawa M, Nomura Y: Erythropoietin-producing renal cell carcinoma arising from acquired cystic disease of the kidney. Int J Urol. 1998, 5 (5): 493-494. 10.1111/j.1442-2042.1998.tb00397.x. discussion 495CrossRefPubMed Hanada T, Mimata H, Ohno H, Nasu N, Nakagawa M, Nomura Y: Erythropoietin-producing renal cell carcinoma arising from acquired cystic disease of the kidney. Int J Urol. 1998, 5 (5): 493-494. 10.1111/j.1442-2042.1998.tb00397.x. discussion 495CrossRefPubMed
67.
Zurück zum Zitat Toyama K, Fujiyama N, Suzuki H, Chen TP, Tamaoki N, Ueyama Y: Erythropoietin levels in the course of a patient with erythropoietin-producing renal cell carcinoma and transplantation of this tumor in nude mice. Blood. 1979, 54 (1): 245-253.PubMed Toyama K, Fujiyama N, Suzuki H, Chen TP, Tamaoki N, Ueyama Y: Erythropoietin levels in the course of a patient with erythropoietin-producing renal cell carcinoma and transplantation of this tumor in nude mice. Blood. 1979, 54 (1): 245-253.PubMed
68.
Zurück zum Zitat Burk JR, Lertora JJ, Martinez IR, Fisher JW: Renal cell carcinoma with erythrocytosis and elevated erythropoietic stimulatory activity. South Med J. 1977, 70 (8): 955-958. 10.1097/00007611-197708000-00017.CrossRefPubMed Burk JR, Lertora JJ, Martinez IR, Fisher JW: Renal cell carcinoma with erythrocytosis and elevated erythropoietic stimulatory activity. South Med J. 1977, 70 (8): 955-958. 10.1097/00007611-197708000-00017.CrossRefPubMed
69.
Zurück zum Zitat Rubins J: Metastatic renal cell carcinoma: response to treatment with human recombinant erythropoietin. Ann Intern Med. 1995, 122 (9): 676-677.CrossRefPubMed Rubins J: Metastatic renal cell carcinoma: response to treatment with human recombinant erythropoietin. Ann Intern Med. 1995, 122 (9): 676-677.CrossRefPubMed
70.
71.
Zurück zum Zitat Talmon GA: Pure erythropoiesis in clear cell renal cell carcinoma. Int J Surg Pathol. 2010, 18 (6): 544-546.PubMed Talmon GA: Pure erythropoiesis in clear cell renal cell carcinoma. Int J Surg Pathol. 2010, 18 (6): 544-546.PubMed
72.
Zurück zum Zitat Murphy GP, Brendler H, Mirand EA: Erythropoietin release from renal cell carcinomas grown in tissue culture. Res Commun Chem Pathol Pharmacol. 1970, 1 (5): 617-626.PubMed Murphy GP, Brendler H, Mirand EA: Erythropoietin release from renal cell carcinomas grown in tissue culture. Res Commun Chem Pathol Pharmacol. 1970, 1 (5): 617-626.PubMed
73.
Zurück zum Zitat Sherwood JB, Goldwasser E: Erythropoietin production by human renal carcinoma cells in culture. Endocrinology. 1976, 99 (2): 504-510. 10.1210/endo-99-2-504.CrossRefPubMed Sherwood JB, Goldwasser E: Erythropoietin production by human renal carcinoma cells in culture. Endocrinology. 1976, 99 (2): 504-510. 10.1210/endo-99-2-504.CrossRefPubMed
74.
Zurück zum Zitat Shouval D, Sherwood JB: Production of erythropoietin by an established human renal carcinoma cell line: in vitro and in vivo studies. Adv Exp Med Biol. 1988, 241: 319-328.CrossRefPubMed Shouval D, Sherwood JB: Production of erythropoietin by an established human renal carcinoma cell line: in vitro and in vivo studies. Adv Exp Med Biol. 1988, 241: 319-328.CrossRefPubMed
75.
Zurück zum Zitat Sherwood JB, Shouval D: Continuous production of erythropoietin by an established human renal carcinoma cell line: development of the cell line. Proc Natl Acad Sci USA. 1986, 83 (1): 165-169. 10.1073/pnas.83.1.165.CrossRefPubMedPubMedCentral Sherwood JB, Shouval D: Continuous production of erythropoietin by an established human renal carcinoma cell line: development of the cell line. Proc Natl Acad Sci USA. 1986, 83 (1): 165-169. 10.1073/pnas.83.1.165.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Hagiwara M, Chen IL, McGonigle R, Beckman B, Kasten FH, Fisher JW: Erythropoietin production in a primary culture of human renal carcinoma cells maintained in nude mice. Blood. 1984, 63 (4): 828-835.PubMed Hagiwara M, Chen IL, McGonigle R, Beckman B, Kasten FH, Fisher JW: Erythropoietin production in a primary culture of human renal carcinoma cells maintained in nude mice. Blood. 1984, 63 (4): 828-835.PubMed
77.
Zurück zum Zitat Katsuoka Y, McGonigle R, Rege AB, Beckman B, Fisher JW: Erythropoietin production in human renal carcinoma cells passaged in nude mice and in tissue culture. Gann. 1983, 74 (4): 534-541.PubMed Katsuoka Y, McGonigle R, Rege AB, Beckman B, Fisher JW: Erythropoietin production in human renal carcinoma cells passaged in nude mice and in tissue culture. Gann. 1983, 74 (4): 534-541.PubMed
78.
Zurück zum Zitat Okabe T, Urabe A, Kato T, Chiba S, Takaku F: Production of erythropoietin-like activity by human renal and hepatic carcinomas in cell culture. Cancer. 1985, 55 (9): 1918-1923. 10.1002/1097-0142(19850501)55:9<1918::AID-CNCR2820550915>3.0.CO;2-9.CrossRefPubMed Okabe T, Urabe A, Kato T, Chiba S, Takaku F: Production of erythropoietin-like activity by human renal and hepatic carcinomas in cell culture. Cancer. 1985, 55 (9): 1918-1923. 10.1002/1097-0142(19850501)55:9<1918::AID-CNCR2820550915>3.0.CO;2-9.CrossRefPubMed
79.
Zurück zum Zitat Sytkowski AJ, Richie JP, Bicknell KA: New human renal carcinoma cell line established from a patient with erythrocytosis. Cancer Res. 1983, 43 (3): 1415-1419.PubMed Sytkowski AJ, Richie JP, Bicknell KA: New human renal carcinoma cell line established from a patient with erythrocytosis. Cancer Res. 1983, 43 (3): 1415-1419.PubMed
80.
Zurück zum Zitat Magera JS, Leibovich BC, Lohse CM, Sengupta S, Cheville JC, Kwon ED, Blute ML: Association of abnormal preoperative laboratory values with survival after radical nephrectomy for clinically confined clear cell renal cell carcinoma. Urology. 2008, 71 (2): 278-282. 10.1016/j.urology.2007.08.048.CrossRefPubMedPubMedCentral Magera JS, Leibovich BC, Lohse CM, Sengupta S, Cheville JC, Kwon ED, Blute ML: Association of abnormal preoperative laboratory values with survival after radical nephrectomy for clinically confined clear cell renal cell carcinoma. Urology. 2008, 71 (2): 278-282. 10.1016/j.urology.2007.08.048.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Nseyo UO, Williams PD, Murphy GP: Clinical significance of erythropoietin levels in renal carcinoma. Urology. 1986, 28 (4): 301-306. 10.1016/0090-4295(86)90011-7.CrossRefPubMed Nseyo UO, Williams PD, Murphy GP: Clinical significance of erythropoietin levels in renal carcinoma. Urology. 1986, 28 (4): 301-306. 10.1016/0090-4295(86)90011-7.CrossRefPubMed
82.
Zurück zum Zitat Motzer RJ, Bander NH, Nanus DM: Renal-cell carcinoma. N Engl J Med. 1996, 335 (12): 865-875. 10.1056/NEJM199609193351207.CrossRefPubMed Motzer RJ, Bander NH, Nanus DM: Renal-cell carcinoma. N Engl J Med. 1996, 335 (12): 865-875. 10.1056/NEJM199609193351207.CrossRefPubMed
83.
Zurück zum Zitat Da SJL, Lacombe C, Bruneval P, Casadevall N, Leporrier M, Camilleri JP, Bariety J, Tambourin P, Varet B: Tumor cells are the site of erythropoietin synthesis in human renal cancers associated with polycythemia. Blood. 1990, 75 (3): 577-582. Da SJL, Lacombe C, Bruneval P, Casadevall N, Leporrier M, Camilleri JP, Bariety J, Tambourin P, Varet B: Tumor cells are the site of erythropoietin synthesis in human renal cancers associated with polycythemia. Blood. 1990, 75 (3): 577-582.
84.
Zurück zum Zitat Blay JY, Pallard M, Ravaud A: Serum VEGF is an independent prognostic factor in patients with metastatic renal cell carcinoma treated with IL-1 and/or IFN: analysis of the Crecy trial. Proc Am Ass Clin Oncol (Abstr). 1997, 18. Blay JY, Pallard M, Ravaud A: Serum VEGF is an independent prognostic factor in patients with metastatic renal cell carcinoma treated with IL-1 and/or IFN: analysis of the Crecy trial. Proc Am Ass Clin Oncol (Abstr). 1997, 18.
85.
Zurück zum Zitat Lissoni P, Rovelli F, Baiocco N, Tangini G, Fumagalli L: A phase II study of subcutaneous low-dose interleukin-2 plus erythropoietin in metastatic renal cell carcinoma progressing on interleukin-2 alone. Anticancer Res. 2001, 21 (1B): 777-779.PubMed Lissoni P, Rovelli F, Baiocco N, Tangini G, Fumagalli L: A phase II study of subcutaneous low-dose interleukin-2 plus erythropoietin in metastatic renal cell carcinoma progressing on interleukin-2 alone. Anticancer Res. 2001, 21 (1B): 777-779.PubMed
86.
Zurück zum Zitat Morere JF, Bouillet T, Piperno-Neumann S, Tourani JM, Brunet A, Hennebelle F, Bareau JL: Treatment of advanced kidney cancer using recombinant erythropoietin. Prog Urol. 1997, 7 (3): 399-402.PubMed Morere JF, Bouillet T, Piperno-Neumann S, Tourani JM, Brunet A, Hennebelle F, Bareau JL: Treatment of advanced kidney cancer using recombinant erythropoietin. Prog Urol. 1997, 7 (3): 399-402.PubMed
87.
Zurück zum Zitat Janik JE, Sznol M, Urba WJ, Figlin R, Bukowski RM, Fyfe G, Pierce WC, Belldegrun A, Sharfman WH, Smith JW, et al: Erythropoietin production. A potential marker for interleukin-2/interferon-responsive tumors. Cancer. 1993, 72 (9): 2656-2659. 10.1002/1097-0142(19931101)72:9<2656::AID-CNCR2820720922>3.0.CO;2-A.CrossRefPubMed Janik JE, Sznol M, Urba WJ, Figlin R, Bukowski RM, Fyfe G, Pierce WC, Belldegrun A, Sharfman WH, Smith JW, et al: Erythropoietin production. A potential marker for interleukin-2/interferon-responsive tumors. Cancer. 1993, 72 (9): 2656-2659. 10.1002/1097-0142(19931101)72:9<2656::AID-CNCR2820720922>3.0.CO;2-A.CrossRefPubMed
88.
Zurück zum Zitat Carvalho G, Lefaucheur C, Cherbonnier C, Metivier D, Chapel A, Pallardy M, Bourgeade MF, Charpentier B, Hirsch F, Kroemer G: Chemosensitization by erythropoietin through inhibition of the NF-kappaB rescue pathway. Oncogene. 2005, 24 (5): 737-745. 10.1038/sj.onc.1208205.CrossRefPubMed Carvalho G, Lefaucheur C, Cherbonnier C, Metivier D, Chapel A, Pallardy M, Bourgeade MF, Charpentier B, Hirsch F, Kroemer G: Chemosensitization by erythropoietin through inhibition of the NF-kappaB rescue pathway. Oncogene. 2005, 24 (5): 737-745. 10.1038/sj.onc.1208205.CrossRefPubMed
89.
Zurück zum Zitat Miyajima J, Imai Y, Nakao M, Noda S, Itoh K: Higher susceptibility of erythropoietin-producing renal cell carcinomas to lysis by lymphokine-activated killer cells. J Immunother Emphasis Tumor Immunol. 1996, 19 (6): 399-404. 10.1097/00002371-199611000-00003.CrossRefPubMed Miyajima J, Imai Y, Nakao M, Noda S, Itoh K: Higher susceptibility of erythropoietin-producing renal cell carcinomas to lysis by lymphokine-activated killer cells. J Immunother Emphasis Tumor Immunol. 1996, 19 (6): 399-404. 10.1097/00002371-199611000-00003.CrossRefPubMed
90.
Zurück zum Zitat Leyland-Jones B: Breast cancer trial with erythropoietin terminated unexpectedly. Lancet Oncol. 2003, 4 (8): 459-460. 10.1016/S1470-2045(03)01163-X.CrossRefPubMed Leyland-Jones B: Breast cancer trial with erythropoietin terminated unexpectedly. Lancet Oncol. 2003, 4 (8): 459-460. 10.1016/S1470-2045(03)01163-X.CrossRefPubMed
91.
Zurück zum Zitat Henke M, Laszig R, Rube C, Schafer U, Haase KD, Schilcher B, Mose S, Beer KT, Burger U, Dougherty C, et al: Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial. Lancet. 2003, 362 (9392): 1255-1260. 10.1016/S0140-6736(03)14567-9.CrossRefPubMed Henke M, Laszig R, Rube C, Schafer U, Haase KD, Schilcher B, Mose S, Beer KT, Burger U, Dougherty C, et al: Erythropoietin to treat head and neck cancer patients with anaemia undergoing radiotherapy: randomised, double-blind, placebo-controlled trial. Lancet. 2003, 362 (9392): 1255-1260. 10.1016/S0140-6736(03)14567-9.CrossRefPubMed
93.
Zurück zum Zitat Hadland BK, Longmore GD: Erythroid-stimulating agents in cancer therapy: potential dangers and biologic mechanisms. J Clin Oncol. 2009, 27 (25): 4217-4226. 10.1200/JCO.2008.21.6945.CrossRefPubMed Hadland BK, Longmore GD: Erythroid-stimulating agents in cancer therapy: potential dangers and biologic mechanisms. J Clin Oncol. 2009, 27 (25): 4217-4226. 10.1200/JCO.2008.21.6945.CrossRefPubMed
94.
Zurück zum Zitat Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH: The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim Biophys Acta. 2012, 1826 (2): 272-296.PubMedPubMedCentral Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH: The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim Biophys Acta. 2012, 1826 (2): 272-296.PubMedPubMedCentral
95.
Zurück zum Zitat Jiang J, Tang YL, Liang XH: EMT: a new vision of hypoxia promoting cancer progression. Cancer Biol Ther. 2011, 11 (8): 714-723. 10.4161/cbt.11.8.15274.CrossRefPubMed Jiang J, Tang YL, Liang XH: EMT: a new vision of hypoxia promoting cancer progression. Cancer Biol Ther. 2011, 11 (8): 714-723. 10.4161/cbt.11.8.15274.CrossRefPubMed
96.
Zurück zum Zitat Ho MY, Tang SJ, Chuang MJ, Cha TL, Li JY, Sun GH, Sun KH: TNF-alpha induces epithelial-mesenchymal transition of renal cell carcinoma cells via a GSK3beta-dependent mechanism. Mol Cancer Res. 2012, 10 (8): 1109-1119. 10.1158/1541-7786.MCR-12-0160.CrossRefPubMed Ho MY, Tang SJ, Chuang MJ, Cha TL, Li JY, Sun GH, Sun KH: TNF-alpha induces epithelial-mesenchymal transition of renal cell carcinoma cells via a GSK3beta-dependent mechanism. Mol Cancer Res. 2012, 10 (8): 1109-1119. 10.1158/1541-7786.MCR-12-0160.CrossRefPubMed
97.
Zurück zum Zitat Chuang MJ, Sun KH, Tang SJ, Deng MW, Wu YH, Sung JS, Cha TL, Sun GH: Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci. 2008, 99 (5): 905-913. 10.1111/j.1349-7006.2008.00756.x.CrossRefPubMed Chuang MJ, Sun KH, Tang SJ, Deng MW, Wu YH, Sung JS, Cha TL, Sun GH: Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci. 2008, 99 (5): 905-913. 10.1111/j.1349-7006.2008.00756.x.CrossRefPubMed
98.
Zurück zum Zitat Sanghera KP, Mathalone N, Baigi R, Panov E, Wang D, Zhao X, Hsu H, Wang H, Tropepe V, Ward M, et al: The PI3K/Akt/mTOR pathway mediates retinal progenitor cell survival under hypoxic and superoxide stress. Mol Cell Neurosci. 2011, 47 (2): 145-153. 10.1016/j.mcn.2011.03.010.CrossRefPubMed Sanghera KP, Mathalone N, Baigi R, Panov E, Wang D, Zhao X, Hsu H, Wang H, Tropepe V, Ward M, et al: The PI3K/Akt/mTOR pathway mediates retinal progenitor cell survival under hypoxic and superoxide stress. Mol Cell Neurosci. 2011, 47 (2): 145-153. 10.1016/j.mcn.2011.03.010.CrossRefPubMed
99.
Zurück zum Zitat Abhold E, Rahimy E, Wang-Rodriguez J, Blair KJ, Yu MA, Brumund KT, Weisman RA, Ongkeko WM: Recombinant human erythropoietin promotes the acquisition of a malignant phenotype in head and neck squamous cell carcinoma cell lines in vitro. BMC Res Notes. 2011, 4: 553-10.1186/1756-0500-4-553.CrossRefPubMedPubMedCentral Abhold E, Rahimy E, Wang-Rodriguez J, Blair KJ, Yu MA, Brumund KT, Weisman RA, Ongkeko WM: Recombinant human erythropoietin promotes the acquisition of a malignant phenotype in head and neck squamous cell carcinoma cell lines in vitro. BMC Res Notes. 2011, 4: 553-10.1186/1756-0500-4-553.CrossRefPubMedPubMedCentral
100.
Zurück zum Zitat Berdel WE, Oberberg D, Reufi B, Thiel E: Studies on the role of recombinant human erythropoietin in the growth regulation of human nonhematopoietic tumor cells in vitro. Ann Hematol. 1991, 63 (1): 5-8. 10.1007/BF01714953.CrossRefPubMed Berdel WE, Oberberg D, Reufi B, Thiel E: Studies on the role of recombinant human erythropoietin in the growth regulation of human nonhematopoietic tumor cells in vitro. Ann Hematol. 1991, 63 (1): 5-8. 10.1007/BF01714953.CrossRefPubMed
Metadaten
Titel
Functional significance of erythropoietin in renal cell carcinoma
verfasst von
Christudas Morais
David W Johnson
David A Vesey
Glenda C Gobe
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2013
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-13-14

Weitere Artikel der Ausgabe 1/2013

BMC Cancer 1/2013 Zur Ausgabe

Alter verschlechtert Prognose bei Endometriumkarzinom

11.05.2024 Endometriumkarzinom Nachrichten

Ein höheres Alter bei der Diagnose eines Endometriumkarzinoms ist mit aggressiveren Tumorcharakteristika assoziiert, scheint aber auch unabhängig von bekannten Risikofaktoren die Prognose der Erkrankung zu verschlimmern.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.