Skip to main content
Erschienen in: BMC Surgery 1/2014

Open Access 01.12.2014 | Research article

Percutaneous balloon kyphoplasty for the treatment of vertebral compression fractures

verfasst von: Chia-Wei Yu, Ming-Kai Hsieh, Lih-Huei Chen, Chi-Chien Niu, Tsai-Sheng Fu, Po-Liang Lai, Wen-Jer Chen, Wen-Chien Chen, Meng-Ling Lu

Erschienen in: BMC Surgery | Ausgabe 1/2014

Abstract

Background

Vertebral compression fractures (VCFs) constitute a major health care problem, not only because of their high incidence but also because of their direct and indirect negative impacts on both patients’ health-related quality of life and costs to the health care system. Two minimally invasive surgical approaches were developed for the management of symptomatic VCFs: balloon kyphoplasty and vertebroplasty. The purpose of this study was to evaluate the effectiveness and safety of balloon kyphoplasty in the treatment of symptomatic VCFs.

Methods

Between July 2011 and June 2012, one hundred and eighty-seven patients with two hundred and fifty-one vertebras received balloon kyphoplasty in our hospital. There were sixty-five male and one hundred and twenty-two female patients with an average age of 74.5 (range, 61 to 95 years). The pain symptoms and quality of life, were measured before operation and at one day, three months, six months and one year following kyphoplasty. Radiographic data including restoration of kyphotic angle, anterior vertebral height, and any leakage of cement were defined.

Results

The mean visual analog pain scale decreased from a preoperative value of 7.7 to 2.2 at one day (p < .05) following operation and the Oswestry Disability Index improved from 56.8 to 18.3 (p < .05). The kyphotic angle improved from a mean of 14.4° before surgery to 6.7° at one day after surgery (p < .05). The mean anterior vertebral height increased significantly from 52% before surgery to 74.5% at one day after surgery (p < .05) and 70.2% at one year follow-up. Minor cement extravasations were observed in twenty-nine out of two hundred and fifty-one procedures, including six leakage via basivertebral vein, three leakage via segmental vein and twenty leakage through a cortical defect. None of the leakages were associated with any clinical consequences.

Conclusions

Balloon kyphoplasty not only rapidly reduced pain and disability but also restored sagittal alignment in our patients at one-year follow-up. The treatment of osteoporotic vertebral compression fractures with balloon kyphoplasty is a safe, effective, and minimally invasive procedure that provides satisfactory clinical results.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2482-14-3) contains supplementary material, which is available to authorized users.
Chia-Wei Yu, Ming-Kai Hsieh contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Each author has made substantive intellectual contributions to this multicentre study: CWY and MKH participated in the study design, in collecting the data, the statistically analyses, draftin and contributed equally to the manuscript. CCN, TSF, PLL, WJC, WCC, and MLL, participated in the study design. LHC advised and assisted drafting of the manuscript. All authors read and approved the final manuscript.

Background

Vertebral compression fractures (VCFs) constitute a major health care problem, not only because of their high incidence but also because of their direct and indirect negative impacts on both patients’ health-related quality of life and costs to the health care system[1, 2]. Approximately 26% of women aged > fifty years and 40% of women aged > eighty years are reported to have sustained a VCF[3, 4]. Furthermore, one-third to three-fourths of such patients subsequently develop chronic back pain, which can be attributed to pseudarthrosis or osteoporotic spinal deformity, such as kyphosis or kyphoscoliosis[1]. The degree of kyphosis correlates well with the patient’s physical function, risk of further fracture[5, 6], compression of the spinal cord, mental well-being, and pulmonary function[7], any of which can contribute to an increased mortality rate[8, 9].
Regardless of their etiology, the mainstay of management for symptomatic VCFs is medical therapy, which may include analgesics, bed rest, external fixation such as brace or corset, and/or rehabilitation[10, 11]. However, anti-inflammatory drugs and certain types of analgesics are poorly tolerated by elderly patients, and bed rest can lead to further bone demineralization, which may predispose to future fractures as well as thromboembolic complications and pneumonia. Furthermore, surgical fixation often fails due to the poor quality of osteoporotic bone[12], and because of the risks of open surgery in this predominantly elderly population, these procedures are generally limited to cases in which there is concurrent spinal instability and/or neurologic deficit[12, 13].
Because of these limitations, two minimally invasive surgical approaches were developed for the management of symptomatic VCFs: balloon kyphoplasty and vertebroplasty[14, 15]. Vertebroplasty, which was first described by Galibert and colleagues[16] in 1987, involves the percutaneous injection of viscous polymethylmethacrylate (PMMA) into the vertebral body. In balloon kyphoplasty, injection of PMMA follows insertion of a tamp (balloon) into the vertebral body, using either a transpedicular or extrapedicular route, in order to compress the cancellous bone, create a cavity, and if possible, realign the endplate of the vertebral body. After removal of the bone tamp, the PMMA fixes and stabilizes the fracture. The purpose of this study was to evaluate the effectiveness and safety of balloon kyphoplasty in the treatment of symptomatic VCFs.

Methods

Patients

Between July 2011 and June 2012, one hundred and eighty-seven patients with two hundred and fifty-one vertebras received balloon kyphoplasty in our hospital. The Chang Gung Medical Foundation Institutional Review Board approved this study (101-3955B) and waived the requirement for informed consent due to the retrospective nature of the study. All patients met the following criteria: (1) focal midline back pain managed inadequately with appropriate conservative treatment, (2) back pain related to VCF location on radiography, and (3) presence of bone marrow edema on magnetic resonance imaging (MRI), indicated by hypointense signal on T1-weighted images and hyperintense signal on T2-weighted images. Exclusion criteria were active infection, neurologic deficit, and uncorrected therapeutic anticoagulation. About four hundred patients per year were treated with vertebroplasty or kyphoplasty in our department. Kyphoplasty was favored in the presence of kyphotic deformity which contribute significantly to morbidity and disruption of the posterior vertebral cortex, where high-viscosity cement can be delivered.
The study population comprised one hundred and eighty-seven patients: sixty-five men (35%) and one hundred and twenty-two women (65%), whose median age was 74.5 years (range, 61–95 years). Demographic data, including cause of fracture, fracture location, treated vertebra (e) per patient, and time from fracture to kyphoplasty, were recorded (Table 1). Clinical follow-up examination of the patients was independently performed by an orthopedic specialist, and diagnostic images were independently evaluated by a radiologist.
Table 1
Patient demographics and clinical data
Characteristic
No. (%)
Age (y) (n = 187 patients)
 
60-69
35(18.7%)
70-79
74(39.5%)
80-89
66(35.3%)
90-99
12(6.5%)
Sex (n = 187 patients)
 
Female
122(65%)
Male
65(35%)
No. of fractures treated (n = 187 patients)
 
1
138(73.9%)
2
37(19.7%)
3
9(4.8%)
4
3(1.6%)
Cause of fracture (n = 187 patients)
 
Osteoporosis
181(96.8%)
Metastasis
1(0.5%)
Multiple myeloma
5(2.7%)
Time from fracture to kyphoplasty (n = 187 patients)
 
Acute (0–2 weeks)
18(9.6%)
Subacute (2 weeks–3 months)
93(49.7%)
Chronic (>3 months)
76(40.7%)
Time from kyphoplasty to latest OPD F/U (n = 187 patients)
 
≧12 months
183(97.9%)
Loss of follow -up
4(2.1%)

Surgical technique

Percutaneous kyphoplasty was performed under local anesthesia with the patient positioned prone on a radiolucent table with his/her spine extended by chest and pelvic bolsters. A preoperative prophylactic single-shot intravenous dose of a first-generation cephalosporin was administered to each patient, and fluoroscopy was used throughout the procedure. A stab incision was made on the pedicle level of the skin; the correct incision site was identified using the anteroposterior (AP) view of the image intensifier. A needle pipe and pin were then placed with the tip lateral to the pedicle projection in the AP view and parallel to the superior endplate in the lateral view. Then, the needle pin was removed, and a wire pin was introduced into two-thirds of the vertebral body; subsequently, the needle pipe was removed. A cannula and expander were inserted into the pedicle through the wire pin (Figure 1). The wire pin was removed, and a drill was inserted through the cannula. An inflatable balloon (Veresys; SI MEDICAL CO., LTD., Korea) was inserted unilaterally into the fractured vertebral body and slowly inflated with initial bulk pressure (Figure 2). The operator controlled the volume of the balloon to restore the damaged vertebral body with micropressure until adequate kyphotic angle reduction was obtained or when the inflation pressure reached two hundred and twenty psi. The operator then recorded the amount of injected fluid to predict the cement volume (Figure 3). Thereafter, the inflated balloon was deflated and withdrawn (Figure), and the resultant intravertebral cavity was filled with PMMA cement (SimplexP; Stryker Howmedica Osteonics, Allendale, NJ, USA) (Figure).

Operative and radiographic outcomes

Parameters related to imaging and technical characteristics, including the approach method, amount of bone cement injected, and local or general anesthesia applied were recorded (Table 2). Restoration of kyphotic angle which was defined as the Cobb angle measurements taken from the superior endplate of the vertebra one level above the treated vertebra to the inferior endplate of the vertebral body one level below the treated vertebra on the lateral X-ray image, height of the anterior border of the collapsed vertebral body, and any leakage of cement, were determined. Patterns of cement leakage were assessed by radiographs using the classification proposed by Yeom and colleagues[17], which identifies three leakage sites (Figure 2): (1) via the basivertebral vein (B type), (2) via the segmental vein (S type), or (3) through a cortical defect (C type).
Table 2
Operative characteristics
Operative Characteristic
No. (%)
Approach (n = 187 patients)
 
Unilateral extrapedicular
184(98.4%)
Bipedicular
3(1.6%)
Volume injected (n = 251 vertebras)
 
<3.5 cc
14(5.5%)
3.5-7 cc
203(81%)
>7 cc
34(13.5%)
Anesthesia (n = 187 patients)
 
Local
178(95.2%)
General
9(4.8%)
Leakage (n = 251 vertebras)
 
B type
6(2.4%)
S type
3(1.2%)
C type
20(7.9%)
Total
29(11.5%)
B type:leakage via basivertebral vein.
S type:leakage via segmental vein.
C type: leakage through a cortical defect.

Clinical assessment

Clinical outcome was evaluated using the Oswestry Disability Index (ODI), and the visual analog scale (VAS) preoperatively and at the final follow-up. All patients were scheduled for follow-up at one day, three month, six month and one year after surgery, and annually thereafter.

Statistical analysis

Data were analyzed using the SPSS statistical software package (IBM Corporation, Armonk, NY, USA). Means were calculated for different variables, including ODI, and VAS scores, kyphotic angle and height of the anterior border of the collapsed vertebral body. Preoperative and postoperative measurements and values between the different subgroups were compared using the paired t test, with statistical significance was set at P < .05.

Results

Operative and radiographic outcomes

Radiographic measurement of all the two hundred and fifty-one vertebrae treated demonstrated that the kyphotic angle improved from a mean of 14.4° ±2.2° before surgery to 6.7° ± 1.1° one day after surgery (p = .003) and to 7.6° ± 0.9° in two hundred and forty-seven vertebrae of one hundred and eighty-three patients at the last follow-up. The mean anterior vertebral height increased significantly from 52% ± 6.9% before surgery to74.5% ± 7.9% at one day after surgery (p = .0021) and 70.2% ± 5.2% at the last follow-up (Table 3).
Table 3
Radiographic and clinical data after kyphoplasty
 
Pre-op
Post-op day1
Post-op month 3
Post-op month 6
Post-op month 12
Mean VAS score
7.7 ± 1.3
2.2 ± 0.9*
1.4 ± 0.6
0.8 ± 0.2
0.5 ± 0.1*
Mean ODI score
56.8 ± 4.2
18.3 ± 2.3*
17.3 ± 2.2
15.2 ± 1.9
12.5 ± 1.6*
AVH (%)
52 ± 6.9
74.5 ± 7.9*
72.4 ± 5.5
72.2 ± 4.5
70.2 ± 5.2
Kyphotic angle (°)
14.4 ± 2.2
6.7 ± 1.2*
7.2 ± 1.4
7.4 ± 1.1
7.6 ± 0.9
VAS: visual analogue scale;
ODI: Oswestry Disability Index;
AVH: anterior vertebral height, Anterior Vertebral height is expressed as fractions of referent vertebral height (AVH = Anterior Vertebral height of index fractured vertebrae/average of above and below intact anterior vertebral height),
*p < .05.

Clinical outcome

One hundred and eighty-three patients finished one year follow-up till June 2013 and four patients were lost to follow-up in first 3 months. All of the One hundred and eighty-seven patients tolerated the procedure well. The mean operating time was 42.4 ± 15.5 minutes per vertebra. All of the patients experienced some degree of pain relief and improvement in mobility within the first twenty-four hours following surgery. The mean VAS score improved significantly from 7.7 ± 1.3 before surgery to 2.2 ± 0.9 at one day (p = .0012), and 0.5 ± 0.1 in one hundred and eighty-three patients at one year after surgery (p = .0021). The patients’ ODI score also improved significantly after surgery, which improved from 56.8 ± 4.2 to 18.3 ± 2.3 at one day (p = .0031) and 12.5 ± 1.6 at one year follow-up (p = .0012) (Table 3).

Cement extravasation

The orthopedic balloon ruptured in two patients with no further consequences. The balloon was replaced, and the operation was continued in the usual manner. In all cases, a cavity was created successfully in the treated vertebral body. Minor cement extravasations were observed in twenty-nine out of two hundred and fifty-one procedures, including six leakages via basivertebral vein, three leakages via segmental vein and twenty leakages through a cortical defect (Table 2). None of the leakages were associated with any clinical consequences. None of the patients developed neurological deficits, symptomatic pulmonary embolism or postoperative infections.

Discussion

Osteoporosis is a systemic disease that results from progressive bone mineral loss and changes in bony architecture, leaving the spinal column vulnerable to VCFs. Painful osteoporotic VCFs can be a significant burden for patients, as they impair physical function and quality of life. Moreover, VCFs can lead to progressive sagittal spine deformities and changes in spinal biomechanics, which are believed to contribute to a five-fold increased risk of further fracture[18].
Conservative treatment for the pain caused by VCFs includes analgesic medication, bed rest, and back braces; however, these therapies do not address spinal deformities. Furthermore, pain and disability may be prolonged while the fractured vertebral body heals[4]. In most cases, vertebral stabilization using open surgery is not indicated owing to increased risk for the patient and unsatisfactory results, such as loosened and lost screws in weak bone. In contrast, vertebroplasty is particularly advantageous because of its short surgical time, rapid pain relief, and minimal recovery period[19, 20]. Moreover, vertebroplasty in osteoporotic VCFs, involving the percutaneous injection of cement directly into the fractured vertebra, is effective in ameliorating VCF-associated pain[2123]. The limitations of this procedure include its inability to address the kyphotic deformity and the substantial risk of extravertebral cement leakage after the high-pressure cement injection. A balloon kyphoplasty, on the other hand, attempts to restore spinal alignment via a lower-pressure placement of cement into a cavity that is created in the vertebral body by a tamp inside the vertebral body. In addition to the available evidence, the benefits of balloon kyphoplasty based on our results included better spinal alignment restoration and less cement extravasation than those in vertebroplasty ndeed, previous studies have reported that kyphoplasty results in considerably less cement extravasation than does vertebroplasty[15, 19, 2328]. In our series, the mean VAS score and ODI score improved significantly from 7.7 ± 1.3 to 0.5 ± 0.1 and from 56.8 ± 4.2 to 12.5 ± 1.6 at one year of follow-up, the long-lasting pain relief provided by balloon kyphoplasty can be attributed to the improved sagittal profile of the spine, which results in a lower compensating activity of the muscles[26, 29].
The rapid relief of pain after balloon kyphoplasty can be associated with the effect of the bone cement and the stabilization of the vertebral body. Patients in this study exhibited a rapid decrease in pain, with a significant improvement in VAS score after surgery. The restoration of normal overall spinal sagittal alignment in elderly patients with VCFs and kyphotic deformities has obvious benefits[30]. In this series, an improvement in spinal sagittal alignment and vertebral body height was achieved in most patients. A mean correction of 7.7° was achieved in local spinal kyphosis; this is similar to the 8.8° reported in another series[28].
As previously reported, kyphoplasty results in considerably less cement extravasation than does vertebroplasty[15, 2427]. The rate of cement leakage was reported to be 9% following kyphoplasty and 41% following vertebroplasty in a systematic review of clinical studies[31]. An up-to-date meta-analysis reported cement extravasation in 7% of patients after kyphoplasty and in 20% after vertebroplasty[32]. In our study, asymptomatic cement extravasation occurred in an average of 11.5% of the vertebrae treated, which is considerably lower than that observed in vertebroplasty[9, 23, 25]. Compared with previous studies[9, 23, 25], this finding supports the fact that injection of high-viscosity cement at low pressure into a previously formed cavity is a significant improvement over the injection of low-viscosity cement at high pressure into an unreduced vertebral body. In our patients, cements with different viscosities were created as our experience increasing to treat different types of fractured vertebras.
The present study had limitations including its small number of patients and short follow-up period. The limited number of patients in this study possibly affects the statistical power and a long-term follow-up would be required to further evaluate the efficacy of this procedure. Our follow-up is only 12 months, which most authors consider to be a short-term period. However, the high rates of comorbidities and mortality related to elderly populations may make long-term follow-up infeasible.
We are currently gathering 2-year follow-up data from additional patients treated at our institution, but future prospective randomized studies with a large patient enrollment are needed to validate our findings.

Conclusions

Kyphoplasty achieves good early results in the treatment of osteoporotic VCFs, with less bone cement leakage than that in vertebroplasty. Based on the results of our one-year follow-up, we conclude that balloon kyphoplasty rapidly reduced pain and disability and improved function and quality of life. Therefore, the treatment of VCFs with balloon kyphoplasty may be considered as is a safe, effective, and minimally invasive approach, as demonstrate by the satisfactory clinical results in our study.

Acknowledgements

We thank the Department of Orthopaedic Surgery for their contribution to the study.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Each author has made substantive intellectual contributions to this multicentre study: CWY and MKH participated in the study design, in collecting the data, the statistically analyses, draftin and contributed equally to the manuscript. CCN, TSF, PLL, WJC, WCC, and MLL, participated in the study design. LHC advised and assisted drafting of the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Old J, Calvert M: Vertebral compression fractures in the elderly. Am Fam Physician. 2004, 69: 111-116.PubMed Old J, Calvert M: Vertebral compression fractures in the elderly. Am Fam Physician. 2004, 69: 111-116.PubMed
2.
Zurück zum Zitat Hall SE, Criddle RA, Comito TL: A case–control study of quality of life and functional impairment in women with long-standing vertebral osteopo-rotic fractures. Osteoporos Int. 1999, 9: 508-10.1007/s001980050178.CrossRefPubMed Hall SE, Criddle RA, Comito TL: A case–control study of quality of life and functional impairment in women with long-standing vertebral osteopo-rotic fractures. Osteoporos Int. 1999, 9: 508-10.1007/s001980050178.CrossRefPubMed
3.
Zurück zum Zitat Melton LJ: Epidemiology of vertebral fractures in women. Am J Epidemiol. 1989, 129: 1000-1011.PubMed Melton LJ: Epidemiology of vertebral fractures in women. Am J Epidemiol. 1989, 129: 1000-1011.PubMed
4.
Zurück zum Zitat Silverman SL: The clinical consequences of vertebral compression fracture. Bone. 1992, 13 (Suppl 2): S27-S31.CrossRefPubMed Silverman SL: The clinical consequences of vertebral compression fracture. Bone. 1992, 13 (Suppl 2): S27-S31.CrossRefPubMed
5.
Zurück zum Zitat Pluijm SM, Tromp AM, Smit JH, Deeg DJ, Lips P: Consequences of vertebral deformities in older men and women. J Bone Miner Res. 2000, 15: 1564-1572. 10.1359/jbmr.2000.15.8.1564.CrossRefPubMed Pluijm SM, Tromp AM, Smit JH, Deeg DJ, Lips P: Consequences of vertebral deformities in older men and women. J Bone Miner Res. 2000, 15: 1564-1572. 10.1359/jbmr.2000.15.8.1564.CrossRefPubMed
6.
Zurück zum Zitat Kado DM, Browner WS, Palermo L: Vertebral body fractures and mortality in older women: a prospective study. Arch Intern Med. 1999, 159: 1215-1220. 10.1001/archinte.159.11.1215.CrossRefPubMed Kado DM, Browner WS, Palermo L: Vertebral body fractures and mortality in older women: a prospective study. Arch Intern Med. 1999, 159: 1215-1220. 10.1001/archinte.159.11.1215.CrossRefPubMed
7.
Zurück zum Zitat Schlaich C, Minne HW, Bruckner T: Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int. 1998, 8: 261-267. 10.1007/s001980050063.CrossRefPubMed Schlaich C, Minne HW, Bruckner T: Reduced pulmonary function in patients with spinal osteoporotic fractures. Osteoporos Int. 1998, 8: 261-267. 10.1007/s001980050063.CrossRefPubMed
8.
Zurück zum Zitat Linville DA: Vertebroplasty and kyphoplasty. South Med J. 2002, 95: 583-587. 10.1097/00007611-200206000-00004.CrossRefPubMed Linville DA: Vertebroplasty and kyphoplasty. South Med J. 2002, 95: 583-587. 10.1097/00007611-200206000-00004.CrossRefPubMed
9.
Zurück zum Zitat Cotten A, Boutry N, Cortet B: Percutaneous vertebroplasty: state of the art. Radiographics. 1998, 18: 311-320. 10.1148/radiographics.18.2.9536480.CrossRefPubMed Cotten A, Boutry N, Cortet B: Percutaneous vertebroplasty: state of the art. Radiographics. 1998, 18: 311-320. 10.1148/radiographics.18.2.9536480.CrossRefPubMed
10.
Zurück zum Zitat Rapado A: General management of vertebral fractures. Bone. 1996, 18 (suppl 3): 191-196.CrossRef Rapado A: General management of vertebral fractures. Bone. 1996, 18 (suppl 3): 191-196.CrossRef
11.
Zurück zum Zitat Reginster J, Minne HW, Sorensen OH: Randomized controlled trial of risedronate on vertebral fractures in women with established postmeno-pausal osteoporosis. Osteoporos Int. 2000, 11: 83-91. 10.1007/s001980050010.CrossRefPubMed Reginster J, Minne HW, Sorensen OH: Randomized controlled trial of risedronate on vertebral fractures in women with established postmeno-pausal osteoporosis. Osteoporos Int. 2000, 11: 83-91. 10.1007/s001980050010.CrossRefPubMed
12.
Zurück zum Zitat Dickman C, Fessler RG, MacMillan M: Transpedicular screw-rod fixation of the lumbar spine: operative technique and outcome in 104 cases. J Neurosurg. 1992, 77: 860-870. 10.3171/jns.1992.77.6.0860.CrossRefPubMed Dickman C, Fessler RG, MacMillan M: Transpedicular screw-rod fixation of the lumbar spine: operative technique and outcome in 104 cases. J Neurosurg. 1992, 77: 860-870. 10.3171/jns.1992.77.6.0860.CrossRefPubMed
13.
Zurück zum Zitat Essens S, Sacs BL, Drezyin V: Complications associated with the technique of pedicle screw fixation: a selected survey of ABC members. Spine. 1993, 18: 2231-2239. 10.1097/00007632-199311000-00015.CrossRef Essens S, Sacs BL, Drezyin V: Complications associated with the technique of pedicle screw fixation: a selected survey of ABC members. Spine. 1993, 18: 2231-2239. 10.1097/00007632-199311000-00015.CrossRef
14.
Zurück zum Zitat Phillips FM, Wetzel FT, Lieberman I: An in vivo comparison of the potential for extravertebral cement leak after vertebroplasty and kyphop-lasty. Spine. 2002, 27: 2173-2178. 10.1097/00007632-200210010-00018.CrossRefPubMed Phillips FM, Wetzel FT, Lieberman I: An in vivo comparison of the potential for extravertebral cement leak after vertebroplasty and kyphop-lasty. Spine. 2002, 27: 2173-2178. 10.1097/00007632-200210010-00018.CrossRefPubMed
15.
Zurück zum Zitat Liebermann I, Reinhardt MK: Vertebroplasty and kyphoplasty for osteolytic vertebral collapse. Clin Orthop. 2003, 415 (suppl): 176-186.CrossRef Liebermann I, Reinhardt MK: Vertebroplasty and kyphoplasty for osteolytic vertebral collapse. Clin Orthop. 2003, 415 (suppl): 176-186.CrossRef
16.
Zurück zum Zitat Galibert P, Deramond H, Rosat P: Preliminary note on the treatment of vertebral angioma by percutaneous acrylic verte-broplasty. Neurochirurgie. 1987, 33: 166-168.PubMed Galibert P, Deramond H, Rosat P: Preliminary note on the treatment of vertebral angioma by percutaneous acrylic verte-broplasty. Neurochirurgie. 1987, 33: 166-168.PubMed
17.
Zurück zum Zitat Yeom JS, Kim WJ, Choy WS: Leakage of cement in percutane-ous transpedicular vertebroplasty for painful osteoporotic compres-sion fractures. J Bone Joint Surg Br. 2003, 85: 83-89. 10.1302/0301-620X.85B1.13026.CrossRefPubMed Yeom JS, Kim WJ, Choy WS: Leakage of cement in percutane-ous transpedicular vertebroplasty for painful osteoporotic compres-sion fractures. J Bone Joint Surg Br. 2003, 85: 83-89. 10.1302/0301-620X.85B1.13026.CrossRefPubMed
18.
Zurück zum Zitat Heaney RP: The natural history of vertebral osteoporosis. Is low bone mass an epiphenomenon?. Bone. 1992, 13: S23-S26.CrossRefPubMed Heaney RP: The natural history of vertebral osteoporosis. Is low bone mass an epiphenomenon?. Bone. 1992, 13: S23-S26.CrossRefPubMed
19.
Zurück zum Zitat Rao RD, Singrakhia MD: Painful osteoporotic vertebral fracture. J Bone Joint Surg Am. 2003, 85: 2010-2022.PubMed Rao RD, Singrakhia MD: Painful osteoporotic vertebral fracture. J Bone Joint Surg Am. 2003, 85: 2010-2022.PubMed
20.
Zurück zum Zitat Cortet B, Cotten A, Boutry N: Percutaneous vertebroplasty in the treatment of osteoporotic vertebral compression fractures: an open prospective study. J Rheumatol. 1999, 26: 2222-2228.PubMed Cortet B, Cotten A, Boutry N: Percutaneous vertebroplasty in the treatment of osteoporotic vertebral compression fractures: an open prospective study. J Rheumatol. 1999, 26: 2222-2228.PubMed
21.
Zurück zum Zitat Laredo JD, Bellaiche L, Hamze B: Current status of musculoskeletal interventional radiology. Radiol Clin North Am. 1994, 32: 377-398.PubMed Laredo JD, Bellaiche L, Hamze B: Current status of musculoskeletal interventional radiology. Radiol Clin North Am. 1994, 32: 377-398.PubMed
22.
Zurück zum Zitat Cyteval C, Sarrabere MP, Roux JO: Acute osteoporotic vertebral collapse: open study on percutaneous injection of acrylic surgical cement in 20 patients. AJR Am J Roentgenol. 1999, 173: 1685-1690. 10.2214/ajr.173.6.10584820.CrossRefPubMed Cyteval C, Sarrabere MP, Roux JO: Acute osteoporotic vertebral collapse: open study on percutaneous injection of acrylic surgical cement in 20 patients. AJR Am J Roentgenol. 1999, 173: 1685-1690. 10.2214/ajr.173.6.10584820.CrossRefPubMed
23.
Zurück zum Zitat Deramond H, Depriester C, Galibert P: Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am. 1998, 36: 533-546. 10.1016/S0033-8389(05)70042-7.CrossRefPubMed Deramond H, Depriester C, Galibert P: Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am. 1998, 36: 533-546. 10.1016/S0033-8389(05)70042-7.CrossRefPubMed
24.
Zurück zum Zitat Voggenreiter G: Balloon kyphoplasty is effective in deformity correction of osteoporotic vertebral compression fractures. Spine. 2005, 30: 2806-2812. 10.1097/01.brs.0000190885.85675.a0.CrossRefPubMed Voggenreiter G: Balloon kyphoplasty is effective in deformity correction of osteoporotic vertebral compression fractures. Spine. 2005, 30: 2806-2812. 10.1097/01.brs.0000190885.85675.a0.CrossRefPubMed
25.
Zurück zum Zitat Garfin SR, Yuan HA, Reiley MA: New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine. 2001, 26: 1511-1515. 10.1097/00007632-200107150-00002.CrossRefPubMed Garfin SR, Yuan HA, Reiley MA: New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine. 2001, 26: 1511-1515. 10.1097/00007632-200107150-00002.CrossRefPubMed
26.
Zurück zum Zitat Ledlie JT, Renfro MB: Kyphoplasty treatment of vertebral fractures: 2-year outcomes show sustained benefits. Spine. 2006, 31: 57-64. 10.1097/01.brs.0000192687.07392.f1.CrossRefPubMed Ledlie JT, Renfro MB: Kyphoplasty treatment of vertebral fractures: 2-year outcomes show sustained benefits. Spine. 2006, 31: 57-64. 10.1097/01.brs.0000192687.07392.f1.CrossRefPubMed
27.
Zurück zum Zitat Lieberman IH, Dudeney S, Reinhardt MK: Initial outcome and efficacy of "kyphoplasty" in the treatment of painful osteoporotic vertebral compression fractures. Spine. 2001, 26: 1631-1638. 10.1097/00007632-200107150-00026.CrossRefPubMed Lieberman IH, Dudeney S, Reinhardt MK: Initial outcome and efficacy of "kyphoplasty" in the treatment of painful osteoporotic vertebral compression fractures. Spine. 2001, 26: 1631-1638. 10.1097/00007632-200107150-00026.CrossRefPubMed
28.
Zurück zum Zitat Phillips FM, Ho E, Campbell-Hupp M: Early radiographic and clinical results of balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures. Spine. 2003, 28: 2260-2267. 10.1097/01.BRS.0000085092.84097.7B.CrossRefPubMed Phillips FM, Ho E, Campbell-Hupp M: Early radiographic and clinical results of balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures. Spine. 2003, 28: 2260-2267. 10.1097/01.BRS.0000085092.84097.7B.CrossRefPubMed
29.
Zurück zum Zitat Grohs JG, Matzner M, Trieb K: Minimal invasive stabilization of osteoporotic vertebral fractures: a prospective nonrandomized comparison of vertebroplasty and balloon kyphoplasty. J Spinal Disord Tech. 2005, 18: 238-242.PubMed Grohs JG, Matzner M, Trieb K: Minimal invasive stabilization of osteoporotic vertebral fractures: a prospective nonrandomized comparison of vertebroplasty and balloon kyphoplasty. J Spinal Disord Tech. 2005, 18: 238-242.PubMed
30.
Zurück zum Zitat Hu MM, Eskey CJ, Tong SC: Kyphoplasty for vertebral compression fracture via a uni-pedicular approach. Pain Physician. 2005, 8: 363-367.PubMed Hu MM, Eskey CJ, Tong SC: Kyphoplasty for vertebral compression fracture via a uni-pedicular approach. Pain Physician. 2005, 8: 363-367.PubMed
31.
Zurück zum Zitat Hulme PA, Krebs J, Ferguson SJ: Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine. 2006, 31: 1983-2001. 10.1097/01.brs.0000229254.89952.6b.CrossRefPubMed Hulme PA, Krebs J, Ferguson SJ: Vertebroplasty and kyphoplasty: a systematic review of 69 clinical studies. Spine. 2006, 31: 1983-2001. 10.1097/01.brs.0000229254.89952.6b.CrossRefPubMed
32.
Zurück zum Zitat Eck JC, Nachtigall D, Humphreys SC: Comparison of vertebroplasty and balloon kyphoplasty for treatment of vertebral compression fractures: a meta-analysis of the literature. Spine J. 2008, 8: 488-497. 10.1016/j.spinee.2007.04.004.CrossRefPubMed Eck JC, Nachtigall D, Humphreys SC: Comparison of vertebroplasty and balloon kyphoplasty for treatment of vertebral compression fractures: a meta-analysis of the literature. Spine J. 2008, 8: 488-497. 10.1016/j.spinee.2007.04.004.CrossRefPubMed
Metadaten
Titel
Percutaneous balloon kyphoplasty for the treatment of vertebral compression fractures
verfasst von
Chia-Wei Yu
Ming-Kai Hsieh
Lih-Huei Chen
Chi-Chien Niu
Tsai-Sheng Fu
Po-Liang Lai
Wen-Jer Chen
Wen-Chien Chen
Meng-Ling Lu
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
BMC Surgery / Ausgabe 1/2014
Elektronische ISSN: 1471-2482
DOI
https://doi.org/10.1186/1471-2482-14-3

Weitere Artikel der Ausgabe 1/2014

BMC Surgery 1/2014 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.