Skip to main content
Erschienen in: Malaria Journal 1/2002

Open Access 01.12.2002 | Research

Molecular characterisation of drug-resistant Plasmodium falciparum from Thailand

verfasst von: Dinora Lopes, Kanchana Rungsihirunrat, Fátima Nogueira, Aree Seugorn, José Pedro Gil, Virgilio E do Rosário, Pedro Cravo

Erschienen in: Malaria Journal | Ausgabe 1/2002

Abstract

Background

The increasing levels of Plasmodium falciparum resistance to chloroquine (CQ) in Thailand have led to the use of alternative antimalarials, which are at present also becoming ineffective. In this context, any strategies that help improve the surveillance of drug resistance, become crucial in overcoming the problem.

Methods

In the present study, we have established the in vitro sensitivity to CQ, mefloquine (MF), quinine (QUIN) and amodiaquine (AMQ) of 52 P. falciparum isolates collected in Thailand, and assessed the prevalence of four putative genetic polymorphisms of drug resistance, pfcrt K76T, pfmdr1 N86Y, pfmdr1 D1042N and pfmdr1 Y1246D, by PCR-RFLP.

Results

The percentage of isolates resistant to CQ, MF, and AMQ was 96% (50/52), 62% (32/52), and 58% (18/31), respectively, while all parasites were found to be sensitive to QUIN. In addition, 41 (79%) of the isolates assayed were resistant simultaneously to more than one drug; 25 to CQ and MF, 9 to CQ and AMQ, and 7 to all three drugs, CQ, MF and AMQ. There were two significant associations between drug sensitivity and presence of particular molecular markers, i) CQ resistance / pfcrt 76T (P = 0.001), and ii) MF resistance / pfmdr1 86N (P < 0.001)

Conclusions

i) In Thailand, the high levels of CQ pressure have led to strong selection of the pfcrt 76T polymorphism and ii) pfmdr1 86N appears to be a good predictor of in vitro MF resistance.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1475-2875-1-12) contains supplementary material, which is available to authorized users.

Authors' contributions

DL carried out a proportion of the parasite phenotyping, performed the molecular analysis of the majority of the samples and contributed for the elaboration of the manuscript. KR performed the molecular typing of a number of the isolates. FN participated in the parasite's phenotyping and genotyping. AS performed parasite collection and did a proportion of the micro-tests. JPG, VR and PC, conceived the study, participated in its design and co-ordination and were involved in phases of the experimental work.

Competing interests

None declared.

Background

Malaria due to Plasmodium falciparum affects 300 million people and claims an estimated 1.5 million lives every year. Our present inability to synthesise a fully protective vaccine means that chemotherapy stands as the only effective measure in the control of the disease. However, in many parts of the world the parasite P. falciparum has become resistant to most drugs presently used [1], seriously undermining efforts for controlling malaria.
Chloroquine (CQ) has long been the drug of choice for the treatment of malaria; however, CQ-resistant parasites are now present in most areas where malaria is endemic [2]. Chloroquine resistance is especially well established in Thailand, after having been first described in that country in the late 1950's [3]. The decline in the efficacy of chloroquine has led to the use of alternative antimalarials, such as antifolates, mefloquine and artemisinin derivatives, but parasite resistance to these drugs is also becoming a real problem [2]. In this context, understanding the genetic basis of drug resistance is essential for implementing rational measures to overcome the problem.
Although significant progress has been made in trying to understand how resistance to CQ may occur, many aspects of it remain unclear, and the genetic mechanisms responsible for mefloquine and quinine resistance are largely unknown. Nevertheless, two main genes have been implicated in quinoline resistance; the pfmdr1 (P. falciparum multi-drug resistance1) and the Pfcrt (P. falciparum chloroquine resistance transporter). There is evidence from the analysis of a genetic cross which indicates that point polymorphisms in the pfmdr1 gene may modulate sensitivity to both mefloquine (MF) and artemisinin in P. falciparum[4]. Furthermore, recent genetic transfection work has suggested that single nucleotide polymorphisms in the pfmdr1 gene encoding changes in aminoacids 1034, 1042 and 1246 can influence parasite responses to mefloquine, quinine and halofantrine as well as to the structurally unrelated drug artemisinin, and modulate sensitivity to chloroquine depending on the genetic background of the parasites strains [5]. However, chloroquine resistance was shown to segregate independently of the pfmdr1 gene, following a genetic cross between a CQ-sensitive parasite, P. falciparum HB3, and a CQ-resistant one, Dd2 [6], and the absence of a clear association between pfmdr1 and chloroquine responses in natural parasite populations [715], strongly suggests the involvement of other gene(s). Recently, detailed linkage analysis and fine chromosome mapping of progeny clones of the HB3 × Dd2 cross has allowed the identification of another gene, pfcrt, in which a mutation at aminoacid 76 (pfcrt K76T) is highly correlated with increased CQ tolerance among field parasite isolates of P. falciparum[1624]. In addition, a causal relationship between pfcrt 76T and chloroquine resistance has been confirmed by genetic transfection experiments [16].
The study of the correlation between drug resistance in natural parasite populations and genetic polymorphisms may allow the development of molecular tools to help predict responses to drugs and, as mentioned above, the pfcrt and pfmdr1 genes have been identified as putative markers of quinoline resistance. In the present work we have investigated possible associations between four molecular markers in these genes and sensitivity to chloroquine, mefloquine, quinine (QUIN) and amodiaquine (AMQ) of P. falciparum parasites collected in Thailand.

Methods

Study site and method of parasite collection

After confirmation of P. falciparum infection by microscopical observation of thin and thick Giemsa-stained blood films, approximately 20 μl of blood were collected by finger-prick from consenting subjects living in 4 different areas of Thailand where malaria is highly endemic; the Tak province (North-western Thailand), Kanchanaburi (Western Thailand: Thai-Myanmar border), Chonburi (Eastern Thailand), Chantaburi and Trat (Eastern Thailand: Thai-Cambodia border). Samples were placed in sterile 1.5 ml micro-centrifuge tubes, together with 0.5 ml of transport medium (10 ml RPMI 1640 complete medium without serum, plus 20 μl of heparin 5000 i.u./ml), carried to Chulalongkorn University of Bangkok on the day of collection, at ambient temperature and placed in in vitro culture, following established procedures [25].

Parasite phenotyping (micro-tests)

Assessment of P. falciparum susceptibility to CQ, MF, QUIN and AMQ was performed according to the M.I.C. test [26, 27], whereby samples were exposed to a range of concentrations of the four drugs, in microtitre culture plates, for 72 hours, with daily changes of medium (in the presence or absence of drugs). After this period, thin film Giemsa-stained preparations from each culture plate well were observed under light microscopy for the presence of parasites. The results were expressed in "minimum inhibiting concentration" (M.I.C.) units, i.e., the lowest drug concentration required to kill all or nearly all parasites (I.C.99) after 72 hours [26, 27].
Parasite reference strains of known sensitivity to the drugs concerned were tested in parallel to all field-collected isolates. In this manner, the drug response of each isolate was determined by comparison of the M.I.C. between each sample and the relevant reference strains. Accordingly, samples tested for CQ, MF, QUIN and AMQ responses were clustered into two groups; sensitive (S) or resistant (R) based on sensitivity thresholds established in previous studies [2629].

Genotyping by PCR-RFLP

Genomic DNA was extracted prior to drug testing, by a standard phenol:chloroform DNA extraction method, precipitated with absolute ethanol and stored in TE Buffer (Tris-EDTA), following established protocols [30]. The resulting DNA was used as template in 50 μl PCR reactions, containing 1 μM of each oligonucleotide primer, 1 × PCR buffer (Promega™), 2.5 mM MgCl2, 0.2 mM dNTP's and 0.025 U/μl of Promega™ Taq DNA polymerase. Accordingly, a fragment of the pfcrt gene containing codon 76 was amplified by PCR using a Nested-PCR approach. For amplification of DNA fragments containing pfmdr1 polymorphisms we used oligonucleotide primers published elsewhere [31], as well as newly designed ones. In this manner, the fragments of the pfmdr1 gene containing codons 86 and 1246 were amplified in a single-step PCR, whereas the sequence of codon pfmdr1 1042 was determined following amplification by semi-nested PCR. All primer sequences and respective PCR conditions are presented in Table 1.
Table 1
Polymerase Chain Reaction for amplification of fragments containing pfcrt and pfmdr1 gene polymorphisms
Primer
Sequence (5' → 3')
PCR
Pfcrt 76
  
1st round sense
CAAGAAGGAAGTAAGTATCCAAAAATGG
94°C, 30''; 56°C, 30''; 60°C, 60''; 45 cycles
Antisense
GTAGTTCTTGTAAGACCTATGAAGGC
 
Nested sense
GCAAAAATGACGAGCGTTATAGAG
94°C, 30''; 59°C, 30''; 60°C, 60''; 45 cycles
Antisense
CTGAACAGGCATCTAACATGGATATAGC
 
Pfmdr1 86
  
Sense
ATGGGTAAAGAGCAGAAAGAG
94°C, 30''; 53°C, 30''; 68°C, 60''; 10 cycles, followed by 94°C, 30''; 50°C, 30''; 68°C, 60'', 35 cycles
Antisense
CGTACCAATTCCTGAACTCAC
 
Pfmdr1 1042
  
1st round sense
TATGTCAAGCGGAGTTTTTGC
94°C, 30''; 50°C, 30''; 68°C, 60''; 45 cycles
Antisense
TCTGAATCTCCTTTTAAGGAC
 
Semi-nested sense
GTAAATGCAGCTTTATGGG
94°C, 30''; 50°C, 30''; 68°C, 60''; 45 cycles
Antisense
TCTGAATCTCCTTTTAAGGAC
 
Pfmdr1 1246
  
Sense
CTACAGCAATCGTTGGAGAAA
94°C, 30''; 53°C, 30''; 68°C, 60''; 10 cycles, followed by 94°C, 30''; 50°C, 30''; 68°C, 60'', 35 cycles
Antisense
GCTCTAGCTATAGCTATTCTC
 

Restriction enzymes generating RFLPs

Following amplification of the fragments concerned, polymorphisms in the pfcrt and pfmdr1 genes were assessed as follows: pfcrt 76K and pfmdr1 86N were detected by incubation of the corresponding PCR fragments with Apo I (r/aatty), pfmdr1 1042N was detected using Asn I (at/taat), and pfmdr1 1246Y was determined by incubation with Eco RV (gat/atc). Endonucleases Apo I, Asn I and Eco RV had been obtained from New England BioLabs™, Roche Molecular Biochemicals™ and Stratagene™ respectively, and incubations were setup following the manufacturers instructions. Appropriate control DNA of samples with known pfcrt and pfmdr1 sequences was used in parallel with field-collected parasite isolates in every PCR-RFLP protocol; these were 3D7 (genotype pfcrt 76K, pfmdr1 86N, pfmdr1 1042N, pfmdr1 1246D), HB3 (genotype pfmdr1 1042D), Dd2 (genotype pfcrt 76T, pfmdr1 86Y) and 180/92 (genotype pfmdr1 1246Y). The products resulting from restrictions of pfmdr1 1042 were resolved in 8% acrylamide gels, whereas pfmdr1 86, pfmdr1 1246 and pfcrt 76 digests were run on 2% agarose gels, with both types of gels made in 1 × TBE buffer. All gels were stained with ethidium bromide and visualised under UV (ultraviolet) transillumination.

Statistical analysis of the association between pfcrt and pfmdr1 markers and drug responses

We searched for statistically significant associations between sensitivity to each of the drugs among all isolates and the presence of each of the particular markers included in our study by using Fisher's Exact Test (2-tailed) after having arranged the data in 2 × 2 contingency tables (mixed infections were excluded from this analysis). An association between a particular marker and resistance to a given drug was considered to be significant if the P value was found to be lower than 0.05 (P < 0.05).

Results

Responses to drugs

In total, 52 samples were analysed in vitro for their susceptibility to chloroquine, mefloquine and quinine, and 31 for amodiaquine. The results of these tests are presented in Table 2.
Table 2
Results of in vitro drug tests (CQ-chloroquine; MF-mefloquine; QUIN-quinine; AMQ-amodiaquine; S-sensitive; R-resistant)
 
CQ
MF
QUIN
AMQ
CQ+MF only
CQ+AMQ only
MF+AMQ only
CQ+MF+AMQ
S
4% (2/52)
38% (20/52)
100% (52/52)
42% (13/31)
-
-
-
-
R
96% (50/52)
62% (32/52)
-
58% (18/31)
48% (25/52)
29% (9/31)
-(0/31)
23% (7/31)

Pfcrt and pfmdr1 genotypes

The pfcrt 76 PCR primers amplified a sub-fragment of the gene comprising 479 nucleotides, containing both a monomorphic and a polymorphic Apo I restriction site. In this manner, incubation of this fragment with endonuclease Apo I generated either 3 fragments of 122, 124 and 233 base-pairs (b.p.), or 2 fragments of 233 and 246 b.p., if K or T were present respectively (Figure 1). The PCR of pfmdr1 86 amplified a fragment of 504 b.p., within which the presence of asparagine (N) was determined by incubation with Apo I, originating segments of 255 and 249 b.p., which resolved as a single band in 2% agarose gels (Figure 1). For detection of 1042 polymorphisms (N or D) the 188 b.p. fragment obtained by PCR could be restricted with endonuclease Asn I, after which 3 segments were obtained of 116, 46 and 26 b.p. if 1042N were present in the sample, and two fragments of 162 and 26 b.p. in the presence of the alternative aminoacid (as with pfcrt 76, one of the restriction sites for Asn I within this segment is also monomorphic, therefore always resulting in at least one cut) (Figure 1). Codon 1246 polymorphisms (D or Y) were assayed following incubation of the corresponding 508 b.p. PCR product with Eco RV, which produced 2 fragments of 268 and 240 b.p. if the target DNA contained tyrosine (Y) (Figure 1). All data resulting from this analysis is compiled in Table 3, where allele frequencies for each of the markers are shown.
Table 3
Frequencies of allelic polymorphisms in the pfcrt and pfmdr1 genes
 
Pfcrt
Pfmdr1
Allele
76K
76T
Mixed
86N
86Y
Mixed
1042N
1042D
Mixed
1246D
1246Y
Mixed
Frequency
.04
.83
.13
.60
.23
.17
.92
.08
0
.92
.02
.06

Association between pfcrt and pfmdr1 markers and responses to drugs

Two significant correlations were detected between the presence of a particular marker and in vitro outcomes (Tables 4 and 5); one between CQ resistance and the presence of pfcrt 76T (P = 0.001) and the other, between MF resistance and the presence of pfmdr1 86N (P < 0.001). There was an evident lack of an association between AMQ responses and all of the markers studied (Table 6), a fact that was corroborated after statistical analysis (data not shown). In addition, since all isolates proved to be quinine sensitive, any correlations between response to this drug and corresponding genotypes could not be established. The data of the in vitro tests for the 4 drugs, and corresponding genotypes is compiled in Table 7.
Table 4
Plasmodium falciparum isolates listed according to sensitivity to chloroquine (CQ), with corresponding pfcrt and pfmdr1 markers
Isolate
CQ
pfcrt 76
pfmdr1
86
1042
1246
T9/94b3
S
K
Y
N
D
TM408
S
K
N
N
D
T101
R
T
N
N
D
T108
R
T
N
N
D
T113
R
T
N
N
D
T115
R
T
N
N
D
T116
R
T
N
N
D
T120
R
T
Y
N
D
T123
R
T
N
D
D
T130
R
T
N
N
D
T131
R
T
N
N
D
T132
R
T
N
N
D
T133
R
T
N
N
D
S3
R
T
Y
N
D
S64
R
T
Y
N
D
S71
R
T
Y
N
D
S90
R
T
Y
D
D
S118
R
T
Y
N
D
S149
R
T
NY
N
DY
S151
R
KT
NY
N
D
S152
R
T
Y
N
D
S153
R
T
Y
N
D
S157
R
KT
NY
N
D
S160
R
KT
NY
N
DY
CH1
R
T
Y
D
D
CH3
R
T
Y
D
D
CH7
R
T
N
N
D
TD2
R
T
N
N
D
TD3
R
T
N
N
D
TD8
R
T
N
N
D
TD14
R
T
N
N
D
TD21
R
T
N
N
D
TD27
R
T
N
N
D
TD49
R
T
N
N
D
TD56
R
T
N
N
D
TD61
R
KT
N
N
D
TD62
R
T
N
N
D
TD64
R
T
N
N
DY
TD79
R
KT
N
N
D
TD134
R
T
N
N
D
TD328
R
KT
N
N
D
TP4
R
T
Y
N
D
TP7
R
T
NY
N
D
TP13
R
T
NY
nd
D
TP17
R
T
NY
N
D
TP18
R
T
N
N
D
TP20
R
T
NY
N
D
TP21
R
KT
N
nd
D
TP26
R
T
N
N
D
TP34
R
T
N
N
D
TP40
R
T
N
nd
Y
RC17
R
T
NY
N
D
(S – sensitive; R – resistant; KT, NY and DY – mixed infections; nd – not determined; P = 0.001 for the association between CQR and presence of pfcrt 76T, mixed alleles excluded)
Table 5
Plasmodium falciparum isolates listed according to sensitivity to mefloquine (MF), with corresponding pfcrt and pfmdr1 markers
Isolate
MF
pfcrt 76
pfmdr1
86
1042
1246
T9/94b3
S
K
Y
N
D
S3
S
T
Y
N
D
S64
S
T
Y
N
D
S71
S
T
Y
N
D
S90
S
T
Y
D
D
S118
S
T
Y
N
D
S149
S
T
NY
N
DY
S151
S
KT
NY
N
D
S152
S
T
Y
N
D
S153
S
T
Y
N
D
S157
S
KT
NY
N
D
S160
S
KT
NY
N
DY
CH1
S
T
Y
D
D
CH3
S
T
Y
D
D
TP4
S
T
Y
N
D
TP7
S
T
NY
N
D
TP13
S
T
NY
nd
D
TP17
S
T
NY
N
D
TP18
S
T
N
N
D
TP40
S
T
N
nd
Y
TM408
R
K
N
N
D
TP20
R
T
NY
N
D
TP21
R
KT
N
nd
D
RC17
R
T
NY
N
D
T108
R
T
N
N
D
T113
R
T
N
N
D
T115
R
T
N
N
D
T130
R
T
N
N
D
T131
R
T
N
N
D
T132
R
T
N
N
D
TD61
R
KT
N
N
D
TD14
R
T
N
N
D
T101
R
T
N
N
D
T116
R
T
N
N
D
T120
R
T
Y
N
D
T123
R
T
N
D
D
T133
R
T
N
N
D
CH7
R
T
N
N
D
TD2
R
T
N
N
D
TD3
R
T
N
N
D
TD8
R
T
N
N
D
TD21
R
T
N
N
D
TD27
R
T
N
N
D
TD49
R
T
N
N
D
TD62
R
T
N
N
D
TD134
R
T
N
N
D
TD328
R
KT
N
N
D
TD56
R
T
N
N
D
TD64
R
T
N
N
DY
TD79
R
KT
N
N
D
TP26
R
T
N
N
D
TP34
R
T
N
N
D
(S – sensitive; R – resistant; KT, NY and DY – mixed infections; nd – not determined; P < 0.001 for the association between MFR and presence of pfmdr1 86N, mixed alleles excluded)
Table 6
Plasmodium falciparum isolates listed according to sensitivity to amodiaquine (AQ), with corresponding pfcrt and pfmdr1 markers
Isolate
AQ
pfcrt 76
Pfmdr1
86
1042
1246
S153
S
T
Y
N
D
S157
S
KT
NY
N
D
S160
S
KT
NY
N
DY
TD3
S
T
N
N
D
TD49
S
T
N
N
D
TD56
S
T
N
N
D
TD62
S
T
N
N
D
TD79
S
KT
N
N
D
TD134
S
T
N
N
D
TD328
S
KT
N
N
D
TP4
S
T
Y
N
D
TP18
S
T
N
N
D
TP26
S
T
N
N
D
T9/94b3
R
K
Y
N
D
TM408
R
K
N
N
D
S3
R
T
Y
N
D
S118
R
T
Y
N
D
S149
R
T
NY
N
DY
S151
R
KT
NY
N
D
S152
R
T
Y
N
D
TD14
R
T
N
N
D
TD61
R
KT
N
N
D
TD64
R
T
N
N
DY
TP7
R
T
NY
N
D
TP13
R
T
NY
nd
D
TP17
R
T
NY
N
D
TP20
R
T
NY
N
D
TP21
R
KT
N
nd
D
TP34
R
T
N
N
D
TP40
R
T
N
nd
Y
RC17
R
T
NY
N
D
(S – sensitive; R – resistant; KT, NY and DY – mixed infections; nd – not determined)
Table 7
Number of isolates clustered according to sensitivity to each drug and corresponding pfcrt and pfmdr1 genotypes
Drug
 
Pfcrt
Pfmdr1
76K
76T
76KT
86N
86Y
86NY
1042N
1042D
1042ND
1246D
1246Y
1246DY
CQ
Total
            
S
2
2
0
0
1
1
0
2
0
0
2
0
0
R
50
0
43
7
30
11
9
43
4
0
46
1
3
MF
             
S
35
2
27
6
2
11
7
29
3
0
32
1
2
R
17
0
16
1
29
1
2
16
1
0
16
0
1
QUIN
             
S
52
2
43
7
31
12
9
45
4
0
48
1
3
R
0
0
0
0
0
0
0
0
0
0
0
0
0
AMQ
             
S
13
0
9
4
9
2
2
13
0
0
12
0
1
R
18
2
13
3
7
4
7
15
0
0
15
1
2
(CQ – chloroquine; MF – mefloquine; QUIN – quinine; AMQ – amodiaquine; S – sensitive; R – resistant; 76KT, 86NY, 1042ND and 1246DY – mixed infections; shaded boxes indicate the two cases where there was a significant association between the presence of a particular marker and drug sensitivity: pfcrt 76T/CQR, P = 0.001 and pfmdr1 86N/MFR, P < 0.001)

Discussion

The increasing failure rates of several antimalarial drugs in the majority of malaria-affected areas means that close monitoring of the epidemiology and dynamics of drug resistance are necessary if we are to implement measures to circumvent the problem. The identification and validation of easy, rapid molecular markers of drug resistance would greatly facilitate this process, and would allow us to overcome difficulties in the use of traditional methods for assaying drug sensitivity.
In Thailand, CQ resistance was first reported more than forty years ago [3], and after ten years, resistance to chloroquine had become so widespread that use of the drug against P. falciparum was abandoned. At present, even though the drug is used only against P. vivax, it is perhaps not surprising to find that most P. falciparum are largely unaffected by CQ. Our in vitro observations show a near total prevalence of CQR (96%) in the present study area, confirming what has been widely reported [1]. Among all CQR isolates tested in our study, the presence of pfcrt 76T was universal (P = 0.001), indicating complete selection of this polymorphism by the drug, a result that is in agreement with recently published work not only from Thai-originated parasites [22], but also from parasites of different areas of the globe [32].
The correlation between pfmdr1 genotypes and quinoline resistance has often generated conflicting results; although it has been suggested that pfmdr1 86Y can be correlated with increased CQ resistance in parasites which originated from different areas of the world [3336], other field studies have not corroborated these findings [715], and the results of a P. falciparum genetic cross indicated that CQR did not depend on the pfmdr1 gene [6]. Our present findings do not implicate pfmdr1 86 in CQ resistance in Thailand, since the presence of both N and Y in our samples was largely independent of their CQ response, indicating that chloroquine does not appear to exert selective pressure on this area of the gene. Interestingly though, pfmdr1 1042D and pfmdr1 1246N, previously associated with increased CQ sensitivity following genetic transfection experiments [5], were largely absent in our samples, possibly suggesting a mechanism of chloroquine resistance that may in part depend on the presence of the alternative polymorphic alleles, pfmdr1 1042N and pfmdr1 1246D, respectively.
Mefloquine was introduced in Thailand in the form of Fansimef (mefloquine-sulfadoxine-pyrimethamine) during 1984 with an initial cure rate of 95%, but MF-resistant P. falciparum parasites have arisen and present a real threat to the control of malaria, especially in the Thai/Cambodia and Thai/Myanmar border areas [37]. In the present work the prevalence of MF resistance was 62%, indicating a worrying trend. A correlation between pfcrt 76T and mefloquine sensitivity would always be difficult to establish, since the near complete presence of this polymorphism is likely to have been selected by chloroquine pressure, whose mechanisms of action and resistance are probably distinct from those of MF. Earlier work from Thailand and other areas of the world has indicated that an increase in the level of mefloquine sensitivity among field isolates of P. falciparum may be correlated with a mutation in codon 86 of the pfmdr1 gene (N86Y) [3840]. In the present work, the occurrence of pfmdr1 86N was significantly associated with MF resistance as 31/32 resistant isolates carried this polymorphism (P < 0.001), strongly suggesting that 86N is an important event in the generation of MF resistance and may be a useful marker to monitor MF resistance in this country.
Interestingly, although the prevalence of AMQ resistance was high (58%), we did not detect a significant correlation between AMQ responses and any of the markers studied, contrary to what could be expected considering that AMQ is chemically very similar to CQ. These observations indicate that the mechanism of action and/or resistance differ between the two drugs, which may raise interesting questions about the design of new CQ-derivative compounds.
Quinine is one of the most effective drugs for the treatment of malaria in Thailand. Although the efficacy of this drug has been reduced, it has not yet become a serious problem, since the combination with tetracycline increases its cure rate. In fact, P. falciparum quinine sensitivity was total in all regions covered by our study, showing that despite its adverse side effects, quinine can still be used as a reliable resource of malaria therapy in Thailand. The reasons for the long-lasting efficacy of quinine may be manyfold, but its explanations lie outside the scope of this article. Most importantly, quinine may prove especially valuable in the treatment of multi-drug resistant Falciparum malaria, which we found to be largely present in our study as 41 out of 52 isolates were found to be resistant to more than one compound and 7 were unaffected by all drugs (CQ, MF and AMQ) except quinine.

Conclusions

Taken together, our results seem to be suggesting that CQ and MF are the major selective forces on the pfcrt and pfmdr1 genes, whereby the presence of pfcrt 76T, and possibly pfmdr1 1042N and pfmdr1 1246D in Thai-originated parasites has been selected by chloroquine pressure. The pfmdr1 86N mutation seems to be important only for mefloquine resistance, and may represent a useful marker for monitoring resistance in this country, although its validation may require in vivo correlates and the analysis of a larger number of samples.

Acknowledgements

Dinora Lopes, Fátima Nogueira, José Pedro Gil, Virgilio do Rosário and Pedro Cravo were funded by the Ministério da Ciência e Tecnologia, Portugal. This work was partially supported by Fundação para a Ciência e Tecnologia (FCT), project PRAXIS XXI P/SAU/14070/98. Dinora Lopes and Pedro Cravo are grateful to David Walliker, Paul Hunt and Hamza Babiker from the Institute of Cell, Animal and Population Biology, University of Edinburgh, for excellent scientific advice and support. The work in Thailand was supported by malaria grants from Institute of Health Research, Faculty of Science, Chulalongkorn University. We thank the Malaria Division, Ministry of Health (Bangkok) and especially the staff of the Malaria Clinics for their co-operation.

Authors' contributions

DL carried out a proportion of the parasite phenotyping, performed the molecular analysis of the majority of the samples and contributed for the elaboration of the manuscript. KR performed the molecular typing of a number of the isolates. FN participated in the parasite's phenotyping and genotyping. AS performed parasite collection and did a proportion of the micro-tests. JPG, VR and PC, conceived the study, participated in its design and co-ordination and were involved in phases of the experimental work.

Competing interests

None declared.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
2.
Zurück zum Zitat Peters W: Drug resistance in malaria parasites of animals and man. Adv Parasitol. 1998, 41: 1-62.CrossRefPubMed Peters W: Drug resistance in malaria parasites of animals and man. Adv Parasitol. 1998, 41: 1-62.CrossRefPubMed
3.
Zurück zum Zitat Harinasuta T, Migasen S, Boonag D: Chloroquine resistance in Plasmodium falciparum in Thailand. UNESCO First Regional Symposium on Scientific Knowledge of Tropical Parasites, Singapore University, Singapore. 1962 Harinasuta T, Migasen S, Boonag D: Chloroquine resistance in Plasmodium falciparum in Thailand. UNESCO First Regional Symposium on Scientific Knowledge of Tropical Parasites, Singapore University, Singapore. 1962
4.
Zurück zum Zitat Duraisingh MT, Jones P, Sambou I, Von Seidlein L, Pinder M, Warhurst DC: The tyrosine-86 of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin. Mol Biochem Parasitol. 2000, 108: 13-23. 10.1016/S0166-6851(00)00201-2.CrossRefPubMed Duraisingh MT, Jones P, Sambou I, Von Seidlein L, Pinder M, Warhurst DC: The tyrosine-86 of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin. Mol Biochem Parasitol. 2000, 108: 13-23. 10.1016/S0166-6851(00)00201-2.CrossRefPubMed
5.
Zurück zum Zitat Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF: Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000, 403: 906-909. 10.1038/35002615.CrossRefPubMed Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF: Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature. 2000, 403: 906-909. 10.1038/35002615.CrossRefPubMed
6.
Zurück zum Zitat Wellems TE, Panton LJ, Gluzman IY, Rosário VE, Gwadz RW, Walker-Jonah A, Krogstad DJ: Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature. 1990, 345: 253-255. 10.1038/345253a0.CrossRefPubMed Wellems TE, Panton LJ, Gluzman IY, Rosário VE, Gwadz RW, Walker-Jonah A, Krogstad DJ: Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature. 1990, 345: 253-255. 10.1038/345253a0.CrossRefPubMed
7.
Zurück zum Zitat Awad-el-Kariem FM, Miles MA, Warhurst DC: Cloroquine-resistant Plasmodium falciparum isolates from the Sudan lack two mutations in the pfmdr1 gene thought to be associated with chloroquine resistance. Trans R Soc Trop Med Hyg. 1992, 86: 587-589.CrossRefPubMed Awad-el-Kariem FM, Miles MA, Warhurst DC: Cloroquine-resistant Plasmodium falciparum isolates from the Sudan lack two mutations in the pfmdr1 gene thought to be associated with chloroquine resistance. Trans R Soc Trop Med Hyg. 1992, 86: 587-589.CrossRefPubMed
8.
Zurück zum Zitat Wilson C, Volkman S, Thaithong S, Martin R, Kyle D, Milhous W, Wirth D: Amplification of Pfmdr1 associated with mefloquine and halofantrine resistance in Plasmodium falciparum from Thailand. Mol Biochem Parasitol. 1993, 57: 151-160. 10.1016/0166-6851(93)90252-S.CrossRefPubMed Wilson C, Volkman S, Thaithong S, Martin R, Kyle D, Milhous W, Wirth D: Amplification of Pfmdr1 associated with mefloquine and halofantrine resistance in Plasmodium falciparum from Thailand. Mol Biochem Parasitol. 1993, 57: 151-160. 10.1016/0166-6851(93)90252-S.CrossRefPubMed
9.
Zurück zum Zitat Cremer G, Basco LK, Le Bras J, Camus D, Slomianny C: Plasmodium falciparum: detection of P-glycoprotein in chloroquine-susceptible and chloroquine-resistant clones and isolates. Exp Parasitol. 1995, 81: 1-8. 10.1006/expr.1995.1086.CrossRefPubMed Cremer G, Basco LK, Le Bras J, Camus D, Slomianny C: Plasmodium falciparum: detection of P-glycoprotein in chloroquine-susceptible and chloroquine-resistant clones and isolates. Exp Parasitol. 1995, 81: 1-8. 10.1006/expr.1995.1086.CrossRefPubMed
10.
Zurück zum Zitat Basco L, de Pecoulas PE, Le Bras J, Wilson CM: Plasmodium falciparum: molecular characterisation of multi-drug resistant Cambodian isolates. Exp Parasitol. 1996, 82: 97-103. 10.1006/expr.1996.0013.CrossRefPubMed Basco L, de Pecoulas PE, Le Bras J, Wilson CM: Plasmodium falciparum: molecular characterisation of multi-drug resistant Cambodian isolates. Exp Parasitol. 1996, 82: 97-103. 10.1006/expr.1996.0013.CrossRefPubMed
11.
Zurück zum Zitat Bhattacharya PR, Biswas S, Kabilan L: Alleles of the Plasmodium falciparum pfmdr1 gene appear not to be associated with chloroquine resistance in India. Trans R Soc Trop Med Hyg. 1997, 91: 454-455.CrossRefPubMed Bhattacharya PR, Biswas S, Kabilan L: Alleles of the Plasmodium falciparum pfmdr1 gene appear not to be associated with chloroquine resistance in India. Trans R Soc Trop Med Hyg. 1997, 91: 454-455.CrossRefPubMed
12.
Zurück zum Zitat von Seidlein L, Duraisingh MT, Drakeley CJ, Bailey R, Greenwodd BM, Pinder M: Polymorphisms in the pfmdr1 gene and chloroquine resistance in Plasmodium falciparum in the Gambia. Trans R Soc Trop Med Hyg. 1997, 91: 450-453.CrossRefPubMed von Seidlein L, Duraisingh MT, Drakeley CJ, Bailey R, Greenwodd BM, Pinder M: Polymorphisms in the pfmdr1 gene and chloroquine resistance in Plasmodium falciparum in the Gambia. Trans R Soc Trop Med Hyg. 1997, 91: 450-453.CrossRefPubMed
13.
Zurück zum Zitat Povoa MM, Adagu IS, Oliveira SG, Machado RL, Miles MA, Warhurst DC: Pfmdr1 Asn1042Asp and Asp1246Tyr polymorphisms, thought to be associated with chloroquine resistance, are present in chloroquine-resistant and sensitive Brazilian field isolates of Plasmodium falciparum. Exp Parasitol. 1998, 88: 64-68. 10.1006/expr.1998.4195.CrossRefPubMed Povoa MM, Adagu IS, Oliveira SG, Machado RL, Miles MA, Warhurst DC: Pfmdr1 Asn1042Asp and Asp1246Tyr polymorphisms, thought to be associated with chloroquine resistance, are present in chloroquine-resistant and sensitive Brazilian field isolates of Plasmodium falciparum. Exp Parasitol. 1998, 88: 64-68. 10.1006/expr.1998.4195.CrossRefPubMed
14.
Zurück zum Zitat Bhattacharya PR, Pillai CR: Strong association, but incomplete correlation between chloroquine resistance and allelic variation in the pfmdr1 gene of Plasmodium falciparum isolates from India. Ann Trop Med Parasitol. 1999, 93: 679-684. 10.1080/00034989957916.CrossRefPubMed Bhattacharya PR, Pillai CR: Strong association, but incomplete correlation between chloroquine resistance and allelic variation in the pfmdr1 gene of Plasmodium falciparum isolates from India. Ann Trop Med Parasitol. 1999, 93: 679-684. 10.1080/00034989957916.CrossRefPubMed
15.
Zurück zum Zitat Chaiyaroj SC, Buranakiti A, Angkasekwinai P, Looressuwan S, Cowman AF: Analysis of mefloquine resistance and amplification of pfmdr1 in multidrug-resistant Plasmodium falciparum isolates from Thailand. Am J Trop Med Hyg. 1999, 61: 780-783.PubMed Chaiyaroj SC, Buranakiti A, Angkasekwinai P, Looressuwan S, Cowman AF: Analysis of mefloquine resistance and amplification of pfmdr1 in multidrug-resistant Plasmodium falciparum isolates from Thailand. Am J Trop Med Hyg. 1999, 61: 780-783.PubMed
16.
Zurück zum Zitat Fidock DA, Nomura T, Talley AT, Cooper RA, Dzekunov S., Ferdig MT, Ursos LM, Sidhu AS, Naude B, Deitsch K., Su XZ, Wootton JC, Roepe PD, Wellems TE: Mutations in the Plasmodium falciparum. Digestive vacuole transmembrane protein Pfcrt and evidence for their role in chloroquine resistance. Mol Cell. 2000, 6: 861-871.PubMedCentralCrossRefPubMed Fidock DA, Nomura T, Talley AT, Cooper RA, Dzekunov S., Ferdig MT, Ursos LM, Sidhu AS, Naude B, Deitsch K., Su XZ, Wootton JC, Roepe PD, Wellems TE: Mutations in the Plasmodium falciparum. Digestive vacuole transmembrane protein Pfcrt and evidence for their role in chloroquine resistance. Mol Cell. 2000, 6: 861-871.PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Babiker A, Pringle SJ, Abdel-Muhsin A, Mackinnon M, Hunt P, Walliker D: High level of chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene pfcrt and the multi-drug resistance gene pfmdr1. J Inf Dis. 2001, 183: 1535-1538. 10.1086/320195.CrossRef Babiker A, Pringle SJ, Abdel-Muhsin A, Mackinnon M, Hunt P, Walliker D: High level of chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene pfcrt and the multi-drug resistance gene pfmdr1. J Inf Dis. 2001, 183: 1535-1538. 10.1086/320195.CrossRef
18.
Zurück zum Zitat Djimdé A, Doumbo OK, Steketee RW, Plowe CV: Application of a molecular marker for surveillance of chloroquine-resistant malaria. Lancet. 2001, 358: 890-891. 10.1016/S0140-6736(01)06040-8.CrossRefPubMed Djimdé A, Doumbo OK, Steketee RW, Plowe CV: Application of a molecular marker for surveillance of chloroquine-resistant malaria. Lancet. 2001, 358: 890-891. 10.1016/S0140-6736(01)06040-8.CrossRefPubMed
19.
Zurück zum Zitat Djimdé A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko , Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV, Coulibaly D.: A molecular marker for chloroquine-resistant falciparum malaria. New Engl J Med. 2001, 344: 257-263. 10.1056/NEJM200101253440403.CrossRefPubMed Djimdé A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko , Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV, Coulibaly D.: A molecular marker for chloroquine-resistant falciparum malaria. New Engl J Med. 2001, 344: 257-263. 10.1056/NEJM200101253440403.CrossRefPubMed
20.
Zurück zum Zitat Dorsey G, Kamya MR, Singh A, Rosenthal PJ: Polymorphisms in the Plasmodium falciparum pfcrt and pfmdr1 genes and clinical response to chloroquine in Kampala, Uganda. J Inf Dis. 2001, 183: 1417-1420. 10.1086/319865.CrossRef Dorsey G, Kamya MR, Singh A, Rosenthal PJ: Polymorphisms in the Plasmodium falciparum pfcrt and pfmdr1 genes and clinical response to chloroquine in Kampala, Uganda. J Inf Dis. 2001, 183: 1417-1420. 10.1086/319865.CrossRef
21.
Zurück zum Zitat Durand R, Jafari R, Vauzelle J, Delabre JF, Jesic Z, Le Bras J: Analysis of pfcrt point mutations and chloroquine susceptibility in isolates of Plasmodium falciparum. Mol Biochem Parasitol. 2001, 114: 95-102. 10.1016/S0166-6851(01)00247-X.CrossRefPubMed Durand R, Jafari R, Vauzelle J, Delabre JF, Jesic Z, Le Bras J: Analysis of pfcrt point mutations and chloroquine susceptibility in isolates of Plasmodium falciparum. Mol Biochem Parasitol. 2001, 114: 95-102. 10.1016/S0166-6851(01)00247-X.CrossRefPubMed
22.
Zurück zum Zitat Labbé AC, Bualombai P, Pillai DR, Zhong KJY, Vanisaveth V, Hongvanthong B, Looareesuwan S, Kain KC: Molecular markers for chloroquine-resistant Plasmodium falciparum malaria in Thailand and Laos. Ann Trop Med Parasitol. 2001, 95: 781-788. 10.1080/00034980120103414.CrossRefPubMed Labbé AC, Bualombai P, Pillai DR, Zhong KJY, Vanisaveth V, Hongvanthong B, Looareesuwan S, Kain KC: Molecular markers for chloroquine-resistant Plasmodium falciparum malaria in Thailand and Laos. Ann Trop Med Parasitol. 2001, 95: 781-788. 10.1080/00034980120103414.CrossRefPubMed
23.
Zurück zum Zitat Maguire JD, Susanti AI, Krisin , Sismadi P, Fryauff DJ, Baird JK: The T76 mutation in the pfcrt gene of Plasmodium falciparum and clinical chloroquine resistance phenotypes in Papua, Indonesia. Ann Trop Med Parasitol. 2001, 95: 559-572. 10.1080/00034980120092516.CrossRefPubMed Maguire JD, Susanti AI, Krisin , Sismadi P, Fryauff DJ, Baird JK: The T76 mutation in the pfcrt gene of Plasmodium falciparum and clinical chloroquine resistance phenotypes in Papua, Indonesia. Ann Trop Med Parasitol. 2001, 95: 559-572. 10.1080/00034980120092516.CrossRefPubMed
24.
Zurück zum Zitat Pillai DR, Labbé AC, Vanisaveth V, Hongvangthong B, Pomphida S, Inkathone S, Zhong KJY, Kain KC: Plasmodium falciparum malaria in Laos: chloroquine treatment outcome and predictive value of molecular markers. J Inf Dis. 2001, 183: 789-795. 10.1086/318836.CrossRef Pillai DR, Labbé AC, Vanisaveth V, Hongvangthong B, Pomphida S, Inkathone S, Zhong KJY, Kain KC: Plasmodium falciparum malaria in Laos: chloroquine treatment outcome and predictive value of molecular markers. J Inf Dis. 2001, 183: 789-795. 10.1086/318836.CrossRef
25.
Zurück zum Zitat Thaithong S, Seugorn A, Beale GH: Culturing Plasmodium falciparum from finger-prick samples of infected blood. Trans R Soc Trop Med Hyg. 1994, 88: 490-CrossRefPubMed Thaithong S, Seugorn A, Beale GH: Culturing Plasmodium falciparum from finger-prick samples of infected blood. Trans R Soc Trop Med Hyg. 1994, 88: 490-CrossRefPubMed
26.
Zurück zum Zitat Thaithong S, Beale GH: "Malaria Parasites". Chulalongkorn University research report Series, No. 1. 1992 Thaithong S, Beale GH: "Malaria Parasites". Chulalongkorn University research report Series, No. 1. 1992
27.
Zurück zum Zitat Thaithong S, Beale GH, Chutmongkonkul M: Susceptibility of Plasmodium falciparum to five drugs: an in vitro study of isolates mainly from Thailand. Trans R Soc Trop Med Hyg. 1983, 77: 228-231.CrossRefPubMed Thaithong S, Beale GH, Chutmongkonkul M: Susceptibility of Plasmodium falciparum to five drugs: an in vitro study of isolates mainly from Thailand. Trans R Soc Trop Med Hyg. 1983, 77: 228-231.CrossRefPubMed
28.
Zurück zum Zitat Congpuong K, Sirtichaisinthop J, Tippawangkosol P, Suprakrob K, Na-Bangchang K, Tan-ariya P, Karbwang J: Incidence of antimalarial pretreatment and drug sensitivity in vitro in multidrug-resistant Plasmodium falciparum infection in Thailand. Trans R Soc Trop Med Hyg. 1998, 92: 84-6.CrossRefPubMed Congpuong K, Sirtichaisinthop J, Tippawangkosol P, Suprakrob K, Na-Bangchang K, Tan-ariya P, Karbwang J: Incidence of antimalarial pretreatment and drug sensitivity in vitro in multidrug-resistant Plasmodium falciparum infection in Thailand. Trans R Soc Trop Med Hyg. 1998, 92: 84-6.CrossRefPubMed
29.
Zurück zum Zitat Creasey A, Fenton B, Walker A, Thaithong S, Oliveira S, Mutambu S, Walliker D: Genetic diversity of Plasmodium falciparum shows geographical variation. Am J Trop Med Hyg. 1990, 42: 403-413.PubMed Creasey A, Fenton B, Walker A, Thaithong S, Oliveira S, Mutambu S, Walliker D: Genetic diversity of Plasmodium falciparum shows geographical variation. Am J Trop Med Hyg. 1990, 42: 403-413.PubMed
30.
Zurück zum Zitat Sambrook J, Fritsch EF, Maniatis T: "Molecular Cloning: A Laboratory Manual". Cold Spring Harbour Laboratory. 1989, Cold Spring Harbour, New York, second Sambrook J, Fritsch EF, Maniatis T: "Molecular Cloning: A Laboratory Manual". Cold Spring Harbour Laboratory. 1989, Cold Spring Harbour, New York, second
31.
Zurück zum Zitat Cox-Singh J, Singh B, Alias A, Abdullah MS: Assessment of the association between three pfmdr1 point mutations and chloroquine resistance in vitro of Malaysian Plasmodium falciparum isolates. Trans R Soc Trop Med Hyg. 1995, 89: 436-437.CrossRefPubMed Cox-Singh J, Singh B, Alias A, Abdullah MS: Assessment of the association between three pfmdr1 point mutations and chloroquine resistance in vitro of Malaysian Plasmodium falciparum isolates. Trans R Soc Trop Med Hyg. 1995, 89: 436-437.CrossRefPubMed
32.
Zurück zum Zitat Wellems TE, Plowe CV: Chloroquine-resistant malaria. J Inf Dis. 2001, 184: 770-776. 10.1086/322858.CrossRef Wellems TE, Plowe CV: Chloroquine-resistant malaria. J Inf Dis. 2001, 184: 770-776. 10.1086/322858.CrossRef
33.
Zurück zum Zitat Foote SJ, Kyle DE, Martin RK, Oduola AM, Forsyth K, Kemp DJ, Cowman AF: Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature. 1990, 345: 255-258. 10.1038/345255a0.CrossRefPubMed Foote SJ, Kyle DE, Martin RK, Oduola AM, Forsyth K, Kemp DJ, Cowman AF: Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature. 1990, 345: 255-258. 10.1038/345255a0.CrossRefPubMed
34.
Zurück zum Zitat Basco L, Le Bras J, Rhoades Z, Wilson C: Analysis of Pfmdr1 and drug susceptibility in fresh isolates of Plasmodium falciparum from Subsaharan Africa. Mol Biochem Parasitol. 1995, 74: 157-166. 10.1016/0166-6851(95)02492-1.CrossRefPubMed Basco L, Le Bras J, Rhoades Z, Wilson C: Analysis of Pfmdr1 and drug susceptibility in fresh isolates of Plasmodium falciparum from Subsaharan Africa. Mol Biochem Parasitol. 1995, 74: 157-166. 10.1016/0166-6851(95)02492-1.CrossRefPubMed
35.
Zurück zum Zitat Duraisingh M, Drakeley C, Muller O, Bailey R, Snounou G, Targett G, Greenwood B, Warhurst D: Evidence for selection for the tyrosine-86 allele of the Pfmdr1 gene of Plasmodium falciparum by chloroquine and amodiaquine. Parasitology. 1997, 114: 205-211. 10.1017/S0031182096008487.CrossRefPubMed Duraisingh M, Drakeley C, Muller O, Bailey R, Snounou G, Targett G, Greenwood B, Warhurst D: Evidence for selection for the tyrosine-86 allele of the Pfmdr1 gene of Plasmodium falciparum by chloroquine and amodiaquine. Parasitology. 1997, 114: 205-211. 10.1017/S0031182096008487.CrossRefPubMed
36.
Zurück zum Zitat Adagu IS, Warhurst DC: Association of cg2 and pfmdr1 genotypes with chloroquine resistance in field samples of Plasmodium falciparum from Nigeria. Parasitology. 1999, 119: 343-348. 10.1017/S0031182099004862.CrossRefPubMed Adagu IS, Warhurst DC: Association of cg2 and pfmdr1 genotypes with chloroquine resistance in field samples of Plasmodium falciparum from Nigeria. Parasitology. 1999, 119: 343-348. 10.1017/S0031182099004862.CrossRefPubMed
37.
Zurück zum Zitat Wernsdorfer W: Epidemiology of drug resistance in malaria. Acta Trop. 1994, 56: 143-156. 10.1016/0001-706X(94)90060-4.CrossRefPubMed Wernsdorfer W: Epidemiology of drug resistance in malaria. Acta Trop. 1994, 56: 143-156. 10.1016/0001-706X(94)90060-4.CrossRefPubMed
38.
Zurück zum Zitat Mungthin M, Bray PG, Ward AS: Phenotypic and genotypic characteristics of recently adapted isolates of Plasmodium falciparum from Thailand. Am J Trop Med Hyg. 1999, 60: 469-74.PubMed Mungthin M, Bray PG, Ward AS: Phenotypic and genotypic characteristics of recently adapted isolates of Plasmodium falciparum from Thailand. Am J Trop Med Hyg. 1999, 60: 469-74.PubMed
39.
Zurück zum Zitat Price RN, Cassar C, Brockman A, Duraisingh M, Van Vugt M, White NJ, Nosten F, Krishna S: The pfmdr1 gene is associated with a multidrug-resistant phenotype in Plasmodium falciparum from the western border of Thailand. Antimicrob Agents Chemother. 1999, 43: 2943-2949.PubMedCentralPubMed Price RN, Cassar C, Brockman A, Duraisingh M, Van Vugt M, White NJ, Nosten F, Krishna S: The pfmdr1 gene is associated with a multidrug-resistant phenotype in Plasmodium falciparum from the western border of Thailand. Antimicrob Agents Chemother. 1999, 43: 2943-2949.PubMedCentralPubMed
40.
Zurück zum Zitat Duraisingh MT, Roper C, Walliker D, Warhurst DC: Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum. Mol Microbiol. 2000, 36: 955-961. 10.1046/j.1365-2958.2000.01914.x.CrossRefPubMed Duraisingh MT, Roper C, Walliker D, Warhurst DC: Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum. Mol Microbiol. 2000, 36: 955-961. 10.1046/j.1365-2958.2000.01914.x.CrossRefPubMed
Metadaten
Titel
Molecular characterisation of drug-resistant Plasmodium falciparum from Thailand
verfasst von
Dinora Lopes
Kanchana Rungsihirunrat
Fátima Nogueira
Aree Seugorn
José Pedro Gil
Virgilio E do Rosário
Pedro Cravo
Publikationsdatum
01.12.2002
Verlag
BioMed Central
Erschienen in
Malaria Journal / Ausgabe 1/2002
Elektronische ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-1-12

Weitere Artikel der Ausgabe 1/2002

Malaria Journal 1/2002 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.