Skip to main content
Erschienen in: Molecular Cancer 1/2013

Open Access 01.12.2013 | Review

Molecular features in arsenic-induced lung tumors

verfasst von: Roland Hubaux, Daiana D Becker-Santos, Katey SS Enfield, David Rowbotham, Stephen Lam, Wan L Lam, Victor D Martinez

Erschienen in: Molecular Cancer | Ausgabe 1/2013

Abstract

Arsenic is a well-known human carcinogen, which potentially affects ~160 million people worldwide via exposure to unsafe levels in drinking water. Lungs are one of the main target organs for arsenic-related carcinogenesis. These tumors exhibit particular features, such as squamous cell-type specificity and high incidence among never smokers. Arsenic-induced malignant transformation is mainly related to the biotransformation process intended for the metabolic clearing of the carcinogen, which results in specific genetic and epigenetic alterations that ultimately affect key pathways in lung carcinogenesis. Based on this, lung tumors induced by arsenic exposure could be considered an additional subtype of lung cancer, especially in the case of never-smokers, where arsenic is a known etiological agent. In this article, we review the current knowledge on the various mechanisms of arsenic carcinogenicity and the specific roles of this metalloid in signaling pathways leading to lung cancer.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-4598-12-20) contains supplementary material, which is available to authorized users.
Roland Hubaux, Daiana D Becker-Santos contributed equally to this work.

Competing interests

All authors declare no conflict of interest on the topics covered by this review.

Authors’ contributions

RH and DBS contributed to manuscript conception and writing. KE and DR contributed to literature search and manuscript writing. SL and WLL contributed to manuscript writing and critically revised the paper. All authors read and approved the final manuscript. VM contributed to study conception, manuscript writing and critically revised the paper.
Abkürzungen
AsIII
Arsenite
AsV
Arsenate
EGFR
Epidermal Growth Factor
HBEC
Human Bronchial Epithelial Cells
MMAIII
Monomethylarsonous Acid
NRF2
NFE2-Related Factor 2
PIK3
Phosphatidylinositol 3-kinase
ROS
Reactive Oxygen Species
RTK
Receptor Tyrosine Kinase
SAM
S-Adenosyl Methionine
SCC
Small Cell Carcinomas
SqCC
Squamous Cell Carcinomas.

Introduction

Arsenic is a well-known human carcinogen [1]. This metalloid is widely distributed throughout the Earth’s crust and arsenical species tend to remain in solution even at high concentrations (tens of μg/L) at near-neutral pH [2]. As a result, arsenic exposure through drinking water is considered the cause of the largest mass poisoning worldwide. In Bangladesh, more than 70 million people are at risk of long term exposure to high levels of arsenic through groundwater [3]. On the other hand, chronic exposure to low-levels of arsenic in drinking water is an emerging risk across different parts of the world, including North America (Figure 1) [47]. Paradoxically, arsenic (as arsenic trioxide, A2O3) is also used as therapeutic agent in the treatment of acute promyelocytic leukemia [8, 9].
Common types of tumors associated with arsenic exposure are found in skin, bladder, liver and lung. Following arsenic exposure, lung cancer has proven to be amongst the most deadly cancer types [13, 14]. Lung adenocarcinoma is the most common type of lung cancer worldwide, however, the most frequent histological subtypes observed in arsenic-induced lung tumors - among both smokers and non-smokers - are squamous cell carcinomas (SqCC) and small cell carcinomas (SCC) [15]. Lung tumors derived from individuals exposed to arsenic also exhibit differential genetic and epigenetic changes when compared to histologically matched tumors derived from an arsenic-free environment. The differential molecular alterations seen in arsenic-induced tumors may not arise from inorganic arsenic, but instead from more damaging arsenic species generated through its metabolism [16]. In this article, we discuss mechanisms that enhance the carcinogenic potential of arsenic, such as its biotransformation, as well as the impact of this carcinogen and its derivatives at a molecular pathway level.

Molecular mechanisms involved in arsenic-induced carcinogenesis

The carcinogenic capacity of arsenic is causally linked to its biotransformation (Figure 2) [17]. Inorganic arsenic is readily absorbed by the gastrointestinal tract when ingested through drinking water [18]. Upon ingestion, arsenic is predominantly found in its pentavalent form (arsenate, Asv) and enters cells through membrane transporters such as inorganic phosphate transporters (PiT) and aquaporins [19, 20]. Inside the cell, AsV is reduced to the more toxic arsenite (AsIII) in a glutathione-dependent reaction driven by polynucleotide phosphorylase and mitochondrial ATP synthase [21]. As a part of a cellular detoxification process, AsIII and its methylated conjugates are translocated from hepatocytes into bile as glutathione conjugates [22]. Mono- and dimethylated AsIII species leaving the liver are highly reactive and have been shown to induce damage in different organs, including lungs. This damage occurs primarily through the generation of reactive oxygen species (ROS) in concert with glutathione depletion [2325]. Increased toxicity of AsIII can be attributed to a high covalent reactivity towards thiol groups; thus, the metalloid often interacts with proteins to induce their inactivation/degradation [20].

Arsenical species induce genetic alterations

Arsenic as a co-mutagen

Inorganic arsenic does not interact directly with DNA and is not considered to be mutagenic at non-toxic doses [26]. However, as previously described, methylated arsenic species and other byproducts generated in the biotransformation process are potent clastogens and mutagens [27, 28]. Furthermore, low doses of arsenic can potentiate mutagenic effects through other carcinogens such as UV light, N-methyl-N-nitrosourea, diepoxybutane, X-rays, methylmethane sulfonate and tobacco [2934].

Arsenic induces DNA damage via generation of reactive oxygen and nitrogen species

Arsenic-induced ROS may be generated by either cycling of AsIII and AsV[35] or through disruption of the mitochondrial electron transport chain [36] (Figure 2). Most of the known arsenic-related mechanisms of ROS generation involve the latter mechanism. Typically, mitochondrial ROS is generated through monomethylarsonous acid (MMAIII)-mediated inhibition of mitochondrial complexes II and IV [16], which results in a back-log of electrons and, eventually, electron leakage from complexes I and III [37]. Liberation of electrons from the electron transport chain (ETC) leads to formation of superoxide anion radicals (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (OH•) [19, 38]. Arsenic-mediated production of free-radical species has been associated with the formation of DNA adducts, DNA double-stranded breaks, DNA cross linking, chromosomal aberrations, DNA mutations and DNA deletions (Figure 2) [3941].
Arsenic can also induce generation of reactive nitrogen species (RNS). The mechanisms involved are not completely understood; however, they are thought to occur in a tissue-specific manner [42]. The increase in amounts of RNS such as peroxynitrite has been shown to cause DNA alkylation, deamination, and oxidative DNA damage [4347].

Arsenic interferes with DNA repair processes

Arsenic can affect cellular DNA repair capacity, by altering both nucleotide- (NER) and base-excision repair (BER) mechanisms (Figure 2). Arsenic interferes with NER by reducing the frequency of incision steps of the repair process [30], reducing the expression of NER-associated genes and decreasing expression and protein levels of Xeroderma pigmentosum complementation group C (XPC) [4850]. In addition, methylated AsIII species generated by the biotransformation process impair the expression and activity of human PARP1, a promoter of NER that acts in response to DNA damage [51]. Arsenic metabolites also decrease gene expression and protein levels of BER-related components, such as 8-oxoguanine DNA glycosylase 1 (hOGG1), DNA ligase IIIα (LIGIIIα), and X-ray cross complementing protein 1 (XRCC1) [17]. In arsenic-exposed murine lung tissue, the expression of several genes related to BER - such as apurinic/apyrimidinic, endonuclease/redox effector-1 (APE1), ligase I, DNA, ATP-dependent (LIG1), 8-oxoguanine DNA glycosylase (OGG1), and poly (ADP-ribose) polymerase 1 (PARP1) - were elevated [52].

Arsenic induces chromosomal and genomic instability

Arsenic-treated cells demonstrate significantly increased micronuclei formation as well as chromosomal aneuploidy, likely by an effect on sulfhydryl groups of tubulin and microtubule-associated proteins and consequential cell spindle assembly disruption [5357]. Additional studies have shown that the p53-dependent increase in p21 expression observed in normal cells following DNA damage is inhibited in cells exposed to arsenic, leading to cell cycle progression despite heavy DNA damage and genomic instability [5861]. Similarly, arsenic-induced disruption of PARP1 activity contributes to genomic instability by allowing the survival of cells with significant DNA lesions [51, 62]. Studies comparing DNA copy number alterations in arsenic-exposed and non-exposed lung tumor cells indicate the location and frequency of alterations differ between the two cases. Genomes of lung tumors from patients who never smoke, as well as those chronically exposed to arsenic harbor segmental DNA amplifications at 19q13.31 and 19q13.33 and segmental DNA losses at chromosomal locus 1q21, among others [63, 64]. Interestingly, genes in 19q13.33, such as Spleen focus forming virus (SFFV), proviral integration oncogene B (SPIB), and Nuclear receptor subfamily 1, group H, member 2 (NR1H2) have been shown to be oncogenic in mouse models [6567].

Arsenic-induced epigenetic alterations

Arsenic biotransformation depletes SAM resulting in aberrant DNA methylation

Arsenic detoxification requires the use of S-Adenosyl methionine (SAM) as a methyl donor (Figure 2); consequently, arsenic-related epigenetic effects mainly derive from deprivation of the cellular pool of methyl (-CH3) groups [68]. Although cellular levels of SAM itself are not likely affected, a high demand of SAM due to chronic arsenic exposure will affect the availability of the cellular pool of methyl groups [6971]. Since SAM is the major methyl donor for DNA-methyltransferases (DNMT), depletion of methyl groups can lead to global hypomethylation and changes in chromatin remodeling [72, 73]. Such epigenetic modifications have been shown to promote malignant transformation in a variety of cell types, including lung [7476]. Arsenic has been shown to induce global hypomethylation, as demonstrated by reduction in LINE-1 methylation and total 5-methyldeoxycytidine content in lymphoblastoid cells [72]. Importantly, even low-level arsenic exposure resulted in DNA hypomethylation in rat models [77]. Moreover, arsenic-induced SAM deprivation can alter CpG methylation status of promoters for specific genes, such as Deleted In Bladder Cancer 1 (DBC1), Death-Associated Protein Kinase 1 (DAPK), and P53 [68, 7886]. ROS generated during arsenic biotransformation can also interfere with DNA methylation and contribute to aberrant epigenetic modifications and deregulation of gene expression [87].
Interestingly, individuals chronically exposed to high yet non-lethal levels of arsenic exhibit a significantly higher degree of DNA methylation in promoter regions of P53 and CDKN2A compared to non-exposed controls [88]. Lung cancer cell models have also shown that arsenic exposure resulted in P53 promoter hypermethylation and subsequent transcriptional silencing of this gene [78]. Promoter hypermethylation of tumor suppressors CDKN2A and RASSF1A was also observed in lung tumors of mice exposed to inorganic arsenate [75].

Arsenic changes gene expression patterns by altering histone modification

Arsenic-mediated reduction of global levels of H4K16 acetylation, a mark of gene activation, has been demonstrated in cell models [89]. Further, arsenic exposure has been shown to modify H3K4, H3K9, and H3K27 histone methylation patterns in both malignant and non-malignant lung cell lines, leading to a decrease in the expression of genes associated with histone acetylation and DNA methylation changes [80, 90]. Arsenic has also been reported to alter the chromatin landscape of arsenic-induced cancer cells through loss of the repressive histone modifications H3 triMe-K27 and H3 diMe-K9 and an increase in the levels of activating Ac-H3 and diMe-K4 at the WNT5A locus - resulting in the ectopic expression of WNT family genes [73].

Arsenic induces epithelial-to-mesenchymal transition and other biological effects through changes in micro-RNA expression

A study using human bronchial epithelial cells (HBEC) demonstrated that chronic arsenic exposure of P53-knock down cells induced malignant transformation accompanied by epithelial-to-mesenchymal transition (EMT) [91]. A reduction in expression of a miR-200 family member was correlated with this exposure, and was shown to occur through increased promoter methylation. Re-establishment of miR-200b expression alone was capable of entirely reversing and preventing arsenic-induced EMT and malignant transformation [91].
Arsenic exposure can alter miRNA expression levels in vitro and in vivo in other cell types and tissues. For example, in a study using chick embryos, arsenic decreaseD expression of miR-9, -181b, -124, and -125b. Decrease of miR-9 and miR-181b resulted in expression of their common target Nrp1, leading to cell migration, tube formation and angiogenesis [92]. Arsenite induced overexpression of several miRNAs, including miR-222, in human peripheral blood-derived cells from individuals with insufficient dietary folate. Overexpression of miR-222 was reversed by the restoration of normal folate levels [76].

Arsenic targets key pathways associated with lung cancer

Arsenic stimulates the EGFR signaling pathway

Alteration in the EGFR pathway can result from mutation and/or amplification events at the epidermal growth factor receptor (EGFR) locus. The consequence of either genetic event is a structural alteration that destabilizes the auto-inhibitory loop of EGFR, forcing the receptor into a constitutive and ligand-independent active state [93].
Similar states of EGFR constitutive activation can be induced by even moderate levels of arsenic, similar to those registered in contaminated U.S. drinking water, affecting the lungs and other target organs of arsenic carcinogenesis [94, 95] (Figure 3). Arsenic can stimulate c-Src activity, which can then activate EGFR by physical interaction resulting in two unique tyrosine phosphorylation events (Tyr845, Tyr1101), leading to ligand-independent EGFR phosphorylation and constitutive activation [9698]. Arsenic can also induce activation of components of the EGFR pathway in lung epithelial cells, such as Ras, Raf, Mek and ERK through ROS [94, 99, 100]. Arsenite inhibits STAT3 through JAK inactivation, and such interference may play a role in arsenic-associated pathogenesis [101]. Conversely, it has been shown that AsIII activates STAT3 through c-Jun NH2 kinase (JNK), contributing to Akt activation [102]. Arsenic-exposed hepatocellular carcinoma cells display overexpression of EGFR [95], while in leukemia cell lines, AsIII is capable of activating Rac1 GTPases resulting in downstream engagement of the JNK pathway and increased cell survival and proliferation [103, 104]. This arsenic-related induction of EGFR signaling offers promising therapeutic utility, as inhibitors of EGFR and various other pathway components are already in place or in development [105].

Arsenic and the PI3K/AKT signaling pathway

Signaling through the PI3K/AKT pathway starts with the activation of receptor tyrosine kinases (RTK’s) through binding to an extracellular growth factor. Binding of the extracellular ligand to its receptor leads to the dimerization and activation of the RTK [106]. The consequence of RTK activation, is the successive recruitment and activation of PI3K, AKT, and hundreds of target proteins that drive increased cell growth, metabolism, survival, and proliferation [106].
Acute exposure to arsenite can stimulate the PI3K/AKT phosphorylation cascade, leading to cellular transformation characterized by increased proliferation and anchorage-independent growth [107109] (Figure 4). AsIII can induce phosphorylation of EZH2 at serine 21 in human bronchial epithelial cells and such phosphorylation of EZH2 requires AsIII-activated signalling through JNK and STAT3 leading to phosphorylation of AKT [110]. Arsenic-induced activation of AKT may be also associated with its ability to cause the induction of miR-190. This microRNA acts by repressing expression of the PH domain leucine-rich repeat protein phosphatase (PHLPP) - a negative regulator of AKT signaling [111]. Additionally, it has been shown that activation of the JNK-STAT3 pathway is involved in AsIII-induced AKT activation [102]. In HBECs, AsIII can stimulate AKT and the consequent release of vascular endothelial growth factor (VEGF), inducing cell migration through different mechanisms [102, 112, 113]. During malignant transformation of stem cells, arsenite has also been shown to suppress expression of PTEN, an important inhibitor of PI3K/AKT signaling [114].
Although acute activation of this pathway is thought to be mediated by arsenic-induced ROS, the specific role of arsenic on PI3K/AKT signalling during chronic exposure remains to be clearly demonstrated [115].

Arsenic and the Nrf2-KEAP1 signaling pathway

The transcription factor nuclear factor erythroid-derived factor 2–related factor 2 (NRF2) plays a key role in the activation of oxidative stress response. NRF2 contains a leucine-zipper DNA binding domain capable of binding to both antioxidant response elements (ARE’s) and electrophile response elements (ERE’s). Under normal conditions, NRF2 is actively sequestered by KEAP1 and targeted for proteolytic degradation [116]; however, under conditions of oxidative or chemical stress, NRF2 dissociates from KEAP1 and migrates to the nucleus to initiate a stress-related response. The KEAP1 E3-ubiquitin ligase complex is frequently affected by genetic disruption and aberrant expression in non-small cell lung cancer, resulting in NF-κB activation, is characteristic of lung tumorigenesis [117].
It has been proposed that activation of the NRF2 pathway confers protection against toxic effects induced by both AsIII and MMAIII[118]. Pathological alterations in lung tissue, such as lung inflammatory response, induced by short-term exposure to arsenic can be prevented by NRF2 activation [119]. Arsenite can also stabilize NRF2 by disrupting the NRF2-KEAP1-CUL3 complex (Figure 5) [113]. It is possible that this occurs through the interaction of arsenic with KEAP1, since it has been reported that arsenic is capable of binding to reactive cysteine thiol groups present on KEAP1, thus triggering the dissociation of the complex and inducing constitutive NRF2-dependent signaling [120]. This apparent protective effect of NRF2 against arsenic toxicity has been observed most often at low doses; however, chronic low-dose exposure may overwhelm the arsenic-mediated NRF2-dependent protection, resulting in over-stimulation of NRF2-dependant genes [121].

Conclusion and future directions

Lung cancer is the leading cause of cancer-related deaths in North America, affecting over 200,000 men and women each year [122]. Arsenic poisoning through contaminated drinking water leading to arsenic-induced lung cancer is a major public health concern; consequently, the mechanisms underlying the carcinogenic effects of arsenic in lung cancer has become an important avenue of research.
Undoubtedly, the biotransformation of AsV into AsIII and its methylated conjugates plays a crucial role in arsenic carcinogenicity at both genetic and epigenetic levels. Genetic changes are acquired mainly through the induction of ROS during the biotransformation process, while the competition for methyl groups between AsV detoxification enzymes and DMT’s contribute to epigenetic abnormalities.
Arsenic species directly modulate several oncogenic pathways - most notably the EGFR, PI3K/AKT and the NRF2/KEAP1 pathways - and these specific pathways possess actionable targets for therapy in lung cancer. A greater understanding of the molecular mechanisms governing arsenic-related lung tumorigenesis may therefore yield promising translatable findings. Deep characterization of arsenic-related tumors and/or cell models at both the genetic and epigenetic levels, and the comparison of arsenic-related and unrelated SqCC tumors may provide such insights. On the other hand, mechanisms associated with anti-tumoral effects of As2O3 in the treatment of APL (not discussed in this review) should also be considered in order to increase the understanding of the molecular effects of arsenic in the human body.
In conclusion, arsenic can induce specific alterations affecting pathways that drive malignant transformation in lung cells. Current evidence suggests that arsenic-induced lung tumors represent a unique class of lung cancer, based on histology and underlying molecular characteristics. Further characterization of the mechanisms by which arsenic affects its targets will certainly give support to preventing and/or reducing the effects of arsenic toxicity, especially among those populations chronically exposed to arsenic.

Acknowledgements

This work was supported by grants from the Canadian Institutes for Health Research (CIHR), NIH/NCI 1R01CA164783-01 and Department of Defence (CDMRP W81XWH-10-1-0634). D.D.B.S. and K.S.S.E. are supported by scholarships from the University of British Columbia and CIHR.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

All authors declare no conflict of interest on the topics covered by this review.

Authors’ contributions

RH and DBS contributed to manuscript conception and writing. KE and DR contributed to literature search and manuscript writing. SL and WLL contributed to manuscript writing and critically revised the paper. All authors read and approved the final manuscript. VM contributed to study conception, manuscript writing and critically revised the paper.
Literatur
1.
Zurück zum Zitat IARC: Some drinking-water disinfectants and contaminants, including arsenic. Monographs on chloramine, chloral and chloral hydrate, dichloroacetic acid, trichloroacetic acid and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone. IARC Monogr Eval Carcinog Risks Hum. 2004, 84: 269-477. 10.1186/1476-4598-12-20 IARC: Some drinking-water disinfectants and contaminants, including arsenic. Monographs on chloramine, chloral and chloral hydrate, dichloroacetic acid, trichloroacetic acid and 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone. IARC Monogr Eval Carcinog Risks Hum. 2004, 84: 269-477. 10.1186/1476-4598-12-20
2.
Zurück zum Zitat Smedley PL, Kinniburgh DG: A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem. 2002, 17: 517-568. 10.1016/S0883-2927(02)00018-5 Smedley PL, Kinniburgh DG: A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem. 2002, 17: 517-568. 10.1016/S0883-2927(02)00018-5
3.
Zurück zum Zitat Smith AH, Lingas EO, Mahfuzar R: Contamination of drinking-water by arsenic in bangladesh: a public health emergency. Bull World Health Organ. 2000, 78: 1093-1103.PubMedCentralPubMed Smith AH, Lingas EO, Mahfuzar R: Contamination of drinking-water by arsenic in bangladesh: a public health emergency. Bull World Health Organ. 2000, 78: 1093-1103.PubMedCentralPubMed
4.
Zurück zum Zitat Putila JJ, Guo NL: Association of arsenic exposure with lung cancer incidence rates in the united states. PLoS One. 2011, 6: e25886- 10.1371/journal.pone.0025886PubMedCentralPubMed Putila JJ, Guo NL: Association of arsenic exposure with lung cancer incidence rates in the united states. PLoS One. 2011, 6: e25886- 10.1371/journal.pone.0025886PubMedCentralPubMed
5.
Zurück zum Zitat U. S. Environmental Protection Agency: National primary drinking water regulations; arsenic and clarifications to compliance and New source contaminants monitoring; final rule. Book national primary drinking water regulations; arsenic and clarifications to compliance and New source contaminants monitoring; final rule vol. 66. 2001, 6975- U. S. Environmental Protection Agency: National primary drinking water regulations; arsenic and clarifications to compliance and New source contaminants monitoring; final rule. Book national primary drinking water regulations; arsenic and clarifications to compliance and New source contaminants monitoring; final rule vol. 66. 2001, 6975-
6.
Zurück zum Zitat Kumar A, Adak P, Gurian PL, Lockwood JR: Arsenic exposure in US public and domestic drinking water supplies: a comparative risk assessment. J Expo Sci Environ Epidemiol. 2010, 20: 245-254. 10.1038/jes.2009.24PubMed Kumar A, Adak P, Gurian PL, Lockwood JR: Arsenic exposure in US public and domestic drinking water supplies: a comparative risk assessment. J Expo Sci Environ Epidemiol. 2010, 20: 245-254. 10.1038/jes.2009.24PubMed
7.
Zurück zum Zitat Nieder AM, MacKinnon JA, Fleming LE, Kearney G, Hu JJ, Sherman RL, Huang Y, Lee DJ: Bladder cancer clusters in florida: identifying populations at risk. J Urol. 2009, 182: 46-50. discussion 51, 10.1016/j.juro.2009.02.149PubMed Nieder AM, MacKinnon JA, Fleming LE, Kearney G, Hu JJ, Sherman RL, Huang Y, Lee DJ: Bladder cancer clusters in florida: identifying populations at risk. J Urol. 2009, 182: 46-50. discussion 51, 10.1016/j.juro.2009.02.149PubMed
8.
Zurück zum Zitat Iland HJ, Seymour JF: Role of arsenic trioxide in acute promyelocytic leukemia. Curr Treat Options Oncol. 2013, [Epub ahead of print] Iland HJ, Seymour JF: Role of arsenic trioxide in acute promyelocytic leukemia. Curr Treat Options Oncol. 2013, [Epub ahead of print]
9.
Zurück zum Zitat Mi J: Current treatment strategy of acute promyelocytic leukemia. Frontiers of medicine. 2011, 5: 341-347. 10.1007/s11684-011-0169-zPubMed Mi J: Current treatment strategy of acute promyelocytic leukemia. Frontiers of medicine. 2011, 5: 341-347. 10.1007/s11684-011-0169-zPubMed
10.
Zurück zum Zitat McGuigan CF, Hamula CLA, Huang S, Gabos S, Le XC: A review on arsenic concentrations in canadian drinking water. Environmental Reviews. 2010, 18: 291-307. 10.1139/A10-012. 10.1139/A10-012 McGuigan CF, Hamula CLA, Huang S, Gabos S, Le XC: A review on arsenic concentrations in canadian drinking water. Environmental Reviews. 2010, 18: 291-307. 10.1139/A10-012. 10.1139/A10-012
11.
Zurück zum Zitat Ryker SJ: Mapping arsenic in groundwater. Geotimes. 2001, 46: 34-36. Ryker SJ: Mapping arsenic in groundwater. Geotimes. 2001, 46: 34-36.
12.
Zurück zum Zitat Nordstrom DK: Public health. Worldwide occurrences of arsenic in ground water. Science. 2002, 296: 2143-2145. 10.1126/science.1072375PubMed Nordstrom DK: Public health. Worldwide occurrences of arsenic in ground water. Science. 2002, 296: 2143-2145. 10.1126/science.1072375PubMed
13.
Zurück zum Zitat Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, Wood R, Kosnett MJ, Smith MT: Cancer risks from arsenic in drinking water. Environ Health Perspect. 1992, 97: 259-267.PubMedCentralPubMed Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, Wood R, Kosnett MJ, Smith MT: Cancer risks from arsenic in drinking water. Environ Health Perspect. 1992, 97: 259-267.PubMedCentralPubMed
14.
Zurück zum Zitat Mead MN: Arsenic: in search of an antidote to a global poison. Environ Health Perspect. 2005, 113: A378-386. 10.1289/ehp.113-a378PubMedCentralPubMed Mead MN: Arsenic: in search of an antidote to a global poison. Environ Health Perspect. 2005, 113: A378-386. 10.1289/ehp.113-a378PubMedCentralPubMed
15.
Zurück zum Zitat Guo HR, Wang NS, Hu H, Monson RR: Cell type specificity of lung cancer associated with arsenic ingestion. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2004, 13: 638-643. Guo HR, Wang NS, Hu H, Monson RR: Cell type specificity of lung cancer associated with arsenic ingestion. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2004, 13: 638-643.
16.
Zurück zum Zitat Barrett JC, Lamb PW, Wiseman RW: Multiple mechanisms for the carcinogenic effects of asbestos and other mineral fibers. Environ Health Perspect. 1989, 81: 81-89.PubMedCentralPubMed Barrett JC, Lamb PW, Wiseman RW: Multiple mechanisms for the carcinogenic effects of asbestos and other mineral fibers. Environ Health Perspect. 1989, 81: 81-89.PubMedCentralPubMed
17.
Zurück zum Zitat Ebert F, Weiss A, Bultemeyer M, Hamann I, Hartwig A, Schwerdtle T: Arsenicals affect base excision repair by several mechanisms. Mutat Res. 2011, 715: 32-41. 10.1016/j.mrfmmm.2011.07.004PubMed Ebert F, Weiss A, Bultemeyer M, Hamann I, Hartwig A, Schwerdtle T: Arsenicals affect base excision repair by several mechanisms. Mutat Res. 2011, 715: 32-41. 10.1016/j.mrfmmm.2011.07.004PubMed
18.
Zurück zum Zitat Pomroy C, Charbonneau SM, McCullough RS, Tam GK: Human retention studies with 74As. Toxicol Appl Pharmacol. 1980, 53: 550-556. 10.1016/0041-008X(80)90368-3PubMed Pomroy C, Charbonneau SM, McCullough RS, Tam GK: Human retention studies with 74As. Toxicol Appl Pharmacol. 1980, 53: 550-556. 10.1016/0041-008X(80)90368-3PubMed
19.
Zurück zum Zitat Wang Y, Fang J, Leonard SS, Rao KM: Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med. 2004, 36: 1434-1443. 10.1016/j.freeradbiomed.2004.03.010PubMed Wang Y, Fang J, Leonard SS, Rao KM: Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med. 2004, 36: 1434-1443. 10.1016/j.freeradbiomed.2004.03.010PubMed
20.
Zurück zum Zitat Dilda PJ, Hogg PJ: Arsenical-based cancer drugs. Cancer Treat Rev. 2007, 33: 542-564. 10.1016/j.ctrv.2007.05.001PubMed Dilda PJ, Hogg PJ: Arsenical-based cancer drugs. Cancer Treat Rev. 2007, 33: 542-564. 10.1016/j.ctrv.2007.05.001PubMed
21.
Zurück zum Zitat Nemeti B, Regonesi ME, Tortora P, Gregus Z: Polynucleotide phosphorylase and mitochondrial ATP synthase mediate reduction of arsenate to the more toxic arsenite by forming arsenylated analogues of ADP and ATP. Toxicological sciences: an official journal of the Society of Toxicology. 2010, 117: 270-281. 10.1093/toxsci/kfq141. 10.1093/toxsci/kfq141 Nemeti B, Regonesi ME, Tortora P, Gregus Z: Polynucleotide phosphorylase and mitochondrial ATP synthase mediate reduction of arsenate to the more toxic arsenite by forming arsenylated analogues of ADP and ATP. Toxicological sciences: an official journal of the Society of Toxicology. 2010, 117: 270-281. 10.1093/toxsci/kfq141. 10.1093/toxsci/kfq141
22.
Zurück zum Zitat Kala SV, Neely MW, Kala G, Prater CI, Atwood DW, Rice JS, Lieberman MW: The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J Biol Chem. 2000, 275: 33404-33408. 10.1074/jbc.M007030200PubMed Kala SV, Neely MW, Kala G, Prater CI, Atwood DW, Rice JS, Lieberman MW: The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J Biol Chem. 2000, 275: 33404-33408. 10.1074/jbc.M007030200PubMed
23.
Zurück zum Zitat Cullen WR, Reimer KJ: Arsenic speciation in the environment. Chem Rev. 1989, 89: 713-10.1021/cr00094a002 Cullen WR, Reimer KJ: Arsenic speciation in the environment. Chem Rev. 1989, 89: 713-10.1021/cr00094a002
24.
Zurück zum Zitat Styblo M, Drobna Z, Jaspers I, Lin S, Thomas DJ: The role of biomethyl-ation in toxicity and carcinogenicity of arsenic: a research update. Environ Health Persp. 2002, 110: 767-10.1289/ehp.02110s5767. 10.1289/ehp.02110s5767 Styblo M, Drobna Z, Jaspers I, Lin S, Thomas DJ: The role of biomethyl-ation in toxicity and carcinogenicity of arsenic: a research update. Environ Health Persp. 2002, 110: 767-10.1289/ehp.02110s5767. 10.1289/ehp.02110s5767
25.
Zurück zum Zitat Thomas DJ, Styblo M, Lin S: The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharmacol. 2001, 176: 127-144. 10.1006/taap.2001.9258PubMed Thomas DJ, Styblo M, Lin S: The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharmacol. 2001, 176: 127-144. 10.1006/taap.2001.9258PubMed
26.
Zurück zum Zitat Klein CB, Leszczynska J, Hickey C, Rossman TG: Further evidence against a direct genotoxic mode of action for arsenic-induced cancer. Toxicol Appl Pharmacol. 2007, 222: 289-297. 10.1016/j.taap.2006.12.033PubMedCentralPubMed Klein CB, Leszczynska J, Hickey C, Rossman TG: Further evidence against a direct genotoxic mode of action for arsenic-induced cancer. Toxicol Appl Pharmacol. 2007, 222: 289-297. 10.1016/j.taap.2006.12.033PubMedCentralPubMed
27.
Zurück zum Zitat Kligerman AD, Doerr CL, Tennant AH, Harrington-Brock K, Allen JW, Winkfield E, Poorman-Allen P, Kundu B, Funasaka K, Roop BC: Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: induction of chromosomal mutations but not gene mutations. Environ Mol Mutagen. 2003, 42: 192-205. 10.1002/em.10192PubMed Kligerman AD, Doerr CL, Tennant AH, Harrington-Brock K, Allen JW, Winkfield E, Poorman-Allen P, Kundu B, Funasaka K, Roop BC: Methylated trivalent arsenicals as candidate ultimate genotoxic forms of arsenic: induction of chromosomal mutations but not gene mutations. Environ Mol Mutagen. 2003, 42: 192-205. 10.1002/em.10192PubMed
28.
Zurück zum Zitat Rossman TG, Klein CB: Genetic and epigenetic effects of environmental arsenicals. Metallomics: integrated biometal science. 2011, 3: 1135-1141. 10.1039/c1mt00074h. 10.1039/c1mt00074h Rossman TG, Klein CB: Genetic and epigenetic effects of environmental arsenicals. Metallomics: integrated biometal science. 2011, 3: 1135-1141. 10.1039/c1mt00074h. 10.1039/c1mt00074h
29.
Zurück zum Zitat Rossman TG, Uddin AN, Burns FJ: Evidence that arsenite acts as a cocarcinogen in skin cancer. Toxicol Appl Pharmacol. 2004, 198: 394-404. 10.1016/j.taap.2003.10.016PubMed Rossman TG, Uddin AN, Burns FJ: Evidence that arsenite acts as a cocarcinogen in skin cancer. Toxicol Appl Pharmacol. 2004, 198: 394-404. 10.1016/j.taap.2003.10.016PubMed
30.
Zurück zum Zitat Hartwig A, Groblinghoff UD, Beyersmann D, Natarajan AT, Filon R, Mullenders LH: Interaction of arsenic(III) with nucleotide excision repair in UV-irradiated human fibroblasts. Carcinogenesis. 1997, 18: 399-405. 10.1093/carcin/18.2.399PubMed Hartwig A, Groblinghoff UD, Beyersmann D, Natarajan AT, Filon R, Mullenders LH: Interaction of arsenic(III) with nucleotide excision repair in UV-irradiated human fibroblasts. Carcinogenesis. 1997, 18: 399-405. 10.1093/carcin/18.2.399PubMed
31.
Zurück zum Zitat Jha AN, Noditi M, Nilsson R, Natarajan AT: Genotoxic effects of sodium arsenite on human cells. Mutat Res. 1992, 284: 215-221. 10.1016/0027-5107(92)90005-MPubMed Jha AN, Noditi M, Nilsson R, Natarajan AT: Genotoxic effects of sodium arsenite on human cells. Mutat Res. 1992, 284: 215-221. 10.1016/0027-5107(92)90005-MPubMed
32.
Zurück zum Zitat Wiencke JK, Yager JW: Specificity of arsenite in potentiating cytogenetic damage induced by the DNA crosslinking agent diepoxybutane. Environ Mol Mutagen. 1992, 19: 195-200. 10.1002/em.2850190303PubMed Wiencke JK, Yager JW: Specificity of arsenite in potentiating cytogenetic damage induced by the DNA crosslinking agent diepoxybutane. Environ Mol Mutagen. 1992, 19: 195-200. 10.1002/em.2850190303PubMed
33.
Zurück zum Zitat Li JH, Rossman TG: Mechanism of comutagenesis of sodium arsenite with n-methyl-n-nitrosourea. Biol Trace Elem Res. 1989, 21: 373-381. 10.1007/BF02917278PubMed Li JH, Rossman TG: Mechanism of comutagenesis of sodium arsenite with n-methyl-n-nitrosourea. Biol Trace Elem Res. 1989, 21: 373-381. 10.1007/BF02917278PubMed
34.
Zurück zum Zitat Lee TC, Huang RY, Jan KY: Sodium arsenite enhances the cytotoxicity, clastogenicity, and 6-thioguanine-resistant mutagenicity of ultraviolet light in chinese hamster ovary cells. Mutat Res. 1985, 148: 83-89. 10.1016/0027-5107(85)90210-6PubMed Lee TC, Huang RY, Jan KY: Sodium arsenite enhances the cytotoxicity, clastogenicity, and 6-thioguanine-resistant mutagenicity of ultraviolet light in chinese hamster ovary cells. Mutat Res. 1985, 148: 83-89. 10.1016/0027-5107(85)90210-6PubMed
35.
Zurück zum Zitat Flora SJ: Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med. 2011, 51: 257-281. 10.1016/j.freeradbiomed.2011.04.008PubMed Flora SJ: Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med. 2011, 51: 257-281. 10.1016/j.freeradbiomed.2011.04.008PubMed
36.
Zurück zum Zitat Rossman TG: Mechanism of arsenic carcinogenesis: an integrated approach. Mutat Res. 2003, 533: 37-65. 10.1016/j.mrfmmm.2003.07.009PubMed Rossman TG: Mechanism of arsenic carcinogenesis: an integrated approach. Mutat Res. 2003, 533: 37-65. 10.1016/j.mrfmmm.2003.07.009PubMed
37.
Zurück zum Zitat Naranmandura H, Xu S, Sawata T, Hao WH, Liu H, Bu N, Ogra Y, Lou YJ, Suzuki N: Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMA(III))-induced cytotoxicity. Chem Res Toxicol. 2011, 24: 1094-1103. 10.1021/tx200156kPubMed Naranmandura H, Xu S, Sawata T, Hao WH, Liu H, Bu N, Ogra Y, Lou YJ, Suzuki N: Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMA(III))-induced cytotoxicity. Chem Res Toxicol. 2011, 24: 1094-1103. 10.1021/tx200156kPubMed
38.
Zurück zum Zitat Turrens JF: Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997, 17: 3-8. 10.1023/A:1027374931887PubMed Turrens JF: Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997, 17: 3-8. 10.1023/A:1027374931887PubMed
39.
Zurück zum Zitat Kitchin KT, Wallace K: Evidence against the nuclear in situ binding of arsenicals–oxidative stress theory of arsenic carcinogenesis. Toxicol Appl Pharmacol. 2008, 232: 252-257. 10.1016/j.taap.2008.06.021PubMed Kitchin KT, Wallace K: Evidence against the nuclear in situ binding of arsenicals–oxidative stress theory of arsenic carcinogenesis. Toxicol Appl Pharmacol. 2008, 232: 252-257. 10.1016/j.taap.2008.06.021PubMed
40.
Zurück zum Zitat Halliwell B: Oxidative stress and cancer: have we moved forward?. Biochem J. 2007, 401: 1-11.PubMed Halliwell B: Oxidative stress and cancer: have we moved forward?. Biochem J. 2007, 401: 1-11.PubMed
41.
Zurück zum Zitat Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL: Arsenic exposure and the induction of human cancers. J Toxicol. 2011, 2011: 431287-PubMedCentralPubMed Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL: Arsenic exposure and the induction of human cancers. J Toxicol. 2011, 2011: 431287-PubMedCentralPubMed
42.
Zurück zum Zitat Gurr J-R, Yih L-H, Samikkannu T, Bau D-T, Lin S-Y, Jan K-Y: Nitric oxide production by arsenite. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2003, 533: 173-182. 10.1016/j.mrfmmm.2003.08.024PubMed Gurr J-R, Yih L-H, Samikkannu T, Bau D-T, Lin S-Y, Jan K-Y: Nitric oxide production by arsenite. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2003, 533: 173-182. 10.1016/j.mrfmmm.2003.08.024PubMed
43.
Zurück zum Zitat Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS: DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science. 1991, 254: 1001-1003. 10.1126/science.1948068PubMed Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS: DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science. 1991, 254: 1001-1003. 10.1126/science.1948068PubMed
44.
Zurück zum Zitat Radi R, Beckman JS, Bush KM, Freeman BA: Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. The Journal of biological chemistry. 1991, 266: 4244-4250.PubMed Radi R, Beckman JS, Bush KM, Freeman BA: Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. The Journal of biological chemistry. 1991, 266: 4244-4250.PubMed
45.
Zurück zum Zitat Leaf CD, Wishnok JS, Tannenbaum SR: Endogenous incorporation of nitric oxide from L-arginine into N-nitrosomorpholine stimulated by escherichia coli lipopolysaccharide in the rat. Carcinogenesis. 1991, 12: 537-539. 10.1093/carcin/12.3.537PubMed Leaf CD, Wishnok JS, Tannenbaum SR: Endogenous incorporation of nitric oxide from L-arginine into N-nitrosomorpholine stimulated by escherichia coli lipopolysaccharide in the rat. Carcinogenesis. 1991, 12: 537-539. 10.1093/carcin/12.3.537PubMed
46.
Zurück zum Zitat Tsuda M, Kurashima Y: Tobacco smoking, chewing, and snuff dipping: factors contributing to the endogenous formation of N-nitroso compounds. Crit Rev Toxicol. 1991, 21: 243-253. 10.3109/10408449109017912PubMed Tsuda M, Kurashima Y: Tobacco smoking, chewing, and snuff dipping: factors contributing to the endogenous formation of N-nitroso compounds. Crit Rev Toxicol. 1991, 21: 243-253. 10.3109/10408449109017912PubMed
47.
Zurück zum Zitat Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA: Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA. 1990, 87: 1620-1624. 10.1073/pnas.87.4.1620PubMedCentralPubMed Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA: Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA. 1990, 87: 1620-1624. 10.1073/pnas.87.4.1620PubMedCentralPubMed
48.
Zurück zum Zitat Andrew AS, Karagas MR, Hamilton JW: Decreased DNA repair gene expression among individuals exposed to arsenic in united states drinking water. Int J Cancer. 2003, 104: 263-268. 10.1002/ijc.10968PubMed Andrew AS, Karagas MR, Hamilton JW: Decreased DNA repair gene expression among individuals exposed to arsenic in united states drinking water. Int J Cancer. 2003, 104: 263-268. 10.1002/ijc.10968PubMed
49.
Zurück zum Zitat Andrew AS, Burgess JL, Meza MM, Demidenko E, Waugh MG, Hamilton JW, Karagas MR: Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic. Environ Health Perspect. 2006, 114: 1193-1198. 10.1289/ehp.9008PubMedCentralPubMed Andrew AS, Burgess JL, Meza MM, Demidenko E, Waugh MG, Hamilton JW, Karagas MR: Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic. Environ Health Perspect. 2006, 114: 1193-1198. 10.1289/ehp.9008PubMedCentralPubMed
50.
Zurück zum Zitat Nollen M, Ebert F, Moser J, Mullenders LH, Hartwig A, Schwerdtle T: Impact of arsenic on nucleotide excision repair: XPC function, protein level, and gene expression. Mol Nutr Food Res. 2009, 53: 572-582. 10.1002/mnfr.200800480PubMed Nollen M, Ebert F, Moser J, Mullenders LH, Hartwig A, Schwerdtle T: Impact of arsenic on nucleotide excision repair: XPC function, protein level, and gene expression. Mol Nutr Food Res. 2009, 53: 572-582. 10.1002/mnfr.200800480PubMed
51.
Zurück zum Zitat Walter I, Schwerdtle T, Thuy C, Parsons JL, Dianov GL, Hartwig A: Impact of arsenite and its methylated metabolites on PARP-1 activity, PARP-1 gene expression and poly(ADP-ribosyl)ation in cultured human cells. DNA Repair. 2007, 6: 61-70. 10.1016/j.dnarep.2006.08.008PubMed Walter I, Schwerdtle T, Thuy C, Parsons JL, Dianov GL, Hartwig A: Impact of arsenite and its methylated metabolites on PARP-1 activity, PARP-1 gene expression and poly(ADP-ribosyl)ation in cultured human cells. DNA Repair. 2007, 6: 61-70. 10.1016/j.dnarep.2006.08.008PubMed
52.
Zurück zum Zitat Osmond MJ, Kunz BA, Snow ET: Age and exposure to arsenic alter base excision repair transcript levels in mice. Mutagenesis. 2010, 25: 517-522. 10.1093/mutage/geq037PubMed Osmond MJ, Kunz BA, Snow ET: Age and exposure to arsenic alter base excision repair transcript levels in mice. Mutagenesis. 2010, 25: 517-522. 10.1093/mutage/geq037PubMed
53.
Zurück zum Zitat Wen G, Calaf GM, Partridge MA, Echiburu-Chau C, Zhao Y, Huang S, Chai Y, Li B, Hu B, Hei TK: Neoplastic transformation of human small airway epithelial cells induced by arsenic. Mol Med. 2008, 14: 2-10.PubMedCentralPubMed Wen G, Calaf GM, Partridge MA, Echiburu-Chau C, Zhao Y, Huang S, Chai Y, Li B, Hu B, Hei TK: Neoplastic transformation of human small airway epithelial cells induced by arsenic. Mol Med. 2008, 14: 2-10.PubMedCentralPubMed
54.
Zurück zum Zitat Zhao Y, Toselli P, Li W: Microtubules as a critical target for arsenic toxicity in lung cells in vitro and in vivo. Int J Environ Res Public Health. 2012, 9: 474-495. 10.3390/ijerph9020474PubMedCentralPubMed Zhao Y, Toselli P, Li W: Microtubules as a critical target for arsenic toxicity in lung cells in vitro and in vivo. Int J Environ Res Public Health. 2012, 9: 474-495. 10.3390/ijerph9020474PubMedCentralPubMed
55.
Zurück zum Zitat Sciandrello G, Caradonna F, Mauro M, Barbata G: Arsenic-induced DNA hypomethylation affects chromosomal instability in mammalian cells. Carcinogenesis. 2004, 25: 413-417.PubMed Sciandrello G, Caradonna F, Mauro M, Barbata G: Arsenic-induced DNA hypomethylation affects chromosomal instability in mammalian cells. Carcinogenesis. 2004, 25: 413-417.PubMed
56.
Zurück zum Zitat Sciandrello G, Barbaro R, Caradonna F, Barbata G: Early induction of genetic instability and apoptosis by arsenic in cultured chinese hamster cells. Mutagenesis. 2002, 17: 99-103. 10.1093/mutage/17.2.99PubMed Sciandrello G, Barbaro R, Caradonna F, Barbata G: Early induction of genetic instability and apoptosis by arsenic in cultured chinese hamster cells. Mutagenesis. 2002, 17: 99-103. 10.1093/mutage/17.2.99PubMed
57.
Zurück zum Zitat Vega L, Gonsebatt ME, Ostrosky-Wegman P: Aneugenic effect of sodium arsenite on human lymphocytes in vitro: an individual susceptibility effect detected. Mutat Res. 1995, 334: 365-373. 10.1016/0165-1161(95)90074-8PubMed Vega L, Gonsebatt ME, Ostrosky-Wegman P: Aneugenic effect of sodium arsenite on human lymphocytes in vitro: an individual susceptibility effect detected. Mutat Res. 1995, 334: 365-373. 10.1016/0165-1161(95)90074-8PubMed
58.
Zurück zum Zitat Vogt BL, Rossman TG: Effects of arsenite on p53, p21 and cyclin D expression in normal human fibroblasts — a possible mechanism for arsenite’s comutagenicity. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2001, 478: 159-168. 10.1016/S0027-5107(01)00137-3. 10.1016/S0027-5107(01)00137-3PubMed Vogt BL, Rossman TG: Effects of arsenite on p53, p21 and cyclin D expression in normal human fibroblasts — a possible mechanism for arsenite’s comutagenicity. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2001, 478: 159-168. 10.1016/S0027-5107(01)00137-3. 10.1016/S0027-5107(01)00137-3PubMed
59.
Zurück zum Zitat Tang F, Liu G, He Z, Ma WY, Bode AM, Dong Z: Arsenite inhibits p53 phosphorylation, DNA binding activity, and p53 target gene p21 expression in mouse epidermal JB6 cells. Mol Carcinog. 2006, 45: 861-870. 10.1002/mc.20245PubMed Tang F, Liu G, He Z, Ma WY, Bode AM, Dong Z: Arsenite inhibits p53 phosphorylation, DNA binding activity, and p53 target gene p21 expression in mouse epidermal JB6 cells. Mol Carcinog. 2006, 45: 861-870. 10.1002/mc.20245PubMed
60.
Zurück zum Zitat Huang Y, Zhang J, McHenry KT, Kim MM, Zeng W, Lopez-Pajares V, Dibble CC, Mizgerd JP, Yuan ZM: Induction of cytoplasmic accumulation of p53: a mechanism for low levels of arsenic exposure to predispose cells for malignant transformation. Cancer Res. 2008, 68: 9131-9136. 10.1158/0008-5472.CAN-08-3025PubMedCentralPubMed Huang Y, Zhang J, McHenry KT, Kim MM, Zeng W, Lopez-Pajares V, Dibble CC, Mizgerd JP, Yuan ZM: Induction of cytoplasmic accumulation of p53: a mechanism for low levels of arsenic exposure to predispose cells for malignant transformation. Cancer Res. 2008, 68: 9131-9136. 10.1158/0008-5472.CAN-08-3025PubMedCentralPubMed
61.
Zurück zum Zitat Komissarova EV, Rossman TG: Arsenite induced poly(ADP-ribosyl)ation of tumor suppressor P53 in human skin keratinocytes as a possible mechanism for carcinogenesis associated with arsenic exposure. Toxicol Appl Pharmacol. 2010, 243: 399-404. 10.1016/j.taap.2009.12.014PubMedCentralPubMed Komissarova EV, Rossman TG: Arsenite induced poly(ADP-ribosyl)ation of tumor suppressor P53 in human skin keratinocytes as a possible mechanism for carcinogenesis associated with arsenic exposure. Toxicol Appl Pharmacol. 2010, 243: 399-404. 10.1016/j.taap.2009.12.014PubMedCentralPubMed
62.
Zurück zum Zitat Qin XJ, Liu W, Li YN, Sun X, Hai CX, Hudson LG, Liu KJ: Poly(ADP-ribose) polymerase-1 inhibition by arsenite promotes the survival of cells with unrepaired DNA lesions induced by UV exposure. Toxicological sciences: an official journal of the Society of Toxicology. 2012, 127: 120-129. 10.1093/toxsci/kfs099 Qin XJ, Liu W, Li YN, Sun X, Hai CX, Hudson LG, Liu KJ: Poly(ADP-ribose) polymerase-1 inhibition by arsenite promotes the survival of cells with unrepaired DNA lesions induced by UV exposure. Toxicological sciences: an official journal of the Society of Toxicology. 2012, 127: 120-129. 10.1093/toxsci/kfs099
63.
Zurück zum Zitat Martinez VD, Buys TP, Adonis M, Benitez H, Gallegos I, Lam S, Lam WL, Gil L: Arsenic-related DNA copy-number alterations in lung squamous cell carcinomas. Br J Cancer. 2010, 103: 1277-1283. 10.1038/sj.bjc.6605879PubMedCentralPubMed Martinez VD, Buys TP, Adonis M, Benitez H, Gallegos I, Lam S, Lam WL, Gil L: Arsenic-related DNA copy-number alterations in lung squamous cell carcinomas. Br J Cancer. 2010, 103: 1277-1283. 10.1038/sj.bjc.6605879PubMedCentralPubMed
64.
Zurück zum Zitat Tonon G, Wong KK, Maulik G, Brennan C, Feng B, Zhang Y, Khatry DB, Protopopov A, You MJ, Aguirre AJ: High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci USA. 2005, 102: 9625-9630. 10.1073/pnas.0504126102PubMedCentralPubMed Tonon G, Wong KK, Maulik G, Brennan C, Feng B, Zhang Y, Khatry DB, Protopopov A, You MJ, Aguirre AJ: High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci USA. 2005, 102: 9625-9630. 10.1073/pnas.0504126102PubMedCentralPubMed
65.
Zurück zum Zitat Venkatesan RN, Treuting PM, Fuller ED, Goldsby RE, Norwood TH, Gooley TA, Ladiges WC, Preston BD, Loeb LA: Mutation at the polymerase active site of mouse DNA polymerase delta increases genomic instability and accelerates tumorigenesis. Mol Cell Biol. 2007, 27: 7669-7682. 10.1128/MCB.00002-07PubMedCentralPubMed Venkatesan RN, Treuting PM, Fuller ED, Goldsby RE, Norwood TH, Gooley TA, Ladiges WC, Preston BD, Loeb LA: Mutation at the polymerase active site of mouse DNA polymerase delta increases genomic instability and accelerates tumorigenesis. Mol Cell Biol. 2007, 27: 7669-7682. 10.1128/MCB.00002-07PubMedCentralPubMed
66.
Zurück zum Zitat Parsons JL, Preston BD, O'Connor TR, Dianov GL: DNA polymerase delta-dependent repair of DNA single strand breaks containing 3'-end proximal lesions. Nucleic Acids Res. 2007, 35: 1054-1063. 10.1093/nar/gkl1115PubMedCentralPubMed Parsons JL, Preston BD, O'Connor TR, Dianov GL: DNA polymerase delta-dependent repair of DNA single strand breaks containing 3'-end proximal lesions. Nucleic Acids Res. 2007, 35: 1054-1063. 10.1093/nar/gkl1115PubMedCentralPubMed
67.
Zurück zum Zitat Goldsby RE, Hays LE, Chen X, Olmsted EA, Slayton WB, Spangrude GJ, Preston BD: High incidence of epithelial cancers in mice deficient for DNA polymerase delta proofreading. Proc Natl Acad Sci USA. 2002, 99: 15560-15565. 10.1073/pnas.232340999PubMedCentralPubMed Goldsby RE, Hays LE, Chen X, Olmsted EA, Slayton WB, Spangrude GJ, Preston BD: High incidence of epithelial cancers in mice deficient for DNA polymerase delta proofreading. Proc Natl Acad Sci USA. 2002, 99: 15560-15565. 10.1073/pnas.232340999PubMedCentralPubMed
68.
Zurück zum Zitat Simeonova PP, Luster MI: Mechanisms of arsenic carcinogenicity: genetic or epigenetic mechanisms?. J Environ Pathol Toxicol Oncol. 2000, 19: 281-286.PubMed Simeonova PP, Luster MI: Mechanisms of arsenic carcinogenicity: genetic or epigenetic mechanisms?. J Environ Pathol Toxicol Oncol. 2000, 19: 281-286.PubMed
69.
Zurück zum Zitat Mazumder DN: Effect of chronic intake of arsenic-contaminated water on liver. Toxicol Appl Pharmacol. 2005, 206: 169-175. 10.1016/j.taap.2004.08.025PubMed Mazumder DN: Effect of chronic intake of arsenic-contaminated water on liver. Toxicol Appl Pharmacol. 2005, 206: 169-175. 10.1016/j.taap.2004.08.025PubMed
70.
Zurück zum Zitat Tseng CH, Chong CK, Chen CJ, Tai TY: Dose–response relationship between peripheral vascular disease and ingested inorganic arsenic among residents in blackfoot disease endemic villages in taiwan. Atherosclerosis. 1996, 120: 125-133. 10.1016/0021-9150(95)05693-9PubMed Tseng CH, Chong CK, Chen CJ, Tai TY: Dose–response relationship between peripheral vascular disease and ingested inorganic arsenic among residents in blackfoot disease endemic villages in taiwan. Atherosclerosis. 1996, 120: 125-133. 10.1016/0021-9150(95)05693-9PubMed
71.
Zurück zum Zitat Engel RR, Hopenhayn-Rich C, Receveur O, Smith AH: Vascular effects of chronic arsenic exposure: a review. Epidemiol Rev. 1994, 16: 184-209.PubMed Engel RR, Hopenhayn-Rich C, Receveur O, Smith AH: Vascular effects of chronic arsenic exposure: a review. Epidemiol Rev. 1994, 16: 184-209.PubMed
72.
Zurück zum Zitat Intarasunanont P, Navasumrit P, Woraprasit S, Chaisatra K, Suk WA, Mahidol C, Ruchirawat M: Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line. Environmental health: a global access science source. 2012, 11: 31- Intarasunanont P, Navasumrit P, Woraprasit S, Chaisatra K, Suk WA, Mahidol C, Ruchirawat M: Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line. Environmental health: a global access science source. 2012, 11: 31-
73.
Zurück zum Zitat Jensen TJ, Wozniak RJ, Eblin KE, Wnek SM, Gandolfi AJ, Futscher BW: Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation. Toxicol Appl Pharmacol. 2009, 235: 39-46. 10.1016/j.taap.2008.10.013PubMedCentralPubMed Jensen TJ, Wozniak RJ, Eblin KE, Wnek SM, Gandolfi AJ, Futscher BW: Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation. Toxicol Appl Pharmacol. 2009, 235: 39-46. 10.1016/j.taap.2008.10.013PubMedCentralPubMed
74.
Zurück zum Zitat Reichard JF, Puga A: Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics. 2010, 2: 87-104. 10.2217/epi.09.45PubMedCentralPubMed Reichard JF, Puga A: Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics. 2010, 2: 87-104. 10.2217/epi.09.45PubMedCentralPubMed
75.
Zurück zum Zitat Cui X, Wakai T, Shirai Y, Hatakeyama K, Hirano S: Chronic oral exposure to inorganic arsenate interferes with methylation status of p16INK4a and RASSF1A and induces lung cancer in a/J mice. Toxicological sciences: an official journal of the Society of Toxicology. 2006, 91: 372-381. 10.1093/toxsci/kfj159. 10.1093/toxsci/kfj159 Cui X, Wakai T, Shirai Y, Hatakeyama K, Hirano S: Chronic oral exposure to inorganic arsenate interferes with methylation status of p16INK4a and RASSF1A and induces lung cancer in a/J mice. Toxicological sciences: an official journal of the Society of Toxicology. 2006, 91: 372-381. 10.1093/toxsci/kfj159. 10.1093/toxsci/kfj159
76.
Zurück zum Zitat Marsit CJ, Eddy K, Kelsey KT: MicroRNA responses to cellular stress. Cancer Res. 2006, 66: 10843-10848. 10.1158/0008-5472.CAN-06-1894PubMed Marsit CJ, Eddy K, Kelsey KT: MicroRNA responses to cellular stress. Cancer Res. 2006, 66: 10843-10848. 10.1158/0008-5472.CAN-06-1894PubMed
77.
Zurück zum Zitat Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP: Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci USA. 1997, 94: 10907-10912. 10.1073/pnas.94.20.10907PubMedCentralPubMed Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP: Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci USA. 1997, 94: 10907-10912. 10.1073/pnas.94.20.10907PubMedCentralPubMed
78.
Zurück zum Zitat Mass MJ, Wang L: Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat Res. 1997, 386: 263-277. 10.1016/S1383-5742(97)00008-2PubMed Mass MJ, Wang L: Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat Res. 1997, 386: 263-277. 10.1016/S1383-5742(97)00008-2PubMed
79.
Zurück zum Zitat Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP: S-adenosylmethionine and methylation. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 1996, 10: 471-480. Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP: S-adenosylmethionine and methylation. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 1996, 10: 471-480.
80.
Zurück zum Zitat Jensen TJ, Novak P, Eblin KE, Gandolfi AJ, Futscher BW: Epigenetic remodeling during arsenical-induced malignant transformation. Carcinogenesis. 2008, 29: 1500-1508. 10.1093/carcin/bgn102PubMedCentralPubMed Jensen TJ, Novak P, Eblin KE, Gandolfi AJ, Futscher BW: Epigenetic remodeling during arsenical-induced malignant transformation. Carcinogenesis. 2008, 29: 1500-1508. 10.1093/carcin/bgn102PubMedCentralPubMed
81.
Zurück zum Zitat Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L: An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ Health Perspect. 2011, 119: 11-19.PubMedCentralPubMed Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L: An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ Health Perspect. 2011, 119: 11-19.PubMedCentralPubMed
82.
Zurück zum Zitat Salnikow K, Zhitkovich A: Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol. 2008, 21: 28-44. 10.1021/tx700198aPubMedCentralPubMed Salnikow K, Zhitkovich A: Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol. 2008, 21: 28-44. 10.1021/tx700198aPubMedCentralPubMed
83.
Zurück zum Zitat Loenen WA: S-adenosylmethionine: jack of all trades and master of everything?. Biochem Soc Trans. 2006, 34: 330-333.PubMed Loenen WA: S-adenosylmethionine: jack of all trades and master of everything?. Biochem Soc Trans. 2006, 34: 330-333.PubMed
84.
Zurück zum Zitat Chen WT, Hung WC, Kang WY, Huang YC, Chai CY: Urothelial carcinomas arising in arsenic-contaminated areas are associated with hypermethylation of the gene promoter of the death-associated protein kinase. Histopathology. 2007, 51: 785-792. 10.1111/j.1365-2559.2007.02871.xPubMed Chen WT, Hung WC, Kang WY, Huang YC, Chai CY: Urothelial carcinomas arising in arsenic-contaminated areas are associated with hypermethylation of the gene promoter of the death-associated protein kinase. Histopathology. 2007, 51: 785-792. 10.1111/j.1365-2559.2007.02871.xPubMed
85.
Zurück zum Zitat Chai CY, Huang YC, Hung WC, Kang WY, Chen WT: Arsenic salts induced autophagic cell death and hypermethylation of DAPK promoter in SV-40 immortalized human uroepithelial cells. Toxicol Lett. 2007, 173: 48-56. 10.1016/j.toxlet.2007.06.006PubMed Chai CY, Huang YC, Hung WC, Kang WY, Chen WT: Arsenic salts induced autophagic cell death and hypermethylation of DAPK promoter in SV-40 immortalized human uroepithelial cells. Toxicol Lett. 2007, 173: 48-56. 10.1016/j.toxlet.2007.06.006PubMed
86.
Zurück zum Zitat Vogt BL, Rossman TG: Effects of arsenite on p53, p21 and cyclin D expression in normal human fibroblasts – a possible mechanism for arsenite’s comutagenicity. Mutat Res. 2001, 478: 159-168. 10.1016/S0027-5107(01)00137-3PubMed Vogt BL, Rossman TG: Effects of arsenite on p53, p21 and cyclin D expression in normal human fibroblasts – a possible mechanism for arsenite’s comutagenicity. Mutat Res. 2001, 478: 159-168. 10.1016/S0027-5107(01)00137-3PubMed
87.
Zurück zum Zitat Ziech D, Franco R, Pappa A, Panayiotidis MI: Reactive oxygen species (ROS)–induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res. 2011, 711: 167-173. 10.1016/j.mrfmmm.2011.02.015PubMed Ziech D, Franco R, Pappa A, Panayiotidis MI: Reactive oxygen species (ROS)–induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res. 2011, 711: 167-173. 10.1016/j.mrfmmm.2011.02.015PubMed
88.
Zurück zum Zitat Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, Das S, Ghosh N, Chatterjee D: DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicological sciences: an official journal of the Society of Toxicology. 2006, 89: 431-437. 10.1093/toxsci/kfj030. 10.1093/toxsci/kfj030 Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, Das S, Ghosh N, Chatterjee D: DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicological sciences: an official journal of the Society of Toxicology. 2006, 89: 431-437. 10.1093/toxsci/kfj030. 10.1093/toxsci/kfj030
89.
Zurück zum Zitat Jo WJ, Ren X, Chu F, Aleshin M, Wintz H, Burlingame A, Smith MT, Vulpe CD, Zhang L: Acetylated H4K16 by MYST1 protects UROtsa cells from arsenic toxicity and is decreased following chronic arsenic exposure. Toxicol Appl Pharmacol. 2009, 241: 294-302. 10.1016/j.taap.2009.08.027PubMedCentralPubMed Jo WJ, Ren X, Chu F, Aleshin M, Wintz H, Burlingame A, Smith MT, Vulpe CD, Zhang L: Acetylated H4K16 by MYST1 protects UROtsa cells from arsenic toxicity and is decreased following chronic arsenic exposure. Toxicol Appl Pharmacol. 2009, 241: 294-302. 10.1016/j.taap.2009.08.027PubMedCentralPubMed
90.
Zurück zum Zitat Zhou X, Sun H, Ellen TP, Chen H, Costa M: Arsenite alters global histone H3 methylation. Carcinogenesis. 2008, 29: 1831-1836. 10.1093/carcin/bgn063PubMedCentralPubMed Zhou X, Sun H, Ellen TP, Chen H, Costa M: Arsenite alters global histone H3 methylation. Carcinogenesis. 2008, 29: 1831-1836. 10.1093/carcin/bgn063PubMedCentralPubMed
91.
Zurück zum Zitat Wang Z, Zhao Y, Smith E, Goodall GJ, Drew PA, Brabletz T, Yang C: Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b. Toxicological sciences: an official journal of the Society of Toxicology. 2011, 121: 110-122. 10.1093/toxsci/kfr029 Wang Z, Zhao Y, Smith E, Goodall GJ, Drew PA, Brabletz T, Yang C: Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b. Toxicological sciences: an official journal of the Society of Toxicology. 2011, 121: 110-122. 10.1093/toxsci/kfr029
92.
Zurück zum Zitat Cui Y, Han Z, Hu Y, Song G, Hao C, Xia H, Ma X: MicroRNA-181b and microRNA-9 mediate arsenic-induced angiogenesis via NRP1. J Cell Physiol. 2012, 227: 772-783. 10.1002/jcp.22789PubMed Cui Y, Han Z, Hu Y, Song G, Hao C, Xia H, Ma X: MicroRNA-181b and microRNA-9 mediate arsenic-induced angiogenesis via NRP1. J Cell Physiol. 2012, 227: 772-783. 10.1002/jcp.22789PubMed
93.
Zurück zum Zitat Yarden Y, Sliwkowski MX: Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001, 2: 127-137. 10.1038/35052073PubMed Yarden Y, Sliwkowski MX: Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001, 2: 127-137. 10.1038/35052073PubMed
94.
Zurück zum Zitat Andrew AS, Mason RA, Memoli V, Duell EJ: Arsenic activates EGFR pathway signaling in the lung. Toxicological sciences: an official journal of the Society of Toxicology. 2009, 109: 350-357. 10.1093/toxsci/kfp015 Andrew AS, Mason RA, Memoli V, Duell EJ: Arsenic activates EGFR pathway signaling in the lung. Toxicological sciences: an official journal of the Society of Toxicology. 2009, 109: 350-357. 10.1093/toxsci/kfp015
95.
Zurück zum Zitat Sung TI, Wang YJ, Chen CY, Hung TL, Guo HR: Increased serum level of epidermal growth factor receptor in liver cancer patients and its association with exposure to arsenic. Sci Total Environ. 2012, 424: 74-78.PubMed Sung TI, Wang YJ, Chen CY, Hung TL, Guo HR: Increased serum level of epidermal growth factor receptor in liver cancer patients and its association with exposure to arsenic. Sci Total Environ. 2012, 424: 74-78.PubMed
96.
Zurück zum Zitat Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ: c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem. 1999, 274: 8335-8343. 10.1074/jbc.274.12.8335PubMed Biscardi JS, Maa MC, Tice DA, Cox ME, Leu TH, Parsons SJ: c-Src-mediated phosphorylation of the epidermal growth factor receptor on Tyr845 and Tyr1101 is associated with modulation of receptor function. J Biol Chem. 1999, 274: 8335-8343. 10.1074/jbc.274.12.8335PubMed
97.
Zurück zum Zitat Tice DA, Biscardi JS, Nickles AL, Parsons SJ: Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci USA. 1999, 96: 1415-1420. 10.1073/pnas.96.4.1415PubMedCentralPubMed Tice DA, Biscardi JS, Nickles AL, Parsons SJ: Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci USA. 1999, 96: 1415-1420. 10.1073/pnas.96.4.1415PubMedCentralPubMed
98.
Zurück zum Zitat Simeonova PP, Luster MI: Arsenic carcinogenicity: relevance of c-Src activation. Mol Cell Biochem. 2002, 234–235: 277-282.PubMed Simeonova PP, Luster MI: Arsenic carcinogenicity: relevance of c-Src activation. Mol Cell Biochem. 2002, 234–235: 277-282.PubMed
99.
Zurück zum Zitat Li G, Lee LS, Li M, Tsao SW, Chiu JF: Molecular changes during arsenic-induced cell transformation. J Cell Physiol. 2011, 226: 3225-3232. 10.1002/jcp.22683PubMed Li G, Lee LS, Li M, Tsao SW, Chiu JF: Molecular changes during arsenic-induced cell transformation. J Cell Physiol. 2011, 226: 3225-3232. 10.1002/jcp.22683PubMed
100.
Zurück zum Zitat Liu LZ, Jiang Y, Carpenter RL, Jing Y, Peiper SC, Jiang BH: Role and mechanism of arsenic in regulating angiogenesis. PLoS One. 2011, 6: e20858- 10.1371/journal.pone.0020858PubMedCentralPubMed Liu LZ, Jiang Y, Carpenter RL, Jing Y, Peiper SC, Jiang BH: Role and mechanism of arsenic in regulating angiogenesis. PLoS One. 2011, 6: e20858- 10.1371/journal.pone.0020858PubMedCentralPubMed
101.
Zurück zum Zitat Cheng HY, Li P, David M, Smithgall TE, Feng L, Lieberman MW: Arsenic inhibition of the JAK-STAT pathway. Oncogene. 2004, 23: 3603-3612. 10.1038/sj.onc.1207466PubMed Cheng HY, Li P, David M, Smithgall TE, Feng L, Lieberman MW: Arsenic inhibition of the JAK-STAT pathway. Oncogene. 2004, 23: 3603-3612. 10.1038/sj.onc.1207466PubMed
102.
Zurück zum Zitat Liu J, Chen B, Lu Y, Guan Y, Chen F: JNK-dependent Stat3 phosphorylation contributes to Akt activation in response to arsenic exposure. Toxicological sciences: an official journal of the Society of Toxicology. 2012, 129: 363-371. 10.1093/toxsci/kfs199 Liu J, Chen B, Lu Y, Guan Y, Chen F: JNK-dependent Stat3 phosphorylation contributes to Akt activation in response to arsenic exposure. Toxicological sciences: an official journal of the Society of Toxicology. 2012, 129: 363-371. 10.1093/toxsci/kfs199
103.
Zurück zum Zitat Herbert KJ, Snow ET: Modulation of arsenic-induced epidermal growth factor receptor pathway signalling by resveratrol. Chem Biol Interact. 2012, 198: 38-48. 10.1016/j.cbi.2012.05.004PubMed Herbert KJ, Snow ET: Modulation of arsenic-induced epidermal growth factor receptor pathway signalling by resveratrol. Chem Biol Interact. 2012, 198: 38-48. 10.1016/j.cbi.2012.05.004PubMed
104.
Zurück zum Zitat Verma A, Mohindru M, Deb DK, Sassano A, Kambhampati S, Ravandi F, Minucci S, Kalvakolanu DV, Platanias LC: Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to arsenic trioxide. J Biol Chem. 2002, 277: 44988-44995. 10.1074/jbc.M207176200PubMed Verma A, Mohindru M, Deb DK, Sassano A, Kambhampati S, Ravandi F, Minucci S, Kalvakolanu DV, Platanias LC: Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to arsenic trioxide. J Biol Chem. 2002, 277: 44988-44995. 10.1074/jbc.M207176200PubMed
105.
Zurück zum Zitat Cheng L, Alexander RE, Maclennan GT, Cummings OW, Montironi R, Lopez-Beltran A, Cramer HM, Davidson DD, Zhang S: Molecular pathology of lung cancer: key to personalized medicine. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc. 2012, 25: 347-369. 10.1038/modpathol.2011.215 Cheng L, Alexander RE, Maclennan GT, Cummings OW, Montironi R, Lopez-Beltran A, Cramer HM, Davidson DD, Zhang S: Molecular pathology of lung cancer: key to personalized medicine. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc. 2012, 25: 347-369. 10.1038/modpathol.2011.215
106.
Zurück zum Zitat Papadimitrakopoulou V: Development of PI3K/AKT/mTOR pathway inhibitors and their application in personalized therapy for non-small-cell lung cancer. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2012, 7: 1315-1326. 10.1097/JTO.0b013e31825493eb Papadimitrakopoulou V: Development of PI3K/AKT/mTOR pathway inhibitors and their application in personalized therapy for non-small-cell lung cancer. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2012, 7: 1315-1326. 10.1097/JTO.0b013e31825493eb
107.
Zurück zum Zitat Stueckle TA, Lu Y, Davis ME, Wang L, Jiang BH, Holaskova I, Schafer R, Barnett JB, Rojanasakul Y: Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol. 2012, 261: 204-216. 10.1016/j.taap.2012.04.003PubMedCentralPubMed Stueckle TA, Lu Y, Davis ME, Wang L, Jiang BH, Holaskova I, Schafer R, Barnett JB, Rojanasakul Y: Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol. 2012, 261: 204-216. 10.1016/j.taap.2012.04.003PubMedCentralPubMed
108.
Zurück zum Zitat Gao N, Shen L, Zhang Z, Leonard SS, He H, Zhang XG, Shi X, Jiang BH: Arsenite induces HIF-1alpha and VEGF through PI3K, Akt and reactive oxygen species in DU145 human prostate carcinoma cells. Mol Cell Biochem. 2004, 255: 33-45.PubMed Gao N, Shen L, Zhang Z, Leonard SS, He H, Zhang XG, Shi X, Jiang BH: Arsenite induces HIF-1alpha and VEGF through PI3K, Akt and reactive oxygen species in DU145 human prostate carcinoma cells. Mol Cell Biochem. 2004, 255: 33-45.PubMed
109.
Zurück zum Zitat Dong Z: The molecular mechanisms of arsenic-induced cell transformation and apoptosis. Environ Health Perspect. 2002, 110 Suppl 5: 757-759.PubMed Dong Z: The molecular mechanisms of arsenic-induced cell transformation and apoptosis. Environ Health Perspect. 2002, 110 Suppl 5: 757-759.PubMed
110.
Zurück zum Zitat Chen B, Liu J, Chang Q, Beezhold K, Lu Y, Chen F: JNK and STAT3 signaling pathways converge on Akt-mediated phosphorylation of EZH2 in bronchial epithelial cells induced by arsenic. Cell Cycle. 2012, 12: Chen B, Liu J, Chang Q, Beezhold K, Lu Y, Chen F: JNK and STAT3 signaling pathways converge on Akt-mediated phosphorylation of EZH2 in bronchial epithelial cells induced by arsenic. Cell Cycle. 2012, 12:
111.
Zurück zum Zitat Beezhold K, Liu J, Kan H, Meighan T, Castranova V, Shi X, Chen F: miR-190-mediated downregulation of PHLPP contributes to arsenic-induced Akt activation and carcinogenesis. Toxicological sciences: an official journal of the Society of Toxicology. 2011, 123: 411-420. 10.1093/toxsci/kfr188. 10.1093/toxsci/kfr188 Beezhold K, Liu J, Kan H, Meighan T, Castranova V, Shi X, Chen F: miR-190-mediated downregulation of PHLPP contributes to arsenic-induced Akt activation and carcinogenesis. Toxicological sciences: an official journal of the Society of Toxicology. 2011, 123: 411-420. 10.1093/toxsci/kfr188. 10.1093/toxsci/kfr188
112.
Zurück zum Zitat Wang Z, Yang J, Fisher T, Xiao H, Jiang Y, Yang C: Akt activation is responsible for enhanced migratory and invasive behavior of arsenic-transformed human bronchial epithelial cells. Environ Health Perspect. 2012, 120: 92-97.PubMedCentralPubMed Wang Z, Yang J, Fisher T, Xiao H, Jiang Y, Yang C: Akt activation is responsible for enhanced migratory and invasive behavior of arsenic-transformed human bronchial epithelial cells. Environ Health Perspect. 2012, 120: 92-97.PubMedCentralPubMed
113.
Zurück zum Zitat Zhang Y, Bhatia D, Xia H, Castranova V, Shi X, Chen F: Nucleolin links to arsenic-induced stabilization of GADD45alpha mRNA. Nucleic Acids Res. 2006, 34: 485-495. 10.1093/nar/gkj459PubMedCentralPubMed Zhang Y, Bhatia D, Xia H, Castranova V, Shi X, Chen F: Nucleolin links to arsenic-induced stabilization of GADD45alpha mRNA. Nucleic Acids Res. 2006, 34: 485-495. 10.1093/nar/gkj459PubMedCentralPubMed
114.
Zurück zum Zitat Tokar EJ, Diwan BA, Waalkes MP: Arsenic exposure transforms human epithelial stem/progenitor cells into a cancer stem-like phenotype. Environ Health Perspect. 2010, 118: 108-115.PubMedCentralPubMed Tokar EJ, Diwan BA, Waalkes MP: Arsenic exposure transforms human epithelial stem/progenitor cells into a cancer stem-like phenotype. Environ Health Perspect. 2010, 118: 108-115.PubMedCentralPubMed
115.
Zurück zum Zitat Ling M, Li Y, Xu Y, Pang Y, Shen L, Jiang R, Zhao Y, Yang X, Zhang J, Zhou J: Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-kappaB in arsenite-induced cell transformation. Free Radic Biol Med. 2012, 52: 1508-1518. 10.1016/j.freeradbiomed.2012.02.020PubMed Ling M, Li Y, Xu Y, Pang Y, Shen L, Jiang R, Zhao Y, Yang X, Zhang J, Zhou J: Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-kappaB in arsenite-induced cell transformation. Free Radic Biol Med. 2012, 52: 1508-1518. 10.1016/j.freeradbiomed.2012.02.020PubMed
116.
Zurück zum Zitat Zhang DD: Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev. 2006, 38: 769-789. 10.1080/03602530600971974PubMed Zhang DD: Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev. 2006, 38: 769-789. 10.1080/03602530600971974PubMed
117.
Zurück zum Zitat Thu KL, Pikor LA, Chari R, Wilson IM, Macaulay CE, English JC, Tsao MS, Gazdar AF, Lam S, Lam WL, Lockwood WW: Genetic disruption of KEAP1/CUL3 E3 ubiquitin ligase complex components is a key mechanism of NF-kappaB pathway activation in lung cancer. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2011, 6: 1521-1529. 10.1097/JTO.0b013e3182289479 Thu KL, Pikor LA, Chari R, Wilson IM, Macaulay CE, English JC, Tsao MS, Gazdar AF, Lam S, Lam WL, Lockwood WW: Genetic disruption of KEAP1/CUL3 E3 ubiquitin ligase complex components is a key mechanism of NF-kappaB pathway activation in lung cancer. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2011, 6: 1521-1529. 10.1097/JTO.0b013e3182289479
118.
Zurück zum Zitat Wang XJ, Sun Z, Chen W, Eblin KE, Gandolfi JA, Zhang DD: Nrf2 Protects human bladder urothelial cells from arsenite and monomethylarsonous acid toxicity. Toxicol Appl Pharmacol. 2007, 225: 206-213. 10.1016/j.taap.2007.07.016PubMedCentralPubMed Wang XJ, Sun Z, Chen W, Eblin KE, Gandolfi JA, Zhang DD: Nrf2 Protects human bladder urothelial cells from arsenite and monomethylarsonous acid toxicity. Toxicol Appl Pharmacol. 2007, 225: 206-213. 10.1016/j.taap.2007.07.016PubMedCentralPubMed
119.
Zurück zum Zitat Zheng Y, Tao S, Lian F, Chau BT, Chen J, Sun G, Fang D, Lantz RC, Zhang DD: Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response. Toxicol Appl Pharmacol. 2012, 265: 292-299. 10.1016/j.taap.2012.08.028PubMedCentralPubMed Zheng Y, Tao S, Lian F, Chau BT, Chen J, Sun G, Fang D, Lantz RC, Zhang DD: Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response. Toxicol Appl Pharmacol. 2012, 265: 292-299. 10.1016/j.taap.2012.08.028PubMedCentralPubMed
120.
Zurück zum Zitat Andujar P, Wang J, Descatha A, Galateau-Salle F, Abd-Alsamad I, Billon-Galland MA, Blons H, Clin B, Danel C, Housset B: p16INK4A Inactivation mechanisms in non-small-cell lung cancer patients occupationally exposed to asbestos. Lung Cancer. 2010, 67: 23-30. 10.1016/j.lungcan.2009.03.018PubMed Andujar P, Wang J, Descatha A, Galateau-Salle F, Abd-Alsamad I, Billon-Galland MA, Blons H, Clin B, Danel C, Housset B: p16INK4A Inactivation mechanisms in non-small-cell lung cancer patients occupationally exposed to asbestos. Lung Cancer. 2010, 67: 23-30. 10.1016/j.lungcan.2009.03.018PubMed
121.
Zurück zum Zitat Wang XJ, Sun Z, Chen W, Li Y, Villeneuve NF, Zhang DD: Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1-Cul3 interaction. Toxicol Appl Pharmacol. 2008, 230: 383-389. 10.1016/j.taap.2008.03.003PubMedCentralPubMed Wang XJ, Sun Z, Chen W, Li Y, Villeneuve NF, Zhang DD: Activation of Nrf2 by arsenite and monomethylarsonous acid is independent of Keap1-C151: enhanced Keap1-Cul3 interaction. Toxicol Appl Pharmacol. 2008, 230: 383-389. 10.1016/j.taap.2008.03.003PubMedCentralPubMed
122.
Zurück zum Zitat American Cancer Society: Cancer facts & figures 2012. Book cancer facts & figures 2012. 2012, Atlanta: American Cancer Society American Cancer Society: Cancer facts & figures 2012. Book cancer facts & figures 2012. 2012, Atlanta: American Cancer Society
Metadaten
Titel
Molecular features in arsenic-induced lung tumors
verfasst von
Roland Hubaux
Daiana D Becker-Santos
Katey SS Enfield
David Rowbotham
Stephen Lam
Wan L Lam
Victor D Martinez
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2013
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-20

Weitere Artikel der Ausgabe 1/2013

Molecular Cancer 1/2013 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.