Skip to main content
Erschienen in: BMC Medicine 1/2014

Open Access 01.12.2014 | Research article

An exploration of the dynamic longitudinal relationship between mental health and alcohol consumption: a prospective cohort study

verfasst von: Steven Bell, Annie Britton

Erschienen in: BMC Medicine | Ausgabe 1/2014

Abstract

Background

Despite intense investigation, the temporal sequence between alcohol consumption and mental health remains unclear. This study explored the relationship between alcohol consumption and mental health over multiple occasions, and compared a series of competing theoretical models to determine which best reflected the association between the two.

Methods

Data from phases 5 (1997 to 1999), 7 (2002 to 2004), and 9 (2007 to 2009) of the Whitehall II prospective cohort study were used, providing approximately 10 years of follow-up for 6,330 participants (73% men; mean ± SD age 55.8 ± 6.0 years). Mental health was assessed using the Short Form (SF)-36 mental health component score. Alcohol consumption was defined as the number of UK units of alcohol drunk per week. Four dynamic latent change score models were compared: 1) a baseline model in which alcohol consumption and mental health trajectories did not influence each other, 2) and model in which alcohol consumption influenced changes in mental health but mental health exerted no effect on changes in drinking and 3) vice versa, and (4) a reciprocal model in which both variables influenced changes in each other.

Results

The third model, in which mental health influenced changes in alcohol consumption but not vice versa, was the best fit. In this model, the effect of previous mental health on upcoming change in alcohol consumption was negative (γ = -0.31, 95% CI -0.52 to -0.10), meaning that those with better mental health tended to make greater reductions (or shallower increases) in their drinking between occasions.

Conclusions

Mental health appears to be the leading indicator of change in the dynamic longitudinal relationship between mental health and weekly alcohol consumption in this sample of middle-aged adults. In addition to fuelling increases in alcohol consumption among low-level consumers, poor mental health may also be a maintaining factor for heavy alcohol consumption. Future work should seek to examine whether there are critical levels of alcohol intake at which different dynamic relationships begin to emerge between alcohol-related measures and mental health.

Background

Alcohol consumption [1, 2] and mental health [35] are two of the biggest public health issues facing modern society. The relationship between alcohol consumption and mental health has been documented extensively [613], and there have been several ways proposed as to how the relationship may operate [14]. Plausible biological mechanisms for hazardous alcohol consumption leading to depression include alcohol reducing white and gray matter volumes, as well as influencing neurotransmitter functioning [15]. Changes in white and gray matter volume [16, 17], and the microstructure of nerve fibers [18] are thought to be related to major depression, while the dysregulation of GABAergic [19, 20], dopaminergic [21], and serotonergic [22, 23] systems are widely supported hypotheses in the etiology of depression. Hazardous alcohol consumption can create tension in home/work environments [24], which may exacerbate marital disputes [25], lead to job loss [26], and result in other stressful scenarios, which in turn can lead to poor mental health. Clinical studies have also demonstrated that individuals treated for alcohol dependence show marked decreases in symptoms of poor mental health following a period of abstinence [27] suggesting that alcohol may be the primary causal factor. Theoretical explanations for poor mental health influencing alcohol intake include the use of alcohol as a coping mechanism for tension and depression/anxiety [2832]. A meta-analysis of literature around the 'self-medication' hypothesis found that depression can lead to increased alcohol consumption, and then progression to alcohol-use disorders [33].
The current evidence base is mixed; some authors have found that the driving force is alcohol, while others have concluded that it is mental health. It is also hypothesized that dynamic feedback cycles contribute to the escalation of alcohol consumption and worsening mental health [34]; that is, people may become depressed or anxious and turn to alcohol, which causes them to become more depressed or anxious, which eventually fuels further drinking, or the reverse may occur, with drinking leading to symptoms of anxiety or depression, which encourage further drinking. Yet, few studies have empirically tested this theory and those that have are limited by the methods used to try to capture the dynamic interplay between both variables over time [35] (e.g. not taking into account repeated measures of both variables in the same model). Using repeated longitudinal data on both alcohol consumption and mental health symptoms would allow for hypotheses of leading indicators of change (that is, alcohol consumption driving changes in mental health, or vice versa) as well as reciprocal relationships to be tested. Understanding the temporal sequence of the relationship between the two processes over time is important to public health because it will allow for interventions/prevention strategies to be tailored more effectively.
Furthermore, studies on alcohol consumption and mental health have mostly been concerned with the comorbid relationship between clinical disorders [10], not on sub-syndrome symptoms of mental health (that is. pre-clinical manifestations), which make up a greater proportion of the overall burden of mental health [36] or on the drinking habits of the general population. Previous studies have also tended to focus on the transition or maintenance of a clinical state or binary 'heavy drinker' or 'symptoms of mental health problems' [37, 9]. As the trajectory from disease free to clinical disorder is not as simple as moving from one state to another but is instead characterized by an escalation of symptoms and behaviors, it might be argued that other studies have failed to effectively capture the 'true' longitudinal relationship between mental health and alcohol consumption. Knowing how the relationship between alcohol consumption and mental health operates prior to the development of clinical disorders would allow for primary prevention strategies to be targeted more effectively.
The purpose of this study was therefore to address these limitations by exploring the longitudinal relationship between alcohol consumption and mental health symptoms jointly over multiple occasions in a general population setting, and to compare several competing theoretical models to determine which best reflected the association between these two factors.

Materials and methods

The Whitehall II study

The Whitehall II prospective cohort study started with a sample of 10,308 British civil servants (6,895 men and 3,413 women), who were aged 34 to 56 years at entry into the study (1985 to 88) [38]. The current investigation uses of data from three clinical phases: 5 (1997 to 1999; referred to hereafter as 'baseline'), 7 (2002 to 2004) and 9 (2007 to 2009). At baseline, the total number of eligible participants was 7,870. Those who had not consumed alcohol in the year before baseline and additionally those with missing values for either alcohol consumption or mental health variables at baseline were excluded from the analytic sample (n = 548 and n = 1,036 respectively; categories were not mutually exclusive). This provided approximately 10 years of follow-up information for 6,330 participants who had consumed alcohol in the year before baseline.
The University College London Medical School Committee on the ethics of human research approved the Whitehall II study.

Assessment of alcohol consumption

Participants were asked to report the number of drinks they had consumed in the previous week, quoting separately for beer/cider (pints), wine (glasses), and spirits (measures). Drinks were converted into UK units of alcohol (one unit is equivalent to 8 g of ethanol) using a conservative estimate of one UK unit for each measure of spirits and glass of wine, and two UK units for each pint of beer. These converted measurements were then summed to define the total weekly number of UK units consumed.

Assessment of mental health

Mental health (combining symptoms of depression and anxiety) was assessed using the mental health component score [39, 40] (MCS) of the Short Form (SF)-36 questionnaire [41]. The SF-36 refers to symptoms experienced in the previous 4 weeks. The MCS has been validated using UK data sources [42], and reliability estimates typically exceed values of 0.90 for Cronbach’s α [39]. The MCS uses a scale of 0 to 100, with higher scores indicating better functioning.

Covariates

Adjustment was made for several baseline covariates, including age, sex, ethnicity, socioeconomic status, marital status, highest educational qualification, economic activity, social network [43], smoking status, level of physical activity [44]. and use of anti-depressant medication. Problematic alcohol consumption (defined by the CAGE questionnaire [45]) was used to adjust for the possibility that problem drinking may be driving any observed relationship [46].
Poor physical health could influence both alcohol consumption [47, 48] and mental health [49] trajectories. Therefore, general physical health was accounted for by adjusting for several chronic conditions. A combination of self-report and validated clinical health events [50] were included, such as self-reported long-standing physical illness and belonging to the lowest sex-specific SF-36 physical health component quartile [51], as well as known diabetes mellitus, coronary heart disease (CHD), stroke, transient ischemic attack (TIA), total serum cholesterol, systolic and diastolic blood pressure, resting heart rate over 80 beats/min [52], and body mass index (BMI).

Statistical analysis

Bivariate latent change score (LCS) models [35, 5357] were used to explore the dominant temporal sequence in the longitudinal relationship between alcohol consumption and mental health symptoms. LCS models are an extension of standard growth curve models [58] (also referred to as random effects models) and acknowledge that repeated measures on the same individual are correlated. A general overview of the underlying assumptions and specification of LCS models are presented (see Additional file 1), but a comprehensive outline of the mathematical and statistical properties [55, 57], as well as a comparison of LCS models with other multivariate longitudinal models [35] can be found elsewhere.
Briefly, there are three primary parameters of interest: 1) the slope parameter (α), which refers to the additive sum of changes during follow-up; 2) the autoproportional parameter (β), which refers to the lagged effect of a variable on an upcoming change in itself (self-feedback); and 3) the coupling parameter (γ), which describes the lagged effect of one variable on the upcoming change in the alternate variable.
Both the intercept and the slope were fitted as random effects, allowing for them to vary between individuals. Intercepts and slopes (as well as their random effects) were correlated (ρ) both within a single process (for example, the alcohol consumption intercept with the alcohol slope) and between processes (for example, the mental health intercept with the alcohol slope). Intercepts and slopes were estimated conditional on the baseline covariates described above.
Four separate models were estimated: 1) no coupling (baseline) model; 2) alcohol consumption producing change in mental health model; 3) mental health producing change in alcohol consumption model; and 4) dynamic/reciprocal change model. Nested models were compared to determine the best-fitting model (that is, to justify the inclusion of either or both coupling parameters over a baseline model that did not contain them) using a χ2 difference test.
The relative fit of the hypothesized models compared with the observed data was assessed using the Tucker–Lewis index (TLI), the comparative fit index (CFI), and the root mean squared error of approximation (RMSEA). Cut-off values close to 0.95 were used to determine a good fit for TLI and CFI, while a cut-off value close to 0.06 was used for RMSEA [59].
Models were estimated in Mplus v6.12 [60] using the full information maximum likelihood (FIML) estimator [61]. An α level of 0.05 was considered statistically significant for all analyses.

Results

Sample composition

Table 1 displays descriptive statistics for the complete analytic sample (based on observed information only). The mean age of participants was 56 years, over 70% were male, and approximately 6% were non-white. Most were of high to intermediate socioeconomic status, almost four-fifths were married or cohabiting, over 60% had post-secondary or university level qualifications, and around 65 were economically active. Almost 11% were current smokers, 11% were identified as problem drinkers, and 70% were physically active. In terms of physical health, 6% of the sample had known CHD, 4% had known diabetes mellitus, 0.5% had experienced a stroke, 0.7% had experienced a TIA, almost 3% were currently being prescribed anti-depressant medication, and approximately half reported a long-standing illness.At baseline, participants consumed on average 14.5 UK units of alcohol per week, and this figure had reduced to 11 UK units by the end of follow-up. Mental health scores started at an average of 51 and increased to 54 (a random selection of observed (A) mental health and (B) alcohol consumption trajectories are displayed in Figure 1).
Table 1
Sample characteristics
 
n
% or mean ± SD
MCS
  
 Phase 5
6,330
51.1 ± 9.4
 Phase 7
5,436
52.4 ± 8.8
 Phase 9
5,195
53.8 ± 8.0
UK units of alcohol
  
 Phase 5
6,330
14.6 ± 15.2
 Phase 7
5,508
13.0 ± 13.0
 Phase 9
5,215
11.1 ± 11.3
Age, years
6,330
55.8 ± 6.0
Sex
  
 Male
4,594
72.6
 Female
1,736
27.4
 Total
6,330
 
Ethnicity
  
 White
5,966
94.25
 Non-white
364
5.75
 Total
6,330
 
SES
  
 High
2,852
45.3
 Intermediate
2,731
43.4
 Low
713
11.3
 Total
6,296
 
Marital status
  
 Married/cohabiting
4,861
79.6
 Other
1,248
20.4
 Total
6,109
 
Education
  
 University
2,176
36.4
 Post-secondary
1,648
27.5
 Secondary
1,558
26.0
 No qualifications
604
10.1
 Total
5,986
 
Economic activity
  
 Active
4,123
65.2
 Inactive
2,203
34.8
 Total
6,326
 
Current smoker
  
 No
5,539
89.4
 Yes
654
10.6
 Total
6,193
 
Problem drinking (CAGE case)
  
 No
5,531
89.0
 Yes
684
11.0
 Total
6,215
 
Physical activity
  
 Active
3,405
54.16
 Moderately active
1,057
16.78
 Inactive
1,837
29.16
 Total
6,299
 
Network score
6,053
7.3 ± 3.0
CHD
  
 No
5,948
94.0
 Yes
382
6.0
 Total
6,330
 
Known diabetes
  
 No
6,076
96.0
 Yes
254
4.0
 Total
6,330
 
Anti-depressant medication
  
 No
6,149
97.3
 Yes
171
2.7
 Total
6,320
 
Poor self-reported physical health
  
 No
4,821
76.2
 Yes
1,509
23.8
 Total
6,330
 
Long-standing illness
  
 No
3,248
51.4
 Yes
3,075
48.6
 Total
6,323
 
Stroke
  
 No
6,301
99.5
 Yes
29
0.5
 Total
6,330
 
TIA
  
 No
6,287
99.3
 Yes
43
0.7
 Total
6,330
 
Resting heart rate > 80 bpm
  
 No
4,969
88.15
 Yes
668
11.85
 Total
5,637
 
BMI
4,916
26.1 ± 3.9
Serum cholesterol, mmol/l
5,622
5.9 ± 1.1
Blood pressure, mmHg
  
 Systolic
5,669
123.1 ± 16.4
 Diastolic
5,669
77.6 ± 10.6
BMI, body mass index; bpm, beats per minute; CHD, coronary heart disease; MCS, mental health component score; SES, socioeconomic status; TIA, transient ischemic attack.

Regression estimates

Indices related to model fit and statistics concerning model comparison are shown in Table 2. All models specified were well fitting according to commonly accepted thresholds of model fit as outlined above [59]. Detailed estimates for the best-fitting model are presented in Table 3,while only the fixed effect parameters are presented for other models specified in Table 4 (random effects for these models can be found in Additional file 2: Table S2A).
Table 2
Model fit indices and comparison of LCS models for total weekly alcohol consumption and mental health in the Whitehall II study
 
Baseline
Alcohol → ΔMCS
MCS → Δalcohol
Reciprocal
Age and sex adjusted
 Fit statistics
 Log likelihood
-146158.161
-146158.041
-146155.151
-146154.760
 χ2 (df)
274.233 (12)
273.995 (11)
268.214 (11)
267.432 (10)
 RMSEA
0.059
0.061
0.061
0.064
 AIC
292380.321
292382.083
292376.302
292377.520
 SSA BIC
292494.731
292500.068
292494.288
292499.081
 CFI
0.982
0.982
0.982
0.982
 TLI
0.959
0.955
0.956
0.952
 Model comparison (difference in χ2 fit (df))
 Versus baseline
0.238 (1), P = 0.63
6.019 (1), P = 0.01
6.801 (2), P = 0.03
 Versus previous best
0.782 (1), P = 0.38
Fully adjusted
 Fit statistics
 Log likelihood
-243989.314
-243989.108
-243985.355
-243984.851
 χ2 (df)
328.239 (54)
327.827 (53)
320.320 (53)
319.312 (52)
 RMSEA
0.028
0.029
0.028
0.028
 AIC
488798.629
488800.217
488792.710
488793.702
 SSA BIC
490264.509
490269.672
490262.165
490266.732
 CFI
0.983
0.983
0.984
0.984
 TLI
0.952
0.951
0.953
0.952
 Model comparison (difference in χ2 fit (df))
 Versus baseline
0.412 (1), P = 0.52
7.919 (1), P < 0.01
8.927 (2), P < 0.01
 Versus previous best
1.008 (1), P = 0.32
AIC, Akaike information criterion; CFI, comparative fit index; df, degrees of freedom; LCS, latent change score; MCS, mental health component score; RMSEA, root mean square error of approximation; SSA BIC, sample size adjusted Bayesian information criterion; TLI, Tucker-Lewis index.
Table 3
Parameter estimates (95% confidence intervals) for the best-fitting LCS model of weekly alcohol consumption and mental health symptoms in the Whitehall II study a (MCS → Δalcohol model)
MCS → Δ alcohol model
Age and sex adjusted
Fully adjustedb
Alcohol
MCS
Alcohol
MCS
Fixed effects
    
 Intercept
17.11 (16.69 to 17.53)
51.54*** (51.28 to 51.79)
17.58 (16.64 to18.52)
53.41*** (52.81 to 54.00)
 Slope (α)
21.46** (8.50 to 34.43)
4.96 (-8.62 to 18.54)
23.31*** (11.00 to 35.62)
7.20 (-5.55 to 19.96)
 Autoproportional (β)
-0.50*** (-0.61 to -0.40)
-0.07 (-0.33 to 0.19)
-0.50*** (-0.60 to -0.41)
-0.11 (-0.35 to 0.12)
 Coupling (γ)
-0.30* (-0.53 to -0.06)
-0.31** (-0.52 to -0.10)
Random effects
    
 Residual variance
35.77*** (34.23 to 37.3)
35.02*** (33.51 to 36.54)
35.77*** (34.25 to 37.29)
34.94*** (33.45 to 36.42)
 Intercept variance
177.95*** (170.31 to 185.58)
46.91*** (43.70 to 50.11)
144.21*** (137.72 to 150.71)
39.66*** (36.75 to 42.58)
 Slope variance
26.26*** (12.55 to 39.98)
2.31*** (1.27 to 3.34)
23.66*** (12.24 to 35.08)
1.88** (0.81 to 2.95)
 Intercept/slope correlation
0.69***
-0.30
0.67***
-0.12
 Intercepts correlation
-0.02
0.02
 Slopes correlation
-0.11
-0.02
 Alcohol intercept, MCS slope correlation
-0.05
-0.06
LCS, latent change score; MCS, mental health component score.
*** P < 0.001; ** P < 0.01; * P < 0.05.
an = 6,330.
bFully adjusted = age (centered around the sample mean), sex (male referent group), ethnicity (white (referent) versus non-white), socioeconomic status (defined by most recent recorded employment grade – entered as a linear term with high (referent), intermediate and low categories), marital status (married/cohabiting (referent) versus other), highest educational qualification (University (referent), post-secondary, secondary or no qualifications – entered as a continuous variable), economic activity (active (referent) versus inactive (merging retired and unemployed groups together)), social network (centered around the mean score), current smoking status (no (referent) versus yes), level of physical activity (active (referent), moderately active or low – entered as a linear term), CAGE caseness (no case (referent) versus case), use of anti-depressant medication was also controlled for (no (referent) versus current), self-reported long-standing physical illness (no (referent) versus yes), belonging to the lowest sex-specific SF-36 physical health component quartile (no (referent) versus yes), known diabetes (no (referent) versus yes), coronary heart disease (no (referent) versus yes), stroke (no (referent) versus yes), transient ischemic attack (no (referent) versus yes), total serum cholesterol (centered around the sample mean), systolic and diastolic blood pressure (centered around their mean values), a resting heart rate > 80 beats/minute (no (referent) versus yes) and body mass index (centered around the sample mean).
Table 4
Fixed effect parameter estimates (95% confidence intervals) for other LCS model specifications of weekly alcohol consumption and mental health symptoms in the Whitehall II study a
 
Age and sex adjusted
Fully adjustedb
Alcohol
MCS
Alcohol
MCS
Baseline
    
 Intercept
17.15*** (16.73 to 17.57)
51.57*** (51.31 to 51.82)
17.63*** (16.69 to 18.57)
53.46*** (52.86 to 54.05)
 Slope (α)
4.82*** (3.26 to 6.39)
5.34 (-8.16 to 18.85)
5.22*** (3.56 to 6.89)
7.77 (-4.69 to 20.24)
 Autoproportional (β)
-0.43*** (-0.53 to -0.33)
-0.08 (-0.34 to 0.18)
-0.42*** (-0.52 to -0.33)
-0.12 (-0.36 to 0.11)
 Coupling (γ)
Alcohol → ΔMCS model
    
 Intercept
17.15*** (16.73 to 17.57)
51.57*** (51.31 to 51.83)
17.63*** (16.7 to 18.57)
53.47*** (52.87 to 54.06)
 Slope (α)
4.83*** (3.26 to 6.39)
7.86 (-8.21 to 23.94)
5.23*** (3.56 to 6.89)
10.82 (-3.90 to 25.55)
 Autoproportional (β)
-0.43*** (-0.53 to -0.33)
-0.12 (-0.41 to 0.17)
-0.43*** (-0.52 to -0.33)
-0.17 (-0.42 to 0.09)
 Coupling (γ)
-0.03 (-0.15 to 0.09)
-0.04 (-0.15 to 0.08)
Reciprocal Δ model
    
 Intercept
17.11*** (16.69 to 17.54)
51.55*** (51.29 to 51.81)
17.59*** (16.65 to 18.53)
53.42*** (52.83 to 54.02)
 Slope (α)
21.49** (9.07 to 33.92)
8.72 (-6.03 to 23.47)
23.20*** (11.42 to 34.99)
11.05 (-2.70 to 24.79)
 Autoproportional (β)
-0.50*** (-0.60 to -0.40)
-0.13 (-0.40 to 0.14)
-0.50*** (-0.59 to -0.40)
-0.17 (-0.41 to 0.08)
 Coupling (γ)
-0.05 (-0.16 to 0.06)
-0.30** (-0.52 to -0.07)
-0.06 (-0.16 to 0.05)
-0.31** (-0.52 to -0.11)
LCS, latent change score; MCS, mental health component score.
*** P < 0.001; ** P < 0.01; * P < 0.05.
an = 6,330.
bFully adjusted = age (centered around the sample mean), sex (male referent group), ethnicity (white (referent) versus non-white), socioeconomic status (defined by most recent recorded employment grade – entered as a linear term with high (referent), intermediate and low categories), marital status (married/cohabiting (referent) versus other), highest educational qualification (University (referent), post-secondary, secondary or no qualifications – entered as a continuous variable), economic activity (active (referent) versus inactive (merging retired and unemployed groups together)), social network (centered around the mean score), current smoking status (no (referent) versus yes), level of physical activity (active (referent), moderately active or low – entered as a linear term), CAGE caseness (no case (referent) versus case), use of anti-depressant medication was also controlled for (no (referent) versus current), self-reported long-standing physical illness (no (referent) versus yes), belonging to the lowest sex-specific SF-36 physical health component quartile (no (referent) versus yes), known diabetes (no (referent) versus yes), coronary heart disease (no (referent) versus yes), stroke (no (referent) versus yes), transient ischemic attack (no (referent) versus yes), total serum cholesterol (centered around the sample mean), systolic and diastolic blood pressure (centered around their mean values), a resting heart rate > 80 beats per minute (no (referent) versus yes) and body mass index (centered around the sample mean).
As the association was robust to adjustment for confounding factors, only the fully adjusted estimates will be discussed here (but age and sex, as well as fully adjusted estimates are presented). Furthermore, only parameters of primary interest will be highlighted.

No coupling (baseline) model

The top third of Table 4 refers to the baseline model (in which alcohol use and mental health do not influence changes in each other). A significant autoproportional effect for alcohol consumption was found (β = -0.42, CI -0.52 to -0.33) but not for mental health. The coefficient was negative, indicating that those drinking more made greater reductions in their alcohol consumption between phases.

Alcohol consumption producing change in mental health model

The middle third of Table 4 shows estimates for a model where alcohol use affected upcoming change in mental health, but mental health had no effect on change in alcohol consumption. The alcohol autoproportional effect was significant (β = -0.43, CI -0.52 to -0.33) but not the mental health parameter. The coupling parameter was also non-significant. This model was compared with the baseline model, but offered no significant improvement in fit (Table 2).

Mental health producing change in alcohol consumption model

The estimates concerning the model in which mental health scores affected upcoming change in alcohol consumption, but alcohol consumption had no effect on changes in mental health are presented in Table 3. A significant autoproportional effect was found for alcohol consumption (β = -0.50, CI -0.60 to -0.40) but not mental health. The coupling parameter was significant (γ = -0.31, CI -0.52 to -0.10) in this instance, and was negative, meaning that those with better mental health made greater reductions in their drinking. This model was an improvement over the baseline model (Table 2; P < 0.01).

Dynamic/reciprocal change model

The final third of Table 4 shows estimates from a model in which both alcohol consumption and mental health scores are able to affect change in the alternative variable. As in previous models, a significant autoproportional effect was found for alcohol consumption (β = -0.50, CI -0.59 to -0.40) but not mental health. The coupling parameter from previous phase mental health to change in alcohol consumption remained significant (γ = -0.31, CI -0.52 to -0.11), whereas the effect of previous occasion alcohol consumption was not associated with changes in mental health. This model offered little improvement in fit over the previous model (Table 2), indicating that the model in which mental health influences changes in alcohol consumption but not vice versa is the best fit to the data.
It is necessary to jointly interpret the estimates in Table 3 to fully appreciate the dynamics of the alcohol use and mental health system because parameters are dependent on each other [54, 55, 57, 62]. Concentrating on the fully adjusted estimates, to predict change, Equation 4 in Additional file 1 would be adapted to remove the coupling parameter from previous phase alcohol consumption to changes in mental health, resulting in a final change equation (conditional on other covariates in the model; for coefficients, see Additional file 3: Table S3A) of:
Δ Alcohol it = 23.31 ± 4.86 - 0.50 × Alcohol it - 1 - 0.31 × MCS it - 1 Δ MCS it = 7.20 ± 1.37 - 0.11 × MCS it - 1
The expected change in both mental health scores and UK units of alcohol consumed between phases can then be plotted within a vector field [63] (Figure 2). This figure displays the direction and magnitude of change in both variables for a given set of starting co-ordinates. The ellipsoid reflects where 95% of the data lay.

Discussion

Summary and interpretation of findings

A series of LCS models were estimated to test lag-leading and reciprocal relationships between weekly number of UK units consumed and mental health. In both minimally adjusted and fully adjusted models, it was found that a model in which mental health was specified as the leading indicator of change gave the best fit (Table 2, Table 3).Plotting the parameters of this model in a vector field (Figure 2) demonstrates the complex relationship between weekly alcohol consumption and mental health, and also helps to visualize the correlation between the mental health intercept and alcohol slope, which is difficult to interpret in isolation. It shows that participants who initially had poor mental health and low alcohol consumption increased their consumption between phases, whereas those with good to adequate mental health who drank at higher levels tended to decrease their consumption between phases while their mental health scores remained relatively stable. Furthermore, it shows that participants with poor mental health and high alcohol consumption on the previous occasion had a shallower decline in their consumption than those with good mental health drinking the same amount. This indicates that in addition to fuelling increases in alcohol consumption among low-level consumers, poor mental health may also be a maintaining factor for heavy alcohol consumption.

Comparison with other work

Our findings contradict the most recently published review on the relationship between alcohol use and depression [10], which concluded that increasing involvement with alcohol raises the risk of depression by two-fold. This review was, however, met with criticism [64, 65] for primarily being based on previous work by the authors themselves [9]. Furthermore, the review focused on alcohol-use disorders and major depression. Our work is therefore not directly comparable. As outlined earlier, we chose to focus on sub-syndrome symptoms of mental health and alcohol consumption (not problem consumption) as there has been a distinct lack of work exploring actual alcohol consumption (that is, what people drink) in this relationship; previous interest has largely been on the relationship between alcohol-use disorders and major depression. This makes drawing comparisons between our work and others complicated. It may be that there is something about the symptoms of problematic alcohol consumption that increases the risk of having [6, 7, 6671] or developing [9, 10, 72, 73] depression, independent of the amount of alcohol consumed [46, 74]. Recent work has shown that individuals who self-medicate symptoms of anxiety [75] or depression [12] with alcohol have an increased risk of developing (persistent) alcohol dependence. Therefore, it could be that the relationship we observed is part of a larger complex system involving a transition from sub-syndromal symptoms of mental health influencing changes in alcohol consumption (as in our analyses) until a certain threshold is reached, at which symptoms of alcohol dependence take over and increase the risk of developing clinical disorders [9, 10]; that is, there are two separate dynamic systems at play that influence alcohol consumption and mental health pre and post clinical disorder.

Strengths and weaknesses

The approach that we took to modeling the relationship between alcohol use and mental health longitudinally utilized multiple measurement occasions to model change in both variables over time, which is known to improve the accuracy of estimated change [58, 76]. Previous work has also shown that it is important to consider variability in alcohol consumption [77], and the LCS model methodology directly incorporated individual change both in the total weekly alcohol consumption and in mental health. Furthermore, the method we used allowed for the effect of alcohol consumption on mental health and vice versa to be estimated simultaneously in the same model.
There are, however, several limitations of our study. First, data from phase 5 were used as the starting point, and it is possible that selective attrition may have occurred between the 'true' baseline (phase 1) and the baseline used in these analyses. This would result in a healthier cohort of participants being used to estimate the final model parameters, reducing the generalizability of the findings [78, 79]. Similarly, we used data from the Whitehall II cohort of British civil servants, which is not a representative sample of the general population. Work published using Whitehall II data has been highly influential in epidemiology and public health, shaping research agendas on social inequalities in health [80] and improving the understanding of the etiology of disease [81] but this limitation should be noted when considering the generalizability of our findings.
Second, one of the major concerns in alcohol epidemiology is measurement error in self-reported alcohol consumption [82]. It is acknowledged that self-reported measures of consumption are likely to be biased [8288], and therefore effect estimates obtained may actually be underestimates of the true association of interest. The use of latent variables (upon which LCS models are based; see Additional file 1) has been advocated in the field of alcohol epidemiology [89] to account for this known measurement error. Additionally, the MCS scale of the SF-36 is not solely concerned with psychiatric symptoms but also with mental health-related quality of life (although evidence exists to suggest that high MCS scores are associated with clinical depression [40, 90, 91]). It is possible that the relationship between alcohol intake and mental health might differ if other psychiatric questionnaires were used to define symptoms of mental health, or if the distinction was made between symptoms of depression and anxiety. However, it is argued that in practice it is difficult to effectively determine specific characteristics of depression from symptoms of, for example, anxiety using self-report measures of symptoms because of the considerable heterogeneity of symptoms between disorders (that is, self-reported symptoms often reflect a comorbidity between depression and other mood/stress-related disorders [9295]). This has led some investigators to conclude that self-report measures of mental health symptoms at a population level merely reflect a single underlying latent construct of psychological distress [9699].
Another issue concerning the main measures used in this study is that they refer to different time periods; information on alcohol consumption pertained to the previous week whereas information on mental health symptoms referred to the previous 4 weeks. It is possible that this discrepancy in the period of reference may have biased our findings. For example, smaller studies looking at the relationship between mood and alcohol on a daily basis have shown that increased alcohol consumption is associated with decreased happiness on the following day, and that symptoms of sadness are associated with decreased consumption on the next day [100]. These findings contrast with our own, and highlight the importance of the timeframe used in determining the best-fitting temporal sequence between alcohol consumption and mental health.
Furthermore, the competing models we specified allowed only for the previous occasion's alcohol and/or mental health score to influence change in the alternative variable by the next occasion. It is plausible that the relationship might have differed if we had allowed for longer lag specifications, as it may be that the relationship between alcohol intake and mental health takes longer to manifest (that is, the current specification of a single cross-lagged effect may fit the relationship between mental health influencing alcohol intake better than the relationship between alcohol consumption influencing mental health symptoms).
Additionally, there was greater variation in the measure of weekly alcohol intake than in that of mental health. It could be argued that this could also be a possible explanation as to why alcohol consumption was not found to be significantly related to changes in mental health. It may be that within a dynamic system that it is more difficult to effectively predict changes in one variable using a highly erratic alternative exposure. It is conceivable that the reciprocal model might have been of best fit had both measures been relatively stable over time.
A further methodological limitation is that we controlled only for baseline covariate values, and it is possible that their values changed over time. For example, comorbidities may have developed after the first measurement occasion. Health behaviors such as physical activity and smoking could also vary over time, and the changing status of these variables could all be confounders of the subsequent effects of alcohol on mental health and vice versa. However, factoring in changes in the covariate structure over time could be problematic within the current framework, because changes in some values, for example, systolic blood pressure, could be a direct consequence of previous alcohol consumption or mental health status, and thus be considered as intermediate confounders [101].

Implications and directions for future work

We identified that the dominant process underlying the dynamic relationship between alcohol consumption and mental health at a population level is mental health. Consequently, it could be inferred that targeting interventions to those with poor mental health (as well as introducing measures to ensure that those with normal/good mental health do not deteriorate) would have a beneficial effect in terms of reducing heavy drinking. This may also elicit favorable knock-on effects in terms of improving general physical health and reducing the risk of chronic diseases, as heavy drinking itself is associated with an increased risk of a range of health problems [102, 103] including cardiovascular disease [104109], cancer, [110, 111] and mortality [47, 112114]. Furthermore, the finding that mental health affects alcohol consumption may shed some light on the growing literature examining common mental disorders as risk factors for cardiovascular disease [115119] and all-cause mortality [120122], because alcohol consumption may be one of many mediators in this relationship.
This work provides further support that on-going efforts to improve mental health at a population level are vital to public health [123, 124]. The proposed implementation strategy [124] seeks both to tackle he social determinants of mental health [125] and to target individuals who are at high risk. To do so, a number of avenues will be pursued, including tackling inequalities in access to services (and ensuring equality in the level of service provided). In addition, conscious efforts are being made to tackle the stigma surrounding mental health issues; perhaps if individuals feel more comfortable talking about their mental health problems or seeking treatment for them, then they will not turn to alcohol as a form of self-medication.
Others may, however, be more cynical of our findings and take them to indicate that 1) consuming large amounts of alcohol is acceptable as it does not increase the risk of developing mental health problems, and 2) that it is reasonable to self-medicate with alcohol in response to psychological distress, as it will not worsen symptoms. However, it would be unwise to use our findings as a justification for drinking in a hazardous manner. Although a person’s mental health may not worsen, as highlighted above, increased alcohol consumption would heighten their risk of developing other disorders.
Regarding future work, it is important to examine the role of drinking pattern as well as to provide closer scrutiny of age (e.g. adolescent and elderly populations), sex, socioeconomic, and cultural differences in the dynamic relationship between alcohol consumption and mental health. It is also important that subsequent studies should examine the extent to which time-varying/modified confounding may explain the association observed using appropriate analytic methods [101]. Furthermore, it is also imperative that potential physiological and psychosocial mechanisms, both occurring alongside and precipitating (immediately or earlier in life) the parallel development of both trajectories are studied. This has been acknowledged by others in the field [10, 64, 65]. Understanding the factors that trigger increased alcohol consumption in the presence of poor mental health will allow for more effective interventions to be developed, both in terms of treatment and primary prevention.

Conclusions

Mental health appears to be the leading indicator of change in the dynamic longitudinal relationship between mental health and weekly alcohol consumption in this middle-aged, mostly white, male, and well-educated sample of individuals. In addition to increasing alcohol intake among low-level consumers, poor mental health may also be a maintaining factor for sustained high alcohol intake in heavy alcohol consumers. Our findings therefore indicate that on-going efforts to improve mental health at a population level may also help to reduce hazardous alcohol consumption. Future work should seek to examine whether there are critical levels of alcohol consumption at which different dynamic relationships operate between alcohol-related behavior and mental health, specifically focusing on heterogeneities in the dynamic processes between alcohol intake and symptoms of alcohol dependence, and mental health pre and post clinical disorder to try and better capture the possible discontinuous progression from sub-syndrome behavior to clinically relevant outcomes.

Author contributions

SB and AB devised the research question. SB analysed the data and completed the first draft of the manuscript. AB provided important additional comments on the initial manuscript. Both SB and AB agreed on the decision to submit the final manuscript. SB had full access to all of the data in the study, and takes responsibility for the integrity of the data and the accuracy of the data analysis. All authors read and approved the final manuscript.

Acknowledgements

We thank all participating civil service departments and their welfare, personnel, and establishment officers; the Occupational Health and Safety Agency; the Council of Civil Service Unions; all participating civil servants in the Whitehall II study; and all members of the Whitehall II study team. This work was supported by a UK Economic and Social Research Council PhD Studentship (SB) and the European Research Council (309337, PI: Britton, http://​www.​ucl.​ac.​uk/​alcohol-lifecourse). The Whitehall II study is supported by grants from the Medical Research Council (G0902037), British Heart Foundation (RG/07/008/23674), Stroke Association, National Heart Lung and Blood Institute (5RO1 HL036310), and National Institute on Aging (5RO1AG13196 and 5RO1AG034454). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

None of the authors have any competing interests.
Literatur
1.
Zurück zum Zitat World Health Organisation: Alcohol in the European Union. Consumption, Harm and Policy Approaches. 2012, Copenhagen, Denmark: World Health Organisation Regional Office for Europe, 1-161. World Health Organisation: Alcohol in the European Union. Consumption, Harm and Policy Approaches. 2012, Copenhagen, Denmark: World Health Organisation Regional Office for Europe, 1-161.
2.
Zurück zum Zitat Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y, Patra J: Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet. 2009, 373: 2223-2233. 10.1016/S0140-6736(09)60746-7.PubMed Rehm J, Mathers C, Popova S, Thavorncharoensap M, Teerawattananon Y, Patra J: Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet. 2009, 373: 2223-2233. 10.1016/S0140-6736(09)60746-7.PubMed
3.
Zurück zum Zitat Horton R: Launching a new movement for mental health. Lancet. 2007, 370: 806-10.1016/S0140-6736(07)61243-4.PubMed Horton R: Launching a new movement for mental health. Lancet. 2007, 370: 806-10.1016/S0140-6736(07)61243-4.PubMed
4.
Zurück zum Zitat Patel V, Jenkins R, Lund C, The PLoS Medicine Editors: Putting evidence into practice: the PLoS medicine series on global mental health practice. PLoS Med. 2012, 9: e1001226-10.1371/journal.pmed.1001226.PubMedCentral Patel V, Jenkins R, Lund C, The PLoS Medicine Editors: Putting evidence into practice: the PLoS medicine series on global mental health practice. PLoS Med. 2012, 9: e1001226-10.1371/journal.pmed.1001226.PubMedCentral
5.
Zurück zum Zitat Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJL, Vos T, Whiteford HA: Burden of depressive disorders by country, sex, age, and year: findings from the Global Burden of Disease Study 2010. PLoS Med. 2013, 10: e1001547-10.1371/journal.pmed.1001547.PubMedPubMedCentral Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJL, Vos T, Whiteford HA: Burden of depressive disorders by country, sex, age, and year: findings from the Global Burden of Disease Study 2010. PLoS Med. 2013, 10: e1001547-10.1371/journal.pmed.1001547.PubMedPubMedCentral
6.
Zurück zum Zitat Grant BF, Harford TC: Comorbidity between DSM-IV alcohol use disorders and major depression: results of a national survey. Drug Alcohol Depend. 1995, 39: 197-206. 10.1016/0376-8716(95)01160-4.PubMed Grant BF, Harford TC: Comorbidity between DSM-IV alcohol use disorders and major depression: results of a national survey. Drug Alcohol Depend. 1995, 39: 197-206. 10.1016/0376-8716(95)01160-4.PubMed
7.
Zurück zum Zitat Boschloo L, Vogelzangs N, van den Brink W, Smit JH, Veltman DJ, Beekman ATF, Penninx BWJH: Alcohol use disorders and the course of depressive and anxiety disorders. Br J Psychiatry. 2012, 200: 476-484. 10.1192/bjp.bp.111.097550.PubMed Boschloo L, Vogelzangs N, van den Brink W, Smit JH, Veltman DJ, Beekman ATF, Penninx BWJH: Alcohol use disorders and the course of depressive and anxiety disorders. Br J Psychiatry. 2012, 200: 476-484. 10.1192/bjp.bp.111.097550.PubMed
8.
Zurück zum Zitat Wang J, Patten SB: Alcohol consumption and major depression: findings from a follow-up study. Can J Psychiatry. 2001, 46: 632-638.PubMed Wang J, Patten SB: Alcohol consumption and major depression: findings from a follow-up study. Can J Psychiatry. 2001, 46: 632-638.PubMed
9.
Zurück zum Zitat Fergusson DM, Boden JM, Horwood LJ: Tests of causal links between alcohol abuse or dependence and major depression. Arch Gen Psychiatry. 2009, 66: 260-266. 10.1001/archgenpsychiatry.2008.543.PubMed Fergusson DM, Boden JM, Horwood LJ: Tests of causal links between alcohol abuse or dependence and major depression. Arch Gen Psychiatry. 2009, 66: 260-266. 10.1001/archgenpsychiatry.2008.543.PubMed
10.
Zurück zum Zitat Boden JM, Fergusson DM: Alcohol and depression. Addiction. 2011, 106: 906-914. 10.1111/j.1360-0443.2010.03351.x.PubMed Boden JM, Fergusson DM: Alcohol and depression. Addiction. 2011, 106: 906-914. 10.1111/j.1360-0443.2010.03351.x.PubMed
11.
Zurück zum Zitat Hartka E, Johnson BM, Leino EV, Motoyoshi M, Temple MT, Fillmore KM: A meta-analysis of depressive symptomatology and alcohol consumption over time. Br J Addict. 1991, 86: 1283-1298. 10.1111/j.1360-0443.1991.tb01704.x.PubMed Hartka E, Johnson BM, Leino EV, Motoyoshi M, Temple MT, Fillmore KM: A meta-analysis of depressive symptomatology and alcohol consumption over time. Br J Addict. 1991, 86: 1283-1298. 10.1111/j.1360-0443.1991.tb01704.x.PubMed
12.
Zurück zum Zitat Crum RM, Mojtabai R, Lazareck S, Bolton JM, Robinson J, Sareen J, Green KM, Stuart EA, La Flair L, Alvanzo AAH, Storr CL: A prospective assessment of reports of drinking to self-medicate mood symptoms with the incidence and persistence of alcohol dependence. JAMA Psychiatry. 2013, 70: 718-726. 10.1001/jamapsychiatry.2013.1098.PubMedPubMedCentral Crum RM, Mojtabai R, Lazareck S, Bolton JM, Robinson J, Sareen J, Green KM, Stuart EA, La Flair L, Alvanzo AAH, Storr CL: A prospective assessment of reports of drinking to self-medicate mood symptoms with the incidence and persistence of alcohol dependence. JAMA Psychiatry. 2013, 70: 718-726. 10.1001/jamapsychiatry.2013.1098.PubMedPubMedCentral
13.
Zurück zum Zitat Gea A, Beunza J, Estruch R, Sanchez-Villegas A, Salas-Salvado J, Buil-Cosiales P, Gomez-Gracia E, Covas M-I, Corella D, Fiol M, Aros F, Lapetra J, Lamuela-Raventos R-M, Warnberg J, Pinto X, Serra-Majem L, Martinez-Gonzalez M, for the PREDIMED GROUP: Alcohol intake, wine consumption and the development of depression: the PREDIMED study. BMC Med. 2013, 11: 192-10.1186/1741-7015-11-192.PubMedPubMedCentral Gea A, Beunza J, Estruch R, Sanchez-Villegas A, Salas-Salvado J, Buil-Cosiales P, Gomez-Gracia E, Covas M-I, Corella D, Fiol M, Aros F, Lapetra J, Lamuela-Raventos R-M, Warnberg J, Pinto X, Serra-Majem L, Martinez-Gonzalez M, for the PREDIMED GROUP: Alcohol intake, wine consumption and the development of depression: the PREDIMED study. BMC Med. 2013, 11: 192-10.1186/1741-7015-11-192.PubMedPubMedCentral
14.
Zurück zum Zitat Mueser KT, Drake RE, Wallach MA: Dual diagnosis: a review of etiological theories. Addict Behav. 1998, 23: 717-734. 10.1016/S0306-4603(98)00073-2.PubMed Mueser KT, Drake RE, Wallach MA: Dual diagnosis: a review of etiological theories. Addict Behav. 1998, 23: 717-734. 10.1016/S0306-4603(98)00073-2.PubMed
15.
Zurück zum Zitat Bühler M, Mann K: Alcohol and the human brain: a systematic review of different neuroimaging methods. Alcohol Clin Exp Res. 2011, 35: 1771-1793. 10.1111/j.1530-0277.2011.01540.x.PubMed Bühler M, Mann K: Alcohol and the human brain: a systematic review of different neuroimaging methods. Alcohol Clin Exp Res. 2011, 35: 1771-1793. 10.1111/j.1530-0277.2011.01540.x.PubMed
16.
Zurück zum Zitat Bennett MR: The prefrontal–limbic network in depression: A core pathology of synapse regression. Prog Neurobiol. 2011, 93: 457-467. 10.1016/j.pneurobio.2011.01.001.PubMed Bennett MR: The prefrontal–limbic network in depression: A core pathology of synapse regression. Prog Neurobiol. 2011, 93: 457-467. 10.1016/j.pneurobio.2011.01.001.PubMed
17.
Zurück zum Zitat Olesen PJ, Gustafson DR, Simoni M, Pantoni L, Ostling S, Guo X, Skoog I: Temporal lobe atrophy and white matter lesions are related to major depression over 5 years in the elderly. Neuropsychopharmacol. 2010, 35: 2638-2645. 10.1038/npp.2010.176. Olesen PJ, Gustafson DR, Simoni M, Pantoni L, Ostling S, Guo X, Skoog I: Temporal lobe atrophy and white matter lesions are related to major depression over 5 years in the elderly. Neuropsychopharmacol. 2010, 35: 2638-2645. 10.1038/npp.2010.176.
18.
Zurück zum Zitat Nobuhara K, Okugawa G, Sugimoto T, Minami T, Tamagaki C, Takase K, Saito Y, Sawada S, Kinoshita T: Frontal white matter anisotropy and symptom severity of late-life depression: a magnetic resonance diffusion tensor imaging study. J Neurol Neurosurg Psychiatry. 2006, 77: 120-122. 10.1136/jnnp.2004.055129.PubMedPubMedCentral Nobuhara K, Okugawa G, Sugimoto T, Minami T, Tamagaki C, Takase K, Saito Y, Sawada S, Kinoshita T: Frontal white matter anisotropy and symptom severity of late-life depression: a magnetic resonance diffusion tensor imaging study. J Neurol Neurosurg Psychiatry. 2006, 77: 120-122. 10.1136/jnnp.2004.055129.PubMedPubMedCentral
19.
Zurück zum Zitat Petty F: GABA and mood disorders: a brief review and hypothesis. J Affect Disorders. 1995, 34: 275-281. 10.1016/0165-0327(95)00025-I.PubMed Petty F: GABA and mood disorders: a brief review and hypothesis. J Affect Disorders. 1995, 34: 275-281. 10.1016/0165-0327(95)00025-I.PubMed
20.
Zurück zum Zitat Brambilla P, Perez J, Barale F, Schettini G, Soares JC: GABAergic dysfunction in mood disorders. Mol Psychiatry. 2003, 8: 721-737. 10.1038/sj.mp.4001362.PubMed Brambilla P, Perez J, Barale F, Schettini G, Soares JC: GABAergic dysfunction in mood disorders. Mol Psychiatry. 2003, 8: 721-737. 10.1038/sj.mp.4001362.PubMed
21.
Zurück zum Zitat Dunlop BW, Nemeroff CB: The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007, 64: 327-337. 10.1001/archpsyc.64.3.327.PubMed Dunlop BW, Nemeroff CB: The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007, 64: 327-337. 10.1001/archpsyc.64.3.327.PubMed
22.
Zurück zum Zitat Jans LAW, Riedel WJ, Markus CR, Blokland A: Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry. 2006, 12: 522-543.PubMed Jans LAW, Riedel WJ, Markus CR, Blokland A: Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry. 2006, 12: 522-543.PubMed
23.
Zurück zum Zitat Pietraszek MH, Urano T, Sumioshi K, Serizawa K, Takahashi S, Takada Y, Takada A: Alcohol-induced depression: involvement of serotonin. Alcohol Alcohol. 1991, 26: 155-159.PubMed Pietraszek MH, Urano T, Sumioshi K, Serizawa K, Takahashi S, Takada Y, Takada A: Alcohol-induced depression: involvement of serotonin. Alcohol Alcohol. 1991, 26: 155-159.PubMed
25.
Zurück zum Zitat Kung WW: The interwined relationship between depression and marital distress: elements of marital therapy conducive to effect treatment outcome. J Marital Fam Ther. 2000, 26: 51-63.PubMed Kung WW: The interwined relationship between depression and marital distress: elements of marital therapy conducive to effect treatment outcome. J Marital Fam Ther. 2000, 26: 51-63.PubMed
26.
Zurück zum Zitat Flint E, Bartley M, Shelton N, Sacker A: Do labour market status transitions predict changes in psychological well-being?. J Epidemiol Community Health. 2013, 67: 796-802. 10.1136/jech-2013-202425.PubMed Flint E, Bartley M, Shelton N, Sacker A: Do labour market status transitions predict changes in psychological well-being?. J Epidemiol Community Health. 2013, 67: 796-802. 10.1136/jech-2013-202425.PubMed
27.
Zurück zum Zitat Brown SA, Schuckit MA: Changes in depression among abstinent alcoholics. J Stud Alcohol Drug. 1988, 49: 412. Brown SA, Schuckit MA: Changes in depression among abstinent alcoholics. J Stud Alcohol Drug. 1988, 49: 412.
28.
Zurück zum Zitat Conger JJ: Reinforcement theory and the dynamics of alcoholism. Q J Stud Alcohol. 1956, 17: 296-305.PubMed Conger JJ: Reinforcement theory and the dynamics of alcoholism. Q J Stud Alcohol. 1956, 17: 296-305.PubMed
29.
Zurück zum Zitat Abbey A, Smith MJ, Scott RO: The relationship between reasons for drinking alcohol and alcohol consumption: an interactional approach. Addict Behav. 1993, 18: 659-670. 10.1016/0306-4603(93)90019-6.PubMedPubMedCentral Abbey A, Smith MJ, Scott RO: The relationship between reasons for drinking alcohol and alcohol consumption: an interactional approach. Addict Behav. 1993, 18: 659-670. 10.1016/0306-4603(93)90019-6.PubMedPubMedCentral
30.
Zurück zum Zitat Carpenter KM, Hasin DS: Drinking to cope with negative affect and DSM-IV alcohol use disorders: a test of three alternative explanations. J Stud Alcohol. 1999, 60: 694-704.PubMed Carpenter KM, Hasin DS: Drinking to cope with negative affect and DSM-IV alcohol use disorders: a test of three alternative explanations. J Stud Alcohol. 1999, 60: 694-704.PubMed
31.
Zurück zum Zitat Holahan CJ, Moos RH, Holahan CK, Cronkite RC, Randall PK: Drinking to cope and alcohol use and abuse in unipolar depression: a 10-year model. J Abnorm Psychol. 2003, 112: 159-165.PubMed Holahan CJ, Moos RH, Holahan CK, Cronkite RC, Randall PK: Drinking to cope and alcohol use and abuse in unipolar depression: a 10-year model. J Abnorm Psychol. 2003, 112: 159-165.PubMed
32.
Zurück zum Zitat Holahan CJ, Moos RH, Holahan CK, Cronkite RC, Randall PK: Drinking to cope, emotional distress and alcohol use and abuse: a ten-year model. J Stud Alcohol. 2001, 62: 190-198.PubMed Holahan CJ, Moos RH, Holahan CK, Cronkite RC, Randall PK: Drinking to cope, emotional distress and alcohol use and abuse: a ten-year model. J Stud Alcohol. 2001, 62: 190-198.PubMed
33.
Zurück zum Zitat Conner KR, Pinquart M, Gamble SA: Meta-analysis of depression and substance use among individuals with alcohol use disorders. J Subst Abuse Treat. 2009, 37: 127-137. 10.1016/j.jsat.2008.11.007.PubMedPubMedCentral Conner KR, Pinquart M, Gamble SA: Meta-analysis of depression and substance use among individuals with alcohol use disorders. J Subst Abuse Treat. 2009, 37: 127-137. 10.1016/j.jsat.2008.11.007.PubMedPubMedCentral
34.
Zurück zum Zitat Meyer RE: Psychopathology and Addictive Disorders. 1986, New York, USA: Guildford Press Meyer RE: Psychopathology and Addictive Disorders. 1986, New York, USA: Guildford Press
35.
Zurück zum Zitat Ferrer E, McArdle JJ: Longitudinal modeling of developmental changes in psychological research. Curr Dir Psychol Sci. 2010, 19: 149-154. 10.1177/0963721410370300. Ferrer E, McArdle JJ: Longitudinal modeling of developmental changes in psychological research. Curr Dir Psychol Sci. 2010, 19: 149-154. 10.1177/0963721410370300.
36.
Zurück zum Zitat National Institute for Health and Clinical Excellence: CG90 Depression in Adults: Full Guidance. 2009, The British Psychological Society and The Royal College of Psychiatrists, 707. National Institute for Health and Clinical Excellence: CG90 Depression in Adults: Full Guidance. 2009, The British Psychological Society and The Royal College of Psychiatrists, 707.
37.
Zurück zum Zitat Haynes JC, Farrell M, Singleton N, Meltzer H, Araya R, Lewis G, Wiles NJ: Alcohol consumption as a risk factor for anxiety and depression: results from the longitudinal follow-up of the National Psychiatric Morbidity Survey. Br J Psychiatry. 2005, 187: 544-551. 10.1192/bjp.187.6.544.PubMed Haynes JC, Farrell M, Singleton N, Meltzer H, Araya R, Lewis G, Wiles NJ: Alcohol consumption as a risk factor for anxiety and depression: results from the longitudinal follow-up of the National Psychiatric Morbidity Survey. Br J Psychiatry. 2005, 187: 544-551. 10.1192/bjp.187.6.544.PubMed
38.
Zurück zum Zitat Marmot M, Brunner E: Cohort profile: the Whitehall II study. Int J Epidemiol. 2005, 34: 251-256. 10.1093/ije/dyh372.PubMed Marmot M, Brunner E: Cohort profile: the Whitehall II study. Int J Epidemiol. 2005, 34: 251-256. 10.1093/ije/dyh372.PubMed
39.
Zurück zum Zitat Ware J, Kosinski M, Keller S: SF-36® Physical and Mental Health Summary Scales: A User’s Manual. 1994, Boston, MA: The Health Institute Ware J, Kosinski M, Keller S: SF-36® Physical and Mental Health Summary Scales: A User’s Manual. 1994, Boston, MA: The Health Institute
40.
Zurück zum Zitat Ware JE, Kosinski M, Bayliss MS, McHorney CA, Rogers WH, Raczek A: Comparison of methods for the scoring and statistical analysis of SF-36 health profile and summary measures: summary of results from the medical outcomes study. Med Care. 1995, 33: AS264-AS279.PubMed Ware JE, Kosinski M, Bayliss MS, McHorney CA, Rogers WH, Raczek A: Comparison of methods for the scoring and statistical analysis of SF-36 health profile and summary measures: summary of results from the medical outcomes study. Med Care. 1995, 33: AS264-AS279.PubMed
41.
Zurück zum Zitat Ware JE, Sherbourne CD: The MOS 36-Item Short-Form Health Survey (SF-36): I. Conceptual framework and item selection. Med Care. 1992, 30: 473-483. 10.1097/00005650-199206000-00002.PubMed Ware JE, Sherbourne CD: The MOS 36-Item Short-Form Health Survey (SF-36): I. Conceptual framework and item selection. Med Care. 1992, 30: 473-483. 10.1097/00005650-199206000-00002.PubMed
42.
Zurück zum Zitat Jenkinson C, Layte R, Lawrence K: Development and testing of the medical outcomes study 36-item Short Form Health Survey summary scale scores in the United Kingdom: results from a large-scale survey and a clinical trial. Med Care. 1997, 35: 410-416. 10.1097/00005650-199704000-00010.PubMed Jenkinson C, Layte R, Lawrence K: Development and testing of the medical outcomes study 36-item Short Form Health Survey summary scale scores in the United Kingdom: results from a large-scale survey and a clinical trial. Med Care. 1997, 35: 410-416. 10.1097/00005650-199704000-00010.PubMed
43.
Zurück zum Zitat Berkman LF, Syme SL: Social networks, host resistance and mortality: a nine year follow-up of Alameda county residents. Am J Epidemiol. 1979, 109: 186-204.PubMed Berkman LF, Syme SL: Social networks, host resistance and mortality: a nine year follow-up of Alameda county residents. Am J Epidemiol. 1979, 109: 186-204.PubMed
44.
Zurück zum Zitat Stringhini S, Sabia S, Shipley M, Brunner E, Nabi H, Kivimaki M, Singh-Manoux A: Association of socioeconomic position with health behaviors and mortality. JAMA. 2010, 303: 1159-1166. 10.1001/jama.2010.297.PubMedPubMedCentral Stringhini S, Sabia S, Shipley M, Brunner E, Nabi H, Kivimaki M, Singh-Manoux A: Association of socioeconomic position with health behaviors and mortality. JAMA. 2010, 303: 1159-1166. 10.1001/jama.2010.297.PubMedPubMedCentral
45.
Zurück zum Zitat Ewing JA: Detecting alcoholism: the CAGE questionnaire. JAMA. 1984, 252: 1905-1907. 10.1001/jama.1984.03350140051025.PubMed Ewing JA: Detecting alcoholism: the CAGE questionnaire. JAMA. 1984, 252: 1905-1907. 10.1001/jama.1984.03350140051025.PubMed
46.
Zurück zum Zitat Bulloch A, Lavorato D, Williams J, Patten S: Alcohol consumption and major depression in the general population: the critical importance of dependence. Depress Anxiety. 2012, 29: 1058-1064. 10.1002/da.22001.PubMed Bulloch A, Lavorato D, Williams J, Patten S: Alcohol consumption and major depression in the general population: the critical importance of dependence. Depress Anxiety. 2012, 29: 1058-1064. 10.1002/da.22001.PubMed
47.
Zurück zum Zitat Shaper AG, Wannamethee G, Walker M: Alcohol and mortality in British men: explaining the U-shaped curve. Lancet. 1988, 332: 1267-1273. 10.1016/S0140-6736(88)92890-5. Shaper AG, Wannamethee G, Walker M: Alcohol and mortality in British men: explaining the U-shaped curve. Lancet. 1988, 332: 1267-1273. 10.1016/S0140-6736(88)92890-5.
48.
Zurück zum Zitat Fillmore KM, Stockwell T, Chikritzhs T, Bostrom A, Kerr W: Moderate alcohol use and reduced mortality risk: systematic error in prospective studies and new hypotheses. Ann Epidemiol. 2007, 17: S16-S23. 10.1016/j.annepidem.2007.01.005.PubMed Fillmore KM, Stockwell T, Chikritzhs T, Bostrom A, Kerr W: Moderate alcohol use and reduced mortality risk: systematic error in prospective studies and new hypotheses. Ann Epidemiol. 2007, 17: S16-S23. 10.1016/j.annepidem.2007.01.005.PubMed
49.
Zurück zum Zitat Sacker A, Head J, Gimeno D, Bartley M: Social inequality in physical and mental health comorbidity dynamics. Psychosom Med. 2009, 71: 763-770. 10.1097/PSY.0b013e3181b1e45e.PubMed Sacker A, Head J, Gimeno D, Bartley M: Social inequality in physical and mental health comorbidity dynamics. Psychosom Med. 2009, 71: 763-770. 10.1097/PSY.0b013e3181b1e45e.PubMed
50.
Zurück zum Zitat Britton A, Milne B, Butler T, Sanchez-Galvez A, Shipley M, Rudd A, Wolfe C, Bhalla A, Brunner E: Validating self-reported strokes in a longitudinal UK cohort study (Whitehall II): Extracting information from hospital medical records versus the Hospital Episode Statistics database. BMC Med Res Methodol. 2012, 12: 83-10.1186/1471-2288-12-83.PubMedPubMedCentral Britton A, Milne B, Butler T, Sanchez-Galvez A, Shipley M, Rudd A, Wolfe C, Bhalla A, Brunner E: Validating self-reported strokes in a longitudinal UK cohort study (Whitehall II): Extracting information from hospital medical records versus the Hospital Episode Statistics database. BMC Med Res Methodol. 2012, 12: 83-10.1186/1471-2288-12-83.PubMedPubMedCentral
51.
Zurück zum Zitat Hemingway H, Shipley M, Britton A, Page M, Macfarlane P, Marmot M: Prognosis of angina with and without a diagnosis: 11 year follow up in the Whitehall II prospective cohort study. BMJ. 2003, 327. Hemingway H, Shipley M, Britton A, Page M, Macfarlane P, Marmot M: Prognosis of angina with and without a diagnosis: 11 year follow up in the Whitehall II prospective cohort study. BMJ. 2003, 327.
52.
Zurück zum Zitat Fuster V, Rydén LE, Asinger RW, Cannom DS, Crijns HJ, Frye RL, Halperin JL, Kay GN, Klein WW, Lévy S, McNamara RL, Prystowsky EN, Wann LS, Wyse DG: ACC/AHA/ESC guidelines for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines and Policy Conferences (Committee to Develop Guidelines for the Management of Patients With Atrial Fibrillation). Circulation. 2001, 104: 2118-2150.PubMed Fuster V, Rydén LE, Asinger RW, Cannom DS, Crijns HJ, Frye RL, Halperin JL, Kay GN, Klein WW, Lévy S, McNamara RL, Prystowsky EN, Wann LS, Wyse DG: ACC/AHA/ESC guidelines for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines and Policy Conferences (Committee to Develop Guidelines for the Management of Patients With Atrial Fibrillation). Circulation. 2001, 104: 2118-2150.PubMed
53.
Zurück zum Zitat Grimm KJ: Multivariate longitudinal methods for studying developmental relationships between depression and academic achievement. Int J Behav Dev. 2007, 31: 328-339. 10.1177/0165025407077754. Grimm KJ: Multivariate longitudinal methods for studying developmental relationships between depression and academic achievement. Int J Behav Dev. 2007, 31: 328-339. 10.1177/0165025407077754.
54.
Zurück zum Zitat McArdle JJ, Grimm KJ: Five steps in latent curve and latent change score modeling with longitudinal data. Longitudinal Research with Latent Variables. 2010, Heidelberg, Berlin: Springer, 245-273. McArdle JJ, Grimm KJ: Five steps in latent curve and latent change score modeling with longitudinal data. Longitudinal Research with Latent Variables. 2010, Heidelberg, Berlin: Springer, 245-273.
55.
Zurück zum Zitat McArdle JJ, Hamagami F: Latent difference score structural models for linear dynamic analyses with incomplete longitudinal data. New Methods for the Analysis of Change. 2001, Washington, DC: American Psychological Association, 137-176. 1 McArdle JJ, Hamagami F: Latent difference score structural models for linear dynamic analyses with incomplete longitudinal data. New Methods for the Analysis of Change. 2001, Washington, DC: American Psychological Association, 137-176. 1
56.
Zurück zum Zitat McArdle JJ, Hamgami F, Jones K, Jolesz F, Kikinis R, Spiro A, Albert MS: Structural modeling of dynamic changes in memory and brain structure using longitudinal data from the normative aging study. J Gerontol B Psychol Sci Soc Sci. 2004, 59: 294-304. 10.1093/geronb/59.6.P294. McArdle JJ, Hamgami F, Jones K, Jolesz F, Kikinis R, Spiro A, Albert MS: Structural modeling of dynamic changes in memory and brain structure using longitudinal data from the normative aging study. J Gerontol B Psychol Sci Soc Sci. 2004, 59: 294-304. 10.1093/geronb/59.6.P294.
57.
Zurück zum Zitat Hamagami F, McArdle J: Advanced studies of individual differences linear dynamic models for longitudinal data analysis. New Developments and Techniques in Structural Equation Modeling. 2001, Mahwah, New Jersey: Lawrence Erlbaum Associates, Inc, 203-246. Hamagami F, McArdle J: Advanced studies of individual differences linear dynamic models for longitudinal data analysis. New Developments and Techniques in Structural Equation Modeling. 2001, Mahwah, New Jersey: Lawrence Erlbaum Associates, Inc, 203-246.
58.
Zurück zum Zitat Bollen KA, Curran PJ: Latent Curve Models: A Structural Equation Perspective. 2006, New Jersey: John Wiley & Sons, Inc Bollen KA, Curran PJ: Latent Curve Models: A Structural Equation Perspective. 2006, New Jersey: John Wiley & Sons, Inc
59.
Zurück zum Zitat Hu L, Bentler PM: Cut off criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct Equ Modeling. 1999, 6: 1-55. 10.1080/10705519909540118. Hu L, Bentler PM: Cut off criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct Equ Modeling. 1999, 6: 1-55. 10.1080/10705519909540118.
60.
Zurück zum Zitat Muthén LK, Muthén BO: Mplus User’s Guide. 2010, Muthén & Muthén: Los Angeles, CA, 6 Muthén LK, Muthén BO: Mplus User’s Guide. 2010, Muthén & Muthén: Los Angeles, CA, 6
61.
Zurück zum Zitat Raykov T: Analysis of longitudinal studies with missing data using covariance structure modeling with full-information maximum likelihood. Struct Equ Modeling. 2005, 12: 493-505. 10.1207/s15328007sem1203_8. Raykov T: Analysis of longitudinal studies with missing data using covariance structure modeling with full-information maximum likelihood. Struct Equ Modeling. 2005, 12: 493-505. 10.1207/s15328007sem1203_8.
62.
Zurück zum Zitat McArdle J: Longitudinal dynamic analyses of cognition in the health and retirement study panel. AstA Adv Stat Anal. 2011, 95: 453-480. 10.1007/s10182-011-0168-z.PubMed McArdle J: Longitudinal dynamic analyses of cognition in the health and retirement study panel. AstA Adv Stat Anal. 2011, 95: 453-480. 10.1007/s10182-011-0168-z.PubMed
63.
Zurück zum Zitat Boker SM, McArdle JJ: Statistical vector field analysis applied to mixed cross-sectional and longitudinal data. Exp Aging Res. 1995, 21: 77-93. 10.1080/03610739508254269.PubMed Boker SM, McArdle JJ: Statistical vector field analysis applied to mixed cross-sectional and longitudinal data. Exp Aging Res. 1995, 21: 77-93. 10.1080/03610739508254269.PubMed
64.
Zurück zum Zitat Flensborg-Madsen T: Alcohol use disorders and depression - the chicken or the egg?. Addiction. 2011, 106: 916-918. 10.1111/j.1360-0443.2011.03406.x.PubMed Flensborg-Madsen T: Alcohol use disorders and depression - the chicken or the egg?. Addiction. 2011, 106: 916-918. 10.1111/j.1360-0443.2011.03406.x.PubMed
65.
Zurück zum Zitat Conner KR: Clarifying the relationship between alcohol and depression. Addiction. 2011, 106: 915-916. 10.1111/j.1360-0443.2011.03385.x.PubMed Conner KR: Clarifying the relationship between alcohol and depression. Addiction. 2011, 106: 915-916. 10.1111/j.1360-0443.2011.03385.x.PubMed
66.
Zurück zum Zitat Swendsen JD, Merikangas KR, Canino GJ, Kessler RC, Rubio-Stipec M, Angst J: The comorbidity of alcoholism with anxiety and depressive disorders in four geographic communities. Compr Psychiatry. 1998, 39: 176-184. 10.1016/S0010-440X(98)90058-X.PubMed Swendsen JD, Merikangas KR, Canino GJ, Kessler RC, Rubio-Stipec M, Angst J: The comorbidity of alcoholism with anxiety and depressive disorders in four geographic communities. Compr Psychiatry. 1998, 39: 176-184. 10.1016/S0010-440X(98)90058-X.PubMed
67.
Zurück zum Zitat Burns L, Teesson M: Alcohol use disorders comorbid with anxiety, depression and drug use disorders: Findings from the Australian National Survey of Mental Health and Well Being. Drug Alcohol Depend. 2002, 68: 299-307. 10.1016/S0376-8716(02)00220-X.PubMed Burns L, Teesson M: Alcohol use disorders comorbid with anxiety, depression and drug use disorders: Findings from the Australian National Survey of Mental Health and Well Being. Drug Alcohol Depend. 2002, 68: 299-307. 10.1016/S0376-8716(02)00220-X.PubMed
68.
Zurück zum Zitat Smith GW, Shevlin M: Patterns of alcohol consumption and related behaviour in Great Britain: a latent class analysis of the alcohol use disorder identification test (AUDIT). Alcohol Alcohol. 2008, 43: 590-594. 10.1093/alcalc/agn041.PubMed Smith GW, Shevlin M: Patterns of alcohol consumption and related behaviour in Great Britain: a latent class analysis of the alcohol use disorder identification test (AUDIT). Alcohol Alcohol. 2008, 43: 590-594. 10.1093/alcalc/agn041.PubMed
69.
Zurück zum Zitat Bolton JM, Robinson J, Sareen J: Self-medication of mood disorders with alcohol and drugs in the National Epidemiologic Survey on Alcohol and Related Conditions. J Affect Disord. 2009, 115: 367-375. 10.1016/j.jad.2008.10.003.PubMed Bolton JM, Robinson J, Sareen J: Self-medication of mood disorders with alcohol and drugs in the National Epidemiologic Survey on Alcohol and Related Conditions. J Affect Disord. 2009, 115: 367-375. 10.1016/j.jad.2008.10.003.PubMed
70.
Zurück zum Zitat Zhan W, Shaboltas A, Skochilov R, Kozlov A, Krasnoselskikh T: Gender differences in the relationship between alcohol use and depressive symptoms in St. Petersburg, Russia. J Addict Res Ther. 2012, 3: 2. Zhan W, Shaboltas A, Skochilov R, Kozlov A, Krasnoselskikh T: Gender differences in the relationship between alcohol use and depressive symptoms in St. Petersburg, Russia. J Addict Res Ther. 2012, 3: 2.
71.
Zurück zum Zitat Crum RM, Storr CL, Chan Y: Depression syndromes with risk of alcohol dependence in adulthood: a latent class analysis. Drug Alcohol Depend. 2005, 79: 71-81. 10.1016/j.drugalcdep.2005.01.001.PubMed Crum RM, Storr CL, Chan Y: Depression syndromes with risk of alcohol dependence in adulthood: a latent class analysis. Drug Alcohol Depend. 2005, 79: 71-81. 10.1016/j.drugalcdep.2005.01.001.PubMed
72.
Zurück zum Zitat Flensborg-Madsen T, Mortensen EL, Knop J, Becker U, Sher L, Grønbæk M: Comorbidity and temporal ordering of alcohol use disorders and other psychiatric disorders: results from a Danish register-based study. Compr Psychiatry. 2009, 50: 307-314. 10.1016/j.comppsych.2008.09.003.PubMed Flensborg-Madsen T, Mortensen EL, Knop J, Becker U, Sher L, Grønbæk M: Comorbidity and temporal ordering of alcohol use disorders and other psychiatric disorders: results from a Danish register-based study. Compr Psychiatry. 2009, 50: 307-314. 10.1016/j.comppsych.2008.09.003.PubMed
73.
Zurück zum Zitat Boschloo L, van den Brink W, Penninx BWJH, Wall MM, Hasin DS: Alcohol-use disorder severity predicts first-incidence of depressive disorders. Psychol Med. 2012, 42: 695-703. 10.1017/S0033291711001681.PubMed Boschloo L, van den Brink W, Penninx BWJH, Wall MM, Hasin DS: Alcohol-use disorder severity predicts first-incidence of depressive disorders. Psychol Med. 2012, 42: 695-703. 10.1017/S0033291711001681.PubMed
74.
Zurück zum Zitat Boschloo L, Vogelzangs N, van den Brink W, Smit JH, Veltman DJ, Beekman ATF, Penninx BWJH: Authors’ reply. Br J Psychiatry. 2012, 201: 326-327. Boschloo L, Vogelzangs N, van den Brink W, Smit JH, Veltman DJ, Beekman ATF, Penninx BWJH: Authors’ reply. Br J Psychiatry. 2012, 201: 326-327.
75.
Zurück zum Zitat Crum RM, La Flair L, Storr CL, Green KM, Stuart EA, Alvanzo AAH, Lazareck S, Bolton JM, Robinson J, Sareen J, Mojtabai R: Reports of drinking to self-medicate anxiety symptoms: longitudinal assessment for subgroups of individuals with alcohol dependence. Depress Anxiety. 2013, 30: 174-183. 10.1002/da.22024.PubMed Crum RM, La Flair L, Storr CL, Green KM, Stuart EA, Alvanzo AAH, Lazareck S, Bolton JM, Robinson J, Sareen J, Mojtabai R: Reports of drinking to self-medicate anxiety symptoms: longitudinal assessment for subgroups of individuals with alcohol dependence. Depress Anxiety. 2013, 30: 174-183. 10.1002/da.22024.PubMed
76.
Zurück zum Zitat Singer JD, Willett JB: Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. 2003, New York: Oxford University Press Singer JD, Willett JB: Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. 2003, New York: Oxford University Press
77.
Zurück zum Zitat Britton A, Marmot MG, Shipley MJ: How does variability in alcohol consumption over time affect the relationship with mortality and coronary heart disease?. Addiction. 2010, 105: 639-645. 10.1111/j.1360-0443.2009.02832.x.PubMedPubMedCentral Britton A, Marmot MG, Shipley MJ: How does variability in alcohol consumption over time affect the relationship with mortality and coronary heart disease?. Addiction. 2010, 105: 639-645. 10.1111/j.1360-0443.2009.02832.x.PubMedPubMedCentral
78.
Zurück zum Zitat Hernán MA, Hernández-Díaz S, Robins JM: A structural approach to selection bias. Epidemiology. 2004, 15: 615-625. 10.1097/01.ede.0000135174.63482.43.PubMed Hernán MA, Hernández-Díaz S, Robins JM: A structural approach to selection bias. Epidemiology. 2004, 15: 615-625. 10.1097/01.ede.0000135174.63482.43.PubMed
79.
Zurück zum Zitat Stockwell T, Chikritzhs T: Commentary: another serious challenge to the hypothesis that moderate drinking is good for health?. Int J Epidemiol. 2013, 42: 1792-1794. 10.1093/ije/dyt217.PubMed Stockwell T, Chikritzhs T: Commentary: another serious challenge to the hypothesis that moderate drinking is good for health?. Int J Epidemiol. 2013, 42: 1792-1794. 10.1093/ije/dyt217.PubMed
80.
Zurück zum Zitat Marmot MG, Stansfeld S, Patel C, North F, Head J, White I, Brunner E, Feeney A, Smith GD: Health inequalities among British civil servants: the Whitehall II study. Lancet. 1991, 337: 1387-1393. 10.1016/0140-6736(91)93068-K.PubMed Marmot MG, Stansfeld S, Patel C, North F, Head J, White I, Brunner E, Feeney A, Smith GD: Health inequalities among British civil servants: the Whitehall II study. Lancet. 1991, 337: 1387-1393. 10.1016/0140-6736(91)93068-K.PubMed
81.
Zurück zum Zitat Tabák AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimäki M, Witte DR: Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet. 2009, 373: 2215-2221. 10.1016/S0140-6736(09)60619-X.PubMedPubMedCentral Tabák AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimäki M, Witte DR: Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet. 2009, 373: 2215-2221. 10.1016/S0140-6736(09)60619-X.PubMedPubMedCentral
82.
Zurück zum Zitat Klatsky AL: Epidemiology of coronary heart disease—influence of alcohol. Alcohol Clin Exp Res. 1994, 18: 88-96. 10.1111/j.1530-0277.1994.tb00886.x.PubMed Klatsky AL: Epidemiology of coronary heart disease—influence of alcohol. Alcohol Clin Exp Res. 1994, 18: 88-96. 10.1111/j.1530-0277.1994.tb00886.x.PubMed
83.
Zurück zum Zitat Wilsnack SC, Wilsnack RW: International gender and alcohol research: recent findings and future directions. Alcohol Res Health. 2002, 26: 245-250.PubMed Wilsnack SC, Wilsnack RW: International gender and alcohol research: recent findings and future directions. Alcohol Res Health. 2002, 26: 245-250.PubMed
84.
Zurück zum Zitat Kaskutas LA, Graves K: An alternative to standard drinks as a measure of alcohol consumption. J Subst Abuse. 2000, 12: 67-78. 10.1016/S0899-3289(00)00042-0.PubMed Kaskutas LA, Graves K: An alternative to standard drinks as a measure of alcohol consumption. J Subst Abuse. 2000, 12: 67-78. 10.1016/S0899-3289(00)00042-0.PubMed
85.
Zurück zum Zitat Williams GD, Proudfit AH, Quinn EA, Campbell KE: Variations in quantity-frequency measures of alcohol consumption from a general population survey. Addiction. 1994, 89: 413-420. 10.1111/j.1360-0443.1994.tb00915.x.PubMed Williams GD, Proudfit AH, Quinn EA, Campbell KE: Variations in quantity-frequency measures of alcohol consumption from a general population survey. Addiction. 1994, 89: 413-420. 10.1111/j.1360-0443.1994.tb00915.x.PubMed
86.
Zurück zum Zitat Bobrova N, West R, Malyutina D, Malyutina S, Bobak M: Gender differences in drinking practices in middle aged and older Russians. Alcohol Alcohol. 2010, 45: 573-580. 10.1093/alcalc/agq069.PubMedPubMedCentral Bobrova N, West R, Malyutina D, Malyutina S, Bobak M: Gender differences in drinking practices in middle aged and older Russians. Alcohol Alcohol. 2010, 45: 573-580. 10.1093/alcalc/agq069.PubMedPubMedCentral
87.
Zurück zum Zitat Laatikainen T, Alho H, Vartiainen E, Jousilahti P, Sillanaukee P, Puska P: Self-reported alcohol consumption and association to carbohydrate-deficient transferrin and gamma-glutamyltransferase in a random sample of the general population in the Republic of Karelia, Russia and in North Karelia, Finland. Alcohol Alcohol. 2002, 37: 282-288. 10.1093/alcalc/37.3.282.PubMed Laatikainen T, Alho H, Vartiainen E, Jousilahti P, Sillanaukee P, Puska P: Self-reported alcohol consumption and association to carbohydrate-deficient transferrin and gamma-glutamyltransferase in a random sample of the general population in the Republic of Karelia, Russia and in North Karelia, Finland. Alcohol Alcohol. 2002, 37: 282-288. 10.1093/alcalc/37.3.282.PubMed
88.
Zurück zum Zitat Kiechl S, Willeit J, Egger G, Oberhollenzer M, Aichner F: Alcohol consumption and carotid atherosclerosis: evidence of dose- dependent atherogenic and antiatherogenic effects. Results from the Bruneck Study. Stroke. 1994, 25: 1593-1598. 10.1161/01.STR.25.8.1593.PubMed Kiechl S, Willeit J, Egger G, Oberhollenzer M, Aichner F: Alcohol consumption and carotid atherosclerosis: evidence of dose- dependent atherogenic and antiatherogenic effects. Results from the Bruneck Study. Stroke. 1994, 25: 1593-1598. 10.1161/01.STR.25.8.1593.PubMed
89.
Zurück zum Zitat Prisciandaro JJ, DeSantis SM, Bandyopadhyay D: Simultaneous modeling of the impact of treatments on alcohol consumption and quality of life in the COMBINE study: a coupled hidden Markov analysis. Alcohol Clin Exp Res. 2012, 36: 2141-2149. 10.1111/j.1530-0277.2012.01823.x.PubMedPubMedCentral Prisciandaro JJ, DeSantis SM, Bandyopadhyay D: Simultaneous modeling of the impact of treatments on alcohol consumption and quality of life in the COMBINE study: a coupled hidden Markov analysis. Alcohol Clin Exp Res. 2012, 36: 2141-2149. 10.1111/j.1530-0277.2012.01823.x.PubMedPubMedCentral
90.
Zurück zum Zitat Elliott TE, Renier CM, Palcher JA: Chronic pain, depression, and quality of life: correlations and predictive value of the SF-36. Pain Med. 2003, 4: 331-339. 10.1111/j.1526-4637.2003.03040.x.PubMed Elliott TE, Renier CM, Palcher JA: Chronic pain, depression, and quality of life: correlations and predictive value of the SF-36. Pain Med. 2003, 4: 331-339. 10.1111/j.1526-4637.2003.03040.x.PubMed
91.
Zurück zum Zitat Tavella R, Air T, Tucker G, Adams R, Beltrame J, Schrader G: Using the Short Form-36 mental summary score as an indicator of depressive symptoms in patients with coronary heart disease. Qual Life Res. 2010, 19: 1105-1113. 10.1007/s11136-010-9671-z.PubMed Tavella R, Air T, Tucker G, Adams R, Beltrame J, Schrader G: Using the Short Form-36 mental summary score as an indicator of depressive symptoms in patients with coronary heart disease. Qual Life Res. 2010, 19: 1105-1113. 10.1007/s11136-010-9671-z.PubMed
92.
Zurück zum Zitat Goldberg DP: The Detection of Psychiatric Illness by Questionnaire. 1972, London: Oxford University Press Goldberg DP: The Detection of Psychiatric Illness by Questionnaire. 1972, London: Oxford University Press
93.
Zurück zum Zitat Goldberg DP, Gater R, Sartorius N, Ustun T, Piccinelli M, Gureje O, Rutter C: The validity of two versions of the GHQ in the WHO study of mental illness in general health care. Psychol Med. 1997, 27: 191-197. 10.1017/S0033291796004242.PubMed Goldberg DP, Gater R, Sartorius N, Ustun T, Piccinelli M, Gureje O, Rutter C: The validity of two versions of the GHQ in the WHO study of mental illness in general health care. Psychol Med. 1997, 27: 191-197. 10.1017/S0033291796004242.PubMed
94.
Zurück zum Zitat Goldberg D, Goodyer I: The Origins and Course of Common Mental Disorders. 2005, London: Routledge Goldberg D, Goodyer I: The Origins and Course of Common Mental Disorders. 2005, London: Routledge
95.
Zurück zum Zitat Prince M, Patel V, Saxena S, Maj M, Maselko J, Phillips MR, Rahman A: No health without mental health. Lancet. 2007, 370: 859-877. 10.1016/S0140-6736(07)61238-0.PubMed Prince M, Patel V, Saxena S, Maj M, Maselko J, Phillips MR, Rahman A: No health without mental health. Lancet. 2007, 370: 859-877. 10.1016/S0140-6736(07)61238-0.PubMed
96.
Zurück zum Zitat Clark LA, Watson D: Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. J Abnorm Psychol. 1991, 100: 316-336.PubMed Clark LA, Watson D: Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. J Abnorm Psychol. 1991, 100: 316-336.PubMed
97.
Zurück zum Zitat Clark LA, Watson D, Mineka S: Temperament, personality, and the mood and anxiety disorders. J Abnorm Psychol. 1994, 103: 103-116.PubMed Clark LA, Watson D, Mineka S: Temperament, personality, and the mood and anxiety disorders. J Abnorm Psychol. 1994, 103: 103-116.PubMed
98.
Zurück zum Zitat Mineka S, Watson D, Clark LA: Comorbidity of anxiety and unipolar mood disorders. Annu Rev Psychol. 1998, 49: 377-412. 10.1146/annurev.psych.49.1.377.PubMed Mineka S, Watson D, Clark LA: Comorbidity of anxiety and unipolar mood disorders. Annu Rev Psychol. 1998, 49: 377-412. 10.1146/annurev.psych.49.1.377.PubMed
99.
Zurück zum Zitat Watson D: Rethinking the mood and anxiety disorders: A quantitative hierarchical model for DSM-V. J Abnorm Psychol. 2005, 114: 522-536.PubMed Watson D: Rethinking the mood and anxiety disorders: A quantitative hierarchical model for DSM-V. J Abnorm Psychol. 2005, 114: 522-536.PubMed
100.
Zurück zum Zitat Harder VS, Ayer LA, Rose GL, Naylor MR, Helzer JE: Alcohol, moods and male–female differences: daily interactive voice response over 6 months. Alcohol Alcohol. 2014, 49: 60-65. 10.1093/alcalc/agt069.PubMed Harder VS, Ayer LA, Rose GL, Naylor MR, Helzer JE: Alcohol, moods and male–female differences: daily interactive voice response over 6 months. Alcohol Alcohol. 2014, 49: 60-65. 10.1093/alcalc/agt069.PubMed
101.
Zurück zum Zitat Robins JM, Hernán MÁ, Brumback B: Marginal structural models and causal inference in epidemiology. Epidemiology. 2000, 11: 550-560. 10.1097/00001648-200009000-00011.PubMed Robins JM, Hernán MÁ, Brumback B: Marginal structural models and causal inference in epidemiology. Epidemiology. 2000, 11: 550-560. 10.1097/00001648-200009000-00011.PubMed
102.
Zurück zum Zitat Bell S, Britton A: Alcohol and men’s health. Trends Urol Mens Health. 2011, 2: 9-12. Bell S, Britton A: Alcohol and men’s health. Trends Urol Mens Health. 2011, 2: 9-12.
103.
Zurück zum Zitat Kelleher M: Drugs and alcohol: physical complications. Psychiatry. 2006, 5: 442-445. 10.1053/j.mppsy.2006.09.009. Kelleher M: Drugs and alcohol: physical complications. Psychiatry. 2006, 5: 442-445. 10.1053/j.mppsy.2006.09.009.
104.
Zurück zum Zitat Movva R, Figueredo VM: Alcohol and the heart: To abstain or not to abstain?. Int J Cardiol. 2013, 164: 267-276. 10.1016/j.ijcard.2012.01.030.PubMed Movva R, Figueredo VM: Alcohol and the heart: To abstain or not to abstain?. Int J Cardiol. 2013, 164: 267-276. 10.1016/j.ijcard.2012.01.030.PubMed
105.
Zurück zum Zitat Roerecke M, Rehm J: The cardioprotective association of average alcohol consumption and ischaemic heart disease: a systematic review and meta-analysis. Addiction. 2012, 107: 1246-1260. 10.1111/j.1360-0443.2012.03780.x.PubMedPubMedCentral Roerecke M, Rehm J: The cardioprotective association of average alcohol consumption and ischaemic heart disease: a systematic review and meta-analysis. Addiction. 2012, 107: 1246-1260. 10.1111/j.1360-0443.2012.03780.x.PubMedPubMedCentral
106.
Zurück zum Zitat Britton A: Alcohol and heart disease. BMJ. 2010, 341: c5957-10.1136/bmj.c5957.PubMed Britton A: Alcohol and heart disease. BMJ. 2010, 341: c5957-10.1136/bmj.c5957.PubMed
107.
Zurück zum Zitat Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA: Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. BMJ. 2011, 342: d671-10.1136/bmj.d671.PubMedPubMedCentral Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA: Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. BMJ. 2011, 342: d671-10.1136/bmj.d671.PubMedPubMedCentral
108.
Zurück zum Zitat O’Keefe JH, Bybee KA, Lavie CJ: Alcohol and cardiovascular health: the razor-sharp double-edged sword. J Am Coll Cardiol. 2007, 50: 1009-1014. 10.1016/j.jacc.2007.04.089.PubMed O’Keefe JH, Bybee KA, Lavie CJ: Alcohol and cardiovascular health: the razor-sharp double-edged sword. J Am Coll Cardiol. 2007, 50: 1009-1014. 10.1016/j.jacc.2007.04.089.PubMed
109.
Zurück zum Zitat Ruidavets J-B, Ducimetière P, Evans A, Montaye M, Haas B, Bingham A, Yarnell J, Amouyel P, Arveiler D, Kee F, Bongard V, Ferrières J: Patterns of alcohol consumption and ischaemic heart disease in culturally divergent countries: the Prospective Epidemiological Study of Myocardial Infarction (PRIME). BMJ. 2010, 341: c6077-10.1136/bmj.c6077.PubMedPubMedCentral Ruidavets J-B, Ducimetière P, Evans A, Montaye M, Haas B, Bingham A, Yarnell J, Amouyel P, Arveiler D, Kee F, Bongard V, Ferrières J: Patterns of alcohol consumption and ischaemic heart disease in culturally divergent countries: the Prospective Epidemiological Study of Myocardial Infarction (PRIME). BMJ. 2010, 341: c6077-10.1136/bmj.c6077.PubMedPubMedCentral
110.
Zurück zum Zitat Boffetta P, Hashibe M: Alcohol and cancer. Lancet Oncol. 2006, 7: 149-156. 10.1016/S1470-2045(06)70577-0.PubMed Boffetta P, Hashibe M: Alcohol and cancer. Lancet Oncol. 2006, 7: 149-156. 10.1016/S1470-2045(06)70577-0.PubMed
111.
Zurück zum Zitat Allen NE, Beral V, Casabonne D, Kan SW, Reeves GK, Brown A, Green J: Moderate alcohol intake and cancer incidence in women. J Natl Cancer Inst. 2009, 101: 296-305. 10.1093/jnci/djn514.PubMed Allen NE, Beral V, Casabonne D, Kan SW, Reeves GK, Brown A, Green J: Moderate alcohol intake and cancer incidence in women. J Natl Cancer Inst. 2009, 101: 296-305. 10.1093/jnci/djn514.PubMed
112.
Zurück zum Zitat Tomkins S, Collier T, Oralov A, Saburova L, McKee M, Shkolnikov V, Kiryanov N, Leon DA: Hazardous alcohol consumption is a major factor in male premature mortality in a typical Russian city: prospective cohort study 2003–2009. PLoS One. 2012, 7: e30274-10.1371/journal.pone.0030274.PubMedPubMedCentral Tomkins S, Collier T, Oralov A, Saburova L, McKee M, Shkolnikov V, Kiryanov N, Leon DA: Hazardous alcohol consumption is a major factor in male premature mortality in a typical Russian city: prospective cohort study 2003–2009. PLoS One. 2012, 7: e30274-10.1371/journal.pone.0030274.PubMedPubMedCentral
113.
Zurück zum Zitat Rostron B: Alcohol consumption and mortality risks in the USA. Alcohol Alcohol. 2012, 47: 334-339. 10.1093/alcalc/agr171.PubMed Rostron B: Alcohol consumption and mortality risks in the USA. Alcohol Alcohol. 2012, 47: 334-339. 10.1093/alcalc/agr171.PubMed
114.
Zurück zum Zitat Jeong H-G, Kim TH, Lee JJ, Lee SB, Park JH, Huh Y, Chin HJ, Jhoo JH, Lee DY, Woo JI, Kim KW: Impact of alcohol use on mortality in the elderly: Results from the Korean Longitudinal Study on Health and Aging. Drug Alcohol Depend. 2012, 121: 133-139. 10.1016/j.drugalcdep.2011.08.017.PubMed Jeong H-G, Kim TH, Lee JJ, Lee SB, Park JH, Huh Y, Chin HJ, Jhoo JH, Lee DY, Woo JI, Kim KW: Impact of alcohol use on mortality in the elderly: Results from the Korean Longitudinal Study on Health and Aging. Drug Alcohol Depend. 2012, 121: 133-139. 10.1016/j.drugalcdep.2011.08.017.PubMed
115.
Zurück zum Zitat Van der Kooy K, van Hout H, Marwijk H, Marten H, Stehouwer C, Beekman A: Depression and the risk for cardiovascular diseases: systematic review and meta analysis. Int J Geriat Psychiatry. 2007, 22: 613-626. 10.1002/gps.1723. Van der Kooy K, van Hout H, Marwijk H, Marten H, Stehouwer C, Beekman A: Depression and the risk for cardiovascular diseases: systematic review and meta analysis. Int J Geriat Psychiatry. 2007, 22: 613-626. 10.1002/gps.1723.
116.
Zurück zum Zitat Nabi H, Kivimäki M, Suominen S, Koskenvuo M, Singh-Manoux A, Vahtera J: Does depression predict coronary heart disease and cerebrovascular disease equally well? The Health and Social Support Prospective Cohort Study. Int J Epidemiol. 2010, 39: 1016-1024. 10.1093/ije/dyq050.PubMedPubMedCentral Nabi H, Kivimäki M, Suominen S, Koskenvuo M, Singh-Manoux A, Vahtera J: Does depression predict coronary heart disease and cerebrovascular disease equally well? The Health and Social Support Prospective Cohort Study. Int J Epidemiol. 2010, 39: 1016-1024. 10.1093/ije/dyq050.PubMedPubMedCentral
117.
Zurück zum Zitat Rumsfeld JS, Ho PM: Depression and cardiovascular disease: a call for recognition. Circulation. 2005, 111: 250-253. 10.1161/01.CIR.0000154573.62822.89.PubMed Rumsfeld JS, Ho PM: Depression and cardiovascular disease: a call for recognition. Circulation. 2005, 111: 250-253. 10.1161/01.CIR.0000154573.62822.89.PubMed
118.
Zurück zum Zitat Ferketich AK, Schwartzbaum JA, Frid DJ, Moeschberger ML: Depression as an antecedent to heart disease among women and men in the NHANES I Study. Arch Intern Med. 2000, 160: 1261-1268. 10.1001/archinte.160.9.1261.PubMed Ferketich AK, Schwartzbaum JA, Frid DJ, Moeschberger ML: Depression as an antecedent to heart disease among women and men in the NHANES I Study. Arch Intern Med. 2000, 160: 1261-1268. 10.1001/archinte.160.9.1261.PubMed
119.
Zurück zum Zitat Stansfeld SA, Fuhrer R, Shipley MJ, Marmot MG: Psychological distress as a risk factor for coronary heart disease in the Whitehall II Study. Int J Epidemiol. 2002, 31: 248-255. 10.1093/ije/31.1.248.PubMed Stansfeld SA, Fuhrer R, Shipley MJ, Marmot MG: Psychological distress as a risk factor for coronary heart disease in the Whitehall II Study. Int J Epidemiol. 2002, 31: 248-255. 10.1093/ije/31.1.248.PubMed
120.
Zurück zum Zitat Nabi H, Shipley MJ, Vahtera J, Hall M, Korkeila J, Marmot MG, Kivimäki M, Singh-Manoux A: Effects of depressive symptoms and coronary heart disease and their interactive associations on mortality in middle-aged adults: the Whitehall II cohort study. Heart. 2010, 96: 1645-1650. 10.1136/hrt.2010.198507.PubMedPubMedCentral Nabi H, Shipley MJ, Vahtera J, Hall M, Korkeila J, Marmot MG, Kivimäki M, Singh-Manoux A: Effects of depressive symptoms and coronary heart disease and their interactive associations on mortality in middle-aged adults: the Whitehall II cohort study. Heart. 2010, 96: 1645-1650. 10.1136/hrt.2010.198507.PubMedPubMedCentral
121.
Zurück zum Zitat Thomson W: Lifting the shroud on depression and premature mortality: a 49-year follow-up study. J Affect Disord. 2011, 130: 60-65. 10.1016/j.jad.2010.09.028.PubMed Thomson W: Lifting the shroud on depression and premature mortality: a 49-year follow-up study. J Affect Disord. 2011, 130: 60-65. 10.1016/j.jad.2010.09.028.PubMed
122.
Zurück zum Zitat Zhang J-P, Kahana B, Kahana E, Hu B, Pozuelo L: Joint modeling of longitudinal changes in depressive symptoms and mortality in a sample of community-dwelling elderly people. Psychosom Med. 2009, 71: 704-714. 10.1097/PSY.0b013e3181ac9bce.PubMedPubMedCentral Zhang J-P, Kahana B, Kahana E, Hu B, Pozuelo L: Joint modeling of longitudinal changes in depressive symptoms and mortality in a sample of community-dwelling elderly people. Psychosom Med. 2009, 71: 704-714. 10.1097/PSY.0b013e3181ac9bce.PubMedPubMedCentral
123.
Zurück zum Zitat Royal College of Psychiatrists: No Health without Public Mental Health: The Case for Action. Position Statement. 2010, London: Royal College of Psychiatrists, 48. Royal College of Psychiatrists: No Health without Public Mental Health: The Case for Action. Position Statement. 2010, London: Royal College of Psychiatrists, 48.
124.
Zurück zum Zitat Centre for Mental Health, Department of Health, Mind, NHS Confederation Mental Health Network, Rethink Mental Illness, Turning Point: No Health Without Mental Health: Implementation Framework. 2012, 54. Centre for Mental Health, Department of Health, Mind, NHS Confederation Mental Health Network, Rethink Mental Illness, Turning Point: No Health Without Mental Health: Implementation Framework. 2012, 54.
125.
Zurück zum Zitat The Marmot Review: Fair Society, Healthy Lives: A Strategic Review of Health Inequalities in England Post-2010. 2010, 1-242. The Marmot Review: Fair Society, Healthy Lives: A Strategic Review of Health Inequalities in England Post-2010. 2010, 1-242.
Metadaten
Titel
An exploration of the dynamic longitudinal relationship between mental health and alcohol consumption: a prospective cohort study
verfasst von
Steven Bell
Annie Britton
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2014
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-12-91

Weitere Artikel der Ausgabe 1/2014

BMC Medicine 1/2014 Zur Ausgabe

Reviewer acknowledgement

Reviewer acknowledgements for 2013

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.