Skip to main content
Erschienen in: Journal of Cardiothoracic Surgery 1/2008

Open Access 01.12.2008 | Research article

The prevalence of elevated hemoglobin A1c in patients undergoing coronary artery bypass surgery

verfasst von: Milo Engoren, Robert H Habib, Anoar Zacharias, Thomas A Schwann, Christopher J Riordan, Samuel J Durham, Aamir Shah

Erschienen in: Journal of Cardiothoracic Surgery | Ausgabe 1/2008

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Diabetes mellitus has become a major health issue in the United States and contributes to morbidity and mortality from coronary artery disease. Despite lifestyle changes and medications that have been shown to decrease complications and death, many persons have poor glycemic control. The purpose of this study is to determine the prevalence of elevated Hemoglobin A1c levels, a marker of glycemic control in patients presenting for coronary artery bypass surgery, and to determine if risk factors for diabetes mellitus could identify those patients with an elevated hemoglobin A1c.

Methods

All patients undergoing coronary artery bypass surgery had hemoglobin A1c levels determined immediately preoperatively. Proportions were used to describe the number of patients with elevated levels. Linear regression and receiver operator characteristic curves were used to evaluate the accuracy of risk factors to identify patients with elevated levels.

Results

83 of 87 (95%) diabetic patients had elevated A1c levels (≥ 6.0%), with 55 of 87 (63%) having inadequate control – A1c levels ≥ 7.0. 93 of 163 (57%) non-diabetic patients had elevated A1c levels (≥ 6.0%), with 19 (12%) having levels ≥ 7.0%. Risk factors for diabetes mellitus poorly predicted which patient had elevated A1c levels.

Conclusion

The prevalence of elevated hemoglobin levels in patients undergoing coronary artery bypass surgery is high and routine measurement should be done to permit institution of lifestyle modifications and medication changes that decrease complications and death from diabetes mellitus.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1749-8090-3-63) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

ME conceived the study. ME, AZ, TS, CR, SD, AS participated in data collection. ME, RH drafted the manuscript. All authors revised it critically for important intellectual content and have given final approval of the version to be published.

Background

The prevalence of diabetes mellitus(DM) is increasing in the United Sates and has become a major public health issue [1]. Nearly 21 million Americans – 7% of the population – have DM, including over 6 million who are undiagnosed [1]. Additionally, there are 41 million Americans with pre-diabetes [2]. DM is a risk factor for coronary artery disease and its presence portends a worse outcome – both short and long term – in patients undergoing coronary artery bypass surgery [3, 4]. Following recent studies that have shown the benefits of tight glycemic control in both diabetic and non-diabetic patients [5, 6], we instituted protocols designed for tight glycemic control in both the intensive care unit and the stepdown unit. We noticed, however, that some patients without any history of DM were still requiring antiglycemic therapy upon discharge and that other patients with a history of DM remained poorly controlled despite resumption of their usual antiglycemic medicines and eating a hospital provided diabetic diet. To better help us provide for patients' post-discharge care, we began to routinely check hemoglobin A1c (HbA1c). HbA1c is the glycosolated form of hemoglobin and its level is proportional to the average glucose level over the past 2–3 months [7]. While not recommended for the diagnosis of DM [8], specific HbA1c levels are recommended as treatment goals by national organizations [9, 10] and we used these levels in guiding post-discharge therapy and instructions. The purpose of this study was to determine the prevalence of elevated HbA1c in the diabetic and non-diabetic subcohorts of a cardiac surgery population and to determine if age, height, weight, and body mass index – standard risk factors for DM could be used to predict elevated HbA1c levels.

Methods

This retrospective study was approved on August 30, 2007 by the St. Vincent Mercy Medical Center Review Board, which waived informed consent. HbA1c levels had been drawn immediately prior to surgery in all patients undergoing cardiac surgery as part of their routine care and the results included in our computerized database. Data are presented as histograms, proportions, and means ± standard deviation and analyzed with student t test and Chi square test. We separately used linear regression on patients with and without DM to predict HbA1c levels based on age, height, weight, and body mass index. Then we used receiver operator characteristic curves to measure the predictive accuracy of the two linear regressions. The results are given as area under the receiver operator characteristic curve (c-statistic ± standard error). SPSS 13.0 (SPSS, Inc., Chicago, IL) was used for data analysis. The power analysis was based on determining the 95% confidence interval for the point estimate within 5% of the true proportion of patients with elevated HbA1c – defined as ≥ 6.0% – assuming the true proportion was 0.2. This required 250 patients [11].

Results

Data were collected from 250 consecutive patients undergoing CABG (January 2007 – July 2007) in whom preoperative HbA1c was measured. Of these patients, 212 underwent isolated CABG surgery and the other 38 CABG combined with carotid, valve, or aortic surgery. The proportion of patients with DM was similar in the two groups. Patients were 65 ± 11 years of age, weighed 88 ± 20 kg, were 172 ± 20 cm tall, and had body mass index (BMI) 30 ± 6. One hundred seventy seven (71%) of the patients were male and 87 (35%) patients had diabetes mellitus – 13 were receiving insulin at home, 59 oral hypoglycemic agents, 5 both, and 10 neither.
The distribution of HbA1c values are shown for the diabetics and non-diabetics in Figure 1. Diabetic patients had higher levels (8.0 ± 2.0% v. 6.2 ± 0.9%, p < .001) than non-diabetic patients. Sixty four percent (95% confidence interval = 58–72%) of the patients had A1c ≥ 6.0%. Only four (5%) of the diabetic patients had HbA1c in the normal range (HbA1c < 6.0%) and another 28 (32%) had HbA1c levels that met the ADA goal of < 7.0%. The remaining 55 (63%) had unacceptably high levels, with 12 (14%) having levels ≥ 10%. Over half (n = 93, 57%) of the patients without a history of diabetes mellitus had elevated HbA1c ≥ 6.0% with 19 (12%) of them having HbA1c ≥ 7.0%. In patients with DM, the standard risk factors of age, height, weight, and body mass index poorly predicted elevated HbA1c: c-statistic = .639 ± .064, p = .027 for HbA1c ≥ 7.0% and c-statistic = .470 ± .204, p = .839 for HbA1c ≥ 6.0%. In non-diabetic patients, results were c-statistic = .742 ± .048, p < .001 for HbA1c ≥ 7.0% and c-statistic = .615 ± .045, p = .013 for HbA1c ≥ 6.0%.

Discussion

We found that many patients with a history of diabetes mellitus undergoing CABG had elevated HbA1c levels suggesting poor glycemic control. Additionally, we found that over half of the non-diabetic patients undergoing CABG had elevated HbA1c levels suggestive of prediabetes or diabetes mellitus. Standard risk factors of age, height, weight, and body mass index were inadequate predictors of elevated HbA1c and should not be used instead of HbA1c as a screening test in CABG patients.
One previous study has evaluated A1c levels in diabetic patients undergoing CABG. Cohen et al. found that A1c levels were 7.03 ± 1.50% and were associated with increased risk of complications in an Israeli population [4]. They did not evaluate non-diabetic patients. We found higher A1c levels (8.0 ± 2.0%) in our diabetic population. Further study is needed to determine the reasons for the poorer control in Ohio patients than in Israeli patients. A study in non-diabetic patients undergoing percutaneous coronary interventions (PCI) found a 30% prevalence of elevated (≥ 6.0%) A1c levels and another 3% had A1c levels ≥ 7.0% and that levels ≥ 6.% were related to a worse 12 month outcome [12]. Our higher rate (57% ≥ 6.0% and 12% ≥ 7.0%)of abnormal A1c levels may indicate more extensive disease that would necessitate CABG instead of PCI. Kowalska et al. found that A1c levels were positively associated with number of diseased vessels [13].
DM is associated with organ damage to the nerves, eyes, kidneys, blood vessels, and heart leading to morbidity, decreased quality of life, and increased mortality [9]. While a prospective, randomized trial of tight glycemic control in patients with type 1 DM has shown a 57% risk reduction in cardiovascular events over a mean followup of 17 years [14], long-term prospective studies evaluating tight control in type II DM have not shown such impressive results. However, the UK Prospective Diabetes Study Group has shown that intensive control with antiglycemic agents compared to conventional therapy is associated with a lowering of myocardial infarction risk that is of "borderline significance" of 14% and that the use of metformin is associated with a lower risk of death in overweight diabetic patients [15, 16]. Improved glycemic control regardless of method was associated with a lowered risk of myocardial infarction [17]. A recent meta-analysis found that each 1% lowering of HBA1c was associated with a 18% reduction in relative risk of developing cardiovascular disease [18].
In a nationwide survey only half of patients with DM met American Diabetes Association clinical practice recommendation of HbA1c < 7% and 30% had HbA1c ≥ 8% [19]. Studies have shown that lifestyle modification, such as weight loss, dietary changes, and exercise decease the likelihood of developing DM [20, 21]. Although cardiac surgery is a major life stressor it is also an opportunity for health care professionals to intervene and educate patients and to institute therapy for secondary prevention of disease. Smoking cessation and low-fat diets are common lifestyle interventions in patients undergoing cardiac surgery. Antihypertensives, lipid lowering drugs, such as statins, and aspirin are commonly started or adjusted for better control in patients who have undergone CABG.
While the association with glucose intolerance and coronary artery disease is well described [22], our study is the first to show the high prevalence in patients undergoing CABG of undiagnosed prediabetes or diabetes mellitus and poorly controlled glycemia in patients with known diabetes mellitus. Given the benefits that may be achieved by tighter glycemic control [1518, 20, 21], screening of all patients undergoing CABG is recommended. Studies are needed to determine if CABG surgery should be delayed to lower the A1c level and to determine the level to which it should be lowered.
While not all patients with elevated HbA1c have DM – the diagnosis should be made on the basis of fasting glucose levels and glucose tolerance test, they are all, at least, at increased risk for developing DM. At the minimum, we recommend lifestyle changes of weight loss, diet changes, and exercise. All patients with elevated HbA1c should followup with their primary care physician or endocrinologist for further diagnostic evaluation. For patients still requiring insulin to control hyperglycemia at time of hospital discharge, we recommend discharge with an appropriate individualized antihyperglycemic medicine. Diabetic patients with an elevated HbA1c are also given similar counseling and adjustments made, if necessary, in their usual diabetic medications.
The limitation of this study is that it was conducted at one hospital, which may limit its generalizabilty. Patients in other areas of the country may have different prevalences of DM and risk factors for DM and this study needs to be validated in other geographical regions. The prevalence of DM in Ohio, 7.5%, is similar to the prevalence (7.3%) in the United States, which suggests that our findings of elevated HbA1c in 57% of nondiabetic patients undergoing CABG would hold true elsewhere in the United States [23].
In conclusion, we found that 57% of non-diabetic patients undergoing CABG had elevated HbA1c. Additionally, 96% of diabetic patients undergoing CABG had elevated HbA1c. These high prevalences of elevated HbA1c suggest routine evaluation in all adult patients undergoing CABG in order to institute lifestyle and medication changes that improve glycemic control.

Acknowledgements

This study was supported by departmental and institutional funds.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

ME conceived the study. ME, AZ, TS, CR, SD, AS participated in data collection. ME, RH drafted the manuscript. All authors revised it critically for important intellectual content and have given final approval of the version to be published.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
2.
Zurück zum Zitat Bloomgarden ZT: Developments in diabetes and insulin resistance. Diabetes Care. 2006, 29: 161-7. 10.2337/diacare.29.01.06.dc06-zb01.CrossRefPubMed Bloomgarden ZT: Developments in diabetes and insulin resistance. Diabetes Care. 2006, 29: 161-7. 10.2337/diacare.29.01.06.dc06-zb01.CrossRefPubMed
3.
Zurück zum Zitat Thourani VH, Weintraub WS, Stein B, Gebhart SS, Craver JM, Jones EL, Guyton RA: Influence of diabetes mellitus on early and late outcome after coronary artery bypass grafting. Ann Thorac Surg. 1999, 67: 1045-52. 10.1016/S0003-4975(99)00143-5.CrossRefPubMed Thourani VH, Weintraub WS, Stein B, Gebhart SS, Craver JM, Jones EL, Guyton RA: Influence of diabetes mellitus on early and late outcome after coronary artery bypass grafting. Ann Thorac Surg. 1999, 67: 1045-52. 10.1016/S0003-4975(99)00143-5.CrossRefPubMed
4.
Zurück zum Zitat Cohen O, Dankner R, Chetrit A, Luxenburg O, Langenauer C, Shinfeld A, Smolinsky AK: Multidisciplinary intervention for control of diabetes in patients undergoing coronary artery bypass graft (CABG). Cardiovasc Surg. 2003, 11: 195-200. 10.1016/S0967-2109(03)00019-X.CrossRefPubMed Cohen O, Dankner R, Chetrit A, Luxenburg O, Langenauer C, Shinfeld A, Smolinsky AK: Multidisciplinary intervention for control of diabetes in patients undergoing coronary artery bypass graft (CABG). Cardiovasc Surg. 2003, 11: 195-200. 10.1016/S0967-2109(03)00019-X.CrossRefPubMed
5.
Zurück zum Zitat Berghe van den G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R: Intensive insulin therapy in critically ill patients. New Engl J Med. 2001, 345: 1359-67. 10.1056/NEJMoa011300.CrossRefPubMed Berghe van den G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R: Intensive insulin therapy in critically ill patients. New Engl J Med. 2001, 345: 1359-67. 10.1056/NEJMoa011300.CrossRefPubMed
6.
Zurück zum Zitat Zerr KJ, Furnay AP, Grunkemeier GL, Bookin S, Kanhere V, Starr A: Glucose control lowers the risk of wound infection in diabetics after open heart operations. Ann Thorac Surg. 1997, 63: 356-61. 10.1016/S0003-4975(96)01044-2.CrossRefPubMed Zerr KJ, Furnay AP, Grunkemeier GL, Bookin S, Kanhere V, Starr A: Glucose control lowers the risk of wound infection in diabetics after open heart operations. Ann Thorac Surg. 1997, 63: 356-61. 10.1016/S0003-4975(96)01044-2.CrossRefPubMed
7.
Zurück zum Zitat Rohlfing CL, Wiedmeyer HM, Little RR, England JD, Tennill A, Goldstein DE: Defining the relationship between plasma glucose and HbA1c: analysis of glucose profiles and HbA1c in the Diabetes Control and Complications Trial. Diabetes Care. 2002, 25: 275-8. 10.2337/diacare.25.2.275.CrossRefPubMed Rohlfing CL, Wiedmeyer HM, Little RR, England JD, Tennill A, Goldstein DE: Defining the relationship between plasma glucose and HbA1c: analysis of glucose profiles and HbA1c in the Diabetes Control and Complications Trial. Diabetes Care. 2002, 25: 275-8. 10.2337/diacare.25.2.275.CrossRefPubMed
8.
Zurück zum Zitat American Diabetes Association: Diagnosis and Classification of Diabetes Mellitus (position statement). Diabetes Care. 2007, 30: S42-7. 10.2337/dc07-S042.CrossRef American Diabetes Association: Diagnosis and Classification of Diabetes Mellitus (position statement). Diabetes Care. 2007, 30: S42-7. 10.2337/dc07-S042.CrossRef
9.
Zurück zum Zitat American Diabetes Association: Standards of Medical Care in Diabetes – 2007 (position statement). Diabetes Care. 2007, 30: S4-S41. 10.2337/dc07-S004.CrossRef American Diabetes Association: Standards of Medical Care in Diabetes – 2007 (position statement). Diabetes Care. 2007, 30: S4-S41. 10.2337/dc07-S004.CrossRef
10.
Zurück zum Zitat American College of Endocrinology: ACE consensus statement on guidelines for glycemic control. Endocr Pract. 2002, 8: 5-11. American College of Endocrinology: ACE consensus statement on guidelines for glycemic control. Endocr Pract. 2002, 8: 5-11.
11.
Zurück zum Zitat Walpole RE, Myers RH: Probability and statistics for engineers and scientists. 1972, New York: Macmillan Publishing Co, 203- Walpole RE, Myers RH: Probability and statistics for engineers and scientists. 1972, New York: Macmillan Publishing Co, 203-
12.
Zurück zum Zitat Corpus RA, O'Neill WW, Dixon SR, Timmis GC, Devlin WH: Relation of hemoglobin A1c to rate of major adverse cardiac events in nondiabetic patients undergoing percutaneous coronary revascularization. Am J Cardiol. 2003, 92: 1282-1286. 10.1016/j.amjcard.2003.08.008.CrossRefPubMed Corpus RA, O'Neill WW, Dixon SR, Timmis GC, Devlin WH: Relation of hemoglobin A1c to rate of major adverse cardiac events in nondiabetic patients undergoing percutaneous coronary revascularization. Am J Cardiol. 2003, 92: 1282-1286. 10.1016/j.amjcard.2003.08.008.CrossRefPubMed
13.
Zurück zum Zitat Kowalska I, Prokop J, Bachórzewska-Gajewska H, Telejko B, Kinalskal I, Kochman W, Musial W: Disturbances of glucose metabolism in men referred for coronary arteriography. Postload glycemia as a predictor for coronary atherosclerosis. Diabetes Care. 2001, 24: 897-901. 10.2337/diacare.24.5.897.CrossRefPubMed Kowalska I, Prokop J, Bachórzewska-Gajewska H, Telejko B, Kinalskal I, Kochman W, Musial W: Disturbances of glucose metabolism in men referred for coronary arteriography. Postload glycemia as a predictor for coronary atherosclerosis. Diabetes Care. 2001, 24: 897-901. 10.2337/diacare.24.5.897.CrossRefPubMed
14.
Zurück zum Zitat Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group: Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005, 353: 2643-53. 10.1056/NEJMoa052187.CrossRefPubMed Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group: Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005, 353: 2643-53. 10.1056/NEJMoa052187.CrossRefPubMed
15.
Zurück zum Zitat UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulphonylureas or insulin with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet. 1998, 352: 837-53. 10.1016/S0140-6736(98)07019-6.CrossRef UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulphonylureas or insulin with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet. 1998, 352: 837-53. 10.1016/S0140-6736(98)07019-6.CrossRef
16.
Zurück zum Zitat UK Prospective Diabetes Study (UKPDS) Group: Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998, 352: 854-65. 10.1016/S0140-6736(98)07037-8.CrossRef UK Prospective Diabetes Study (UKPDS) Group: Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998, 352: 854-65. 10.1016/S0140-6736(98)07037-8.CrossRef
17.
Zurück zum Zitat Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR: Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000, 321: 405-12. 10.1136/bmj.321.7258.405.CrossRefPubMedPubMedCentral Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR: Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000, 321: 405-12. 10.1136/bmj.321.7258.405.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, Golden SH: Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 141: 421-31. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, Golden SH: Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 141: 421-31.
19.
Zurück zum Zitat Resnick HE, Foster GL, Bardsley J, Ratner RE: Achievement of American Diabetes Association clinical practice recommendations among U.S. adults with diabetes, 1999–2002: The national Health and Nutrition Examination Survey. Diabetes Care. 2006, 29: 531-37. 10.2337/diacare.29.03.06.dc05-1254.CrossRefPubMed Resnick HE, Foster GL, Bardsley J, Ratner RE: Achievement of American Diabetes Association clinical practice recommendations among U.S. adults with diabetes, 1999–2002: The national Health and Nutrition Examination Survey. Diabetes Care. 2006, 29: 531-37. 10.2337/diacare.29.03.06.dc05-1254.CrossRefPubMed
20.
Zurück zum Zitat Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program Research Group: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002, 346: 393-403. 10.1056/NEJMoa012512.CrossRefPubMed Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM, Diabetes Prevention Program Research Group: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002, 346: 393-403. 10.1056/NEJMoa012512.CrossRefPubMed
21.
Zurück zum Zitat Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M, Finnish Diabetes Prevention Study Group: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001, 344: 1343-50. 10.1056/NEJM200105033441801.CrossRefPubMed Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M, Finnish Diabetes Prevention Study Group: Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001, 344: 1343-50. 10.1056/NEJM200105033441801.CrossRefPubMed
22.
Zurück zum Zitat Salel AF, Fong A, Zelis BS, Miller RR, Borhani NO, Mason DT: Accuracy of numerical coronary profile. Correlation of risk factors with arteriographically documented severity of atherosclerosis. N Engl J Med. 1977, 296: 1447-50.CrossRefPubMed Salel AF, Fong A, Zelis BS, Miller RR, Borhani NO, Mason DT: Accuracy of numerical coronary profile. Correlation of risk factors with arteriographically documented severity of atherosclerosis. N Engl J Med. 1977, 296: 1447-50.CrossRefPubMed
23.
Zurück zum Zitat Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, Marks JS: Prevalence of obesity, diabetes, and obesity-related health risk factors. JAMA. 2001, 289: 76-9. 10.1001/jama.289.1.76. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, Marks JS: Prevalence of obesity, diabetes, and obesity-related health risk factors. JAMA. 2001, 289: 76-9. 10.1001/jama.289.1.76.
Metadaten
Titel
The prevalence of elevated hemoglobin A1c in patients undergoing coronary artery bypass surgery
verfasst von
Milo Engoren
Robert H Habib
Anoar Zacharias
Thomas A Schwann
Christopher J Riordan
Samuel J Durham
Aamir Shah
Publikationsdatum
01.12.2008
Verlag
BioMed Central
Erschienen in
Journal of Cardiothoracic Surgery / Ausgabe 1/2008
Elektronische ISSN: 1749-8090
DOI
https://doi.org/10.1186/1749-8090-3-63

Weitere Artikel der Ausgabe 1/2008

Journal of Cardiothoracic Surgery 1/2008 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.