Skip to main content
Erschienen in: Journal of Cardiothoracic Surgery 1/2011

Open Access 01.12.2011 | Research article

Off-pump or minimized on-pump coronary surgery - initial experience with Circulating Endothelial Cells (CEC) as a supersensitive marker of tissue damage

verfasst von: Thorsten Wittwer, Yeong-Hoon Choi, Klaus Neef, Mareike Schink, Anton Sabashnikov, Thorsten Wahlers

Erschienen in: Journal of Cardiothoracic Surgery | Ausgabe 1/2011

Abstract

Background

Off-pump-coronary-artery-bypass-grafting (OPCAB) and minimized-extracorporeal-circulation (Mini-HLM) have been proposed to avoid harmful effects of cardiopulmonary-bypass (CPB). Controversies exist whether OPCAB is still superior in perioperative outcome. Circulating endothelial cells (CEC) are sensitive markers of endothelial damage and are significantly elevated in conventional-CPB-procedures as compared to Mini-HLM-revascularisation. Therefore, CEC might be of specific value in evaluating effectiveness of Mini-HLM and OPCAB as currently applied less-invasive coronary procedures.

Methods

76 coronary patients were randomly assigned either to OPCAB (n = 34) or to Mini-HLM (ROCsafe™, Terumo Inc., n = 42) procedures. Perioperative data, clinical and serological outcome and measurements of CEC-release and parameters of endothelial function (v.Willebrand-Factor, soluble-thrombomodulin) perioperatively (pre-operative-baseline, post-Mini-HLM/release of OPCAB-stabilizer, 6 h, 12 h, 24 h and 5 days postoperatively) were obtained and compared by ANOVA models including repeated-measures-analysis.

Results

Mean graft-number was 3.06 ± 0.72 in Mini-HLM-patients and 1.89 ± 0.74 in OPCAB-patients (p < 0.001). However, ventilation-, ICU- and total-hospital duration were comparable between groups as well as chest-tube-drainage, transfusion requirements, hemodynamics and catecholaminergic support (p > 0.05). CEC-release did not differ between groups (p = 0.274) and was generally within normal limits, Troponin-T levels where not significanty different (p = 0.108). No myocardial infarctions, strokes or deaths occurred, neuron specific enolase (NSE) did not show any differences between groups (p = 0.194).

Conclusion

Conceptional advantages of minimized CPB systems (ROCsafe™) result in morbidity and mortality comparable with OPCAB procedures. Mini-HLM therefore minimizes CPB-related systemic and organ injury as demonstrated by low CEC-values which indicates intact endothelial integrity. Furthermore, Mini-HLM combines OPCAB-benefits with low morbidity in high-risk patients while facilitating more complete revascularization in complex patients.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1749-8090-6-142) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

TW (first author) created concept and design, performed most surgical procedures, performed data analysis and interpretation, calculated all statistics and drafted the article. YHC participated in the design of the study, performed surgical procedures, revised the manuscript critically and approved the final version. KF participated in the study concept and data analysis, revised the manuscript and approved the final manuscript. MS participated in data analysis, revised the article and approved the final manuscript. AS collected all data, participated in the analysis of data, revised the article and approved the final manuscript. TW (senior author) approved the concept of the study, revised the article and approved the final version. All authors have read and approved the final manuscript.
Abkürzungen
CABG
coronary artery bypass graft
CCPB
conventional cardiopulmonary bypass
CEC
circulating endothelial cells
ICU
intensive care unit
LAD
left anterior descending artery
MIDCAB
minimally invasive direct coronary artery bypass
Mini-HLM
minimized extracorporeal circulation system
NSE
neuron-specific enolase
NSTEMI
non-ST-elevation myocardial infarction
OPCAB
off-pump coronary artery bypass
sTM
soluble thrombomoduline
vWF
von-Willebrand factor.

Introduction

For decades coronary artery bypass grafting (CABG) was performed with the use of conventional cardiopulmonary bypass (CCPB). However, CCPB has been considered to be a potent stimulus of a generalized inflammatory state and thus having the potential to result in significant morbidity [1]. In order to decrease morbidity and mortality associated with coronary surgery, myocardial revascularization without CCPB has been introduced into clinical practice in terms of the off-pump coronary artery bypass grafting (OPCAB) procedure [2]. A number of randomized controlled studies comparing OPCAB to CCPB have been completed since then. Although outcomes have been largely comparable, the evidence of benefit of OPCAB has not been as convincing as primarily anticipated [3]. Technically, OPCAB revascularisation can be very demanding, particularly when marginal branches need to be revascularized which may result in severe hemodynamic instability due to cardiac displacement [4]. Therefore, initial enthusiasm for OPCAB became especially tempered by concern about the completeness of revascularization, the rate of perioperative myocardial infaction and long-term graft patency rates [5, 6]. As a consequence, minimized extracorporeal circulation systems (Mini-HLM) have been proposed to avoid the potentially harmful effects of CCPB. The basic idea of Mini-HLM is to ensure adequate perfusion by a closed, extremely minimized circuit based on a rotary blood pump and a high-performance membrane oxygenator with elimination of blood-to-air contact by avoiding a venous reservoir, minimizing hemodilution and mechanical blood trauma and significant reduction of contact activation by reduced foreign surfaces [7]. Meanwhile, a clear superiority of Mini-HLM systems could be proven when compared to conventional CPB circuits [8]. Among the different available minimized systems, the ROCSafe™ systems (Terumo Medical Corp., Somerset, NJ, USA) is associated with superior de-airing, is suitable for both coronary and aortic valve surgery and was shown to improve postoperative recovery, reduce early inflammatory response, transfusion requirements and atrial fibrillation [9, 10]. One major mechanism of the beneficial effect of Mini-HLM is considered to be the lesser degree of endothelial injury which can be specifically assessed by quantification of Circulating Endothelial Cells (CEC) which represent a novel marker of the intrinsic endothelial damage caused by cardiopulmonary bypass [11]. Detachment of endothelial cells into the blood stream represents a serious injury of the endothelium as one of multiple severe adverse effects of CCPB [1, 11]. As quantification of CEC can unveil both endothelial damage and correlate with activity as well as degree of injury at early preclinical stages [12, 13], the combined approach of CEC quantification and cardiac Troponin measurement may significantly improve the diagnostic accuracy in evaluation of different coronary revascularization procedures in analogy to findings in NSTEMI-patients [11, 14]. As there are still very few studies available comparing the modern less invasive surgical procedures Mini-HLM- with OPCAB-revascularization [15], it was the aim of our present study to directly compare both currently applied surgical revascularization procedures with special regard to the corresponding kinetics of perioperative CEC release which was not performed in the available literature so far.

Materials and methods

1. Patients

This prospective randomized ethics approved clinical trial was performed between July 2009 and January 2010 at our institution. Included were a total of 76 stable coronary patients (age > 18 years) according to the following criteria: all patients were scheduled for elective isolated myocardial revascularization performed via full median sternotomy and had been judged technically suitable for both OPCAB and Mini-HLM techniques. Indication for coronary surgery was established on the basis of current international guidelines [16]. Patients with unstable angina, myocardial infarction preoperative proinflammatory status, insulin-dependent diabetes or inflammatory vascular diseases were excluded from this study as CEC-values are known to be elevated in all these instances [17]. After inclusion, all patients were randomized according to a computer-generated algorithm either to the OPCAB or the Mini-HLM-procedure. The institutional ethics committee approved this study, and all patients gave informed written consent prior to entering the study.

2. Analysis of CEC frequency

CEC frequency in the peripheral blood was determined as described previously [11] with minor modifications (Figure 1). Briefly, arterial blood samples were collected in 2,7 ml EDTA tubes (Sarstedt, Nümbrecht, Germany), and stored at 4°C for a maximum of 24 h for later batch analysis. The monoclonal mouse anti-human CD146 antibody (clone S-Endo1/F4-35H7, Biocytex, Marseille, France) was conjugated to rat-anti-mouse-IgG1-dynabeads (diameter 4.5 μ m, Invitrogen, Karlsruhe, Germany) according to the manufacturer's instructions.
For Immunomagnetic labeling of CEC the EDTA blood sample was diluted 1:1: with PEB buffer (phosphate buffered saline, PBS, pH 7.4 (Invitrogen), 0.01% bovine serum albumin, BSA (PAA, Cölbe, Germany), 10 mM ethylene-diamine-tetra-acetic acid, EDTA (Carl Roth, Karlsruhe, Germany)) and adding 100 μ l FcR blocker (Miltenyi Biotec, Bergisch-Gladbach, Germany) to prevent unspecific leukocyte binding, and 100 μ l CD146-coupled dynabeads. Samples were incubated on a rotator (10 rpm) for one hour at 4°C. Immunomagnetically labeled cells were isolated in a specific magnetic separator (Dynal MPC-L, Invitrogen). After washing thrice with PEB the isolated cells were resuspended in 90 μ l PEB + 10 μ l fluorescein-labeled Ulex-europaeus-agglutenin-1 (UEA-1, Vector Laboratories, Burlingame, CA, USA) and incubated for 1 h on a shaker (300 rpm) at 4°C in the dark. After three wash cycles in PEB the cells were resuspended in 200 μ l PEB. CEC were identified and enumerated in 50 μ l samples independently by three blinded observers using an inverted fluorescence microscope (Ti-U equipped with a DS-Qi1MC camera, Nikon, Düsseldorf, Germany) at 20x magnification, phase contrast, 10% transmission light and fluorescein excitation.
Criteria defining a CEC [18] were:
1.
fluorescein positive
 
2.
15-30 μ m diameter of cell body and
 
3.
bound to at least 4 dynabeads.
 
The total number of CEC was normalized to a volume of one ml of peripheral blood

3. Serology

Serological evaluation of patients' blood was performed at six different time points perioperatively (Figure 2) according to standard hospital protocols including cardiac enzymes creatinin kinase (CK), CK-MB, Troponin T and neuron-specific enolase (NSE). Additionally, von-Willebrand factor antigen (vWF) was measured by immunoturbidimetric determination using the Dade Behring vWF:Ag test kit (Dade Behring Marburg GmbH, Marburg, Germany). For determination of soluble thrombomoduline concentration (sTM, CD 141), a commercial solid phase sandwich enzyme-linked immunsorbent assay kit was used (human sCG141 ELISA kit. Diaclone Research, Besancon, France).

4. Hemodynamic evaluation

All patients were monitored by invasive hemodynamic assessment using a pulmonary artery catheter. Data collection was performed at 7 different time points perioperatively (Figure 2).

5. Statistical Analysis

All data were stored and analyzed using the SPSS statistical package 17.0 (SPSS Inc., Chicago, Ill., USA). Descriptive statistics were computed for variables of interest and analyzed using univariate ANOVA. Continuous data were analyzed using ANOVA with repeated measures. Significance was assumed with a p-value < 0.05.

Results

Patients' perioperative demographics are summarized in Table 1. There was no statistical difference between both experimental groups regarding age, gender, weight and Euro-Score. Generally, no mortality, perioperative stroke or ST-elevation myocardial infarct was observed during the entire study period. Operation time was significantly longer in the Mini-HLM group (179 ± 34 minutes vs. 141 ± 34 minutes), however perioperative incidence of atrial fibrillation or transitory psychotic disorder syndromes was equally low distributed between groups. Operative usage of bilateral internal mammry artery grafts did not show any significant differences, and overall chest tube drainage, ventilation time, transfusion requirements and total intensive care stay were comparable in both cohorts. Serial assessment of patients' hemodynamics did nor show any differences in cardiac index (p = 0.504, Figure 3).
Table 1
Patients' demographics and perioperative data
 
Mini-HLM
OPCAB
p-Wert
Age (yrs)
65,6 ± 11,2
64,7 ± 10,9
0,723
Heigh (cm)
173 ± 7
168 ± 8
0,307
Weight (kg)
85,1 ± 12,1
83,7 ± 14,6
0,673
Additive Euroscore
3,1 ± 2,1
3,0 ± 2,0
0,766
Mortality
0
0
 
Stroke
0
0
 
STEMI
0
0
 
Transitory psychotic disorder syndrome
2/42 (4,7%)
1/34 (2,9%)
0,197
Postoperative atrial fibrillation
16/42 (38,1%)
14/34 (41,2%)
0.817
Operation time (minutes)
174,6 ± 33,4
138,9 ± 32,9
< 0.001
LIMA +RIMA usage
11/42 (26,2%)
6/34 (17,6%)
0.419
Intensive care stay (days)
2,55 ± 0,97
2,18 ± 7,3
0,075
Chest tube drainage (48 hours)
1204 ± 600
1040 ± 412
0,187
Ventilation time (hours)
16,3 ± 10,0
13,2 ± 3,9
0,101
Transfusion of Red Blood Cells postoperatively
1,45 ± 1,96
0,81 ± 1,31
0,119
Transfusion of thrombocytes postoperatively
0,35 ± 0,74
0,16 ± 0,45
0,195
Transfusion of Fresh Frozen Plasma postoperatively
0,75 ± 2,1
0,56 ± 1,4
0,65

Circulating Endothelial Cells

Preoperative CEC numbers (cells per milliliter of blood) did not differ between the experimental groups (Mini-HLM: 7,39 ± 9,94; OPCAB: 7,03 ± 12,54; p = 0.901). 60 minutes after arrival on the ICU, CEC values peaked in both groups and decreased over time until postoperative day 5, where the preoperative niveau was reached (Figure 4). Statistical analysis did not reveal any significant differences regarding the CEC kinetics between both groups (p = 0.274).

Serology

Serial evaluation of troponin T values (Figure 5, p = 0.108) and NSE did not show any significant differences between Mini-HLM and OPCAB operated patients according to the clinical results of freedom from STEMI and incidence of transitory psychotic disorder syndrome. Furthermore, kinetics of soluble thrombomodulin (p = 0.102, Figure 6) and von Willebrand factor antigen did not show any significant differences.

Vessel disease and graft number

According to the preoperative angiograms, the degree of vessel disease was equally distributed between groups, and a mean number of 2.72 ± 0.52 grafts was preoperatively planned in Mini-HLM patients in contrast to 2.47 ± 0.84 grafts in OPCAB patients (p = 0.204). Intraoperatively, however, the actual graft number (Figure 7) was significantly higher in the Mini-HLM group (3.06 ± 0.72) as compared to OPCAB operated patients (1.89 ± 0.74, p < 0.01) indicating a more complete revascularization in the Mini-HLM group.

Comment

Cardiac surgery performed with CCPB may lead to serious complications in up to 20% of low-risk patients [19]. More than two decades ago, Kirklin et al. [1] reported complement activation following CCPB which triggers a whole body defense reaction which may lead to significant alterations of cerebral function and multiple other harmful effects. After introduction of the minimally invasive direct coronary artery bypass (MIDCAB) procedure for treatment of single vessel (LAD) disease [20], the evolution of that promising off-pump approach approach let to the interdisciplinary multivessel "hybrid procedure" with MIDCAB-grafting of the LAD culprit lesion followed by interventional stenting of remaining coronary lesions [21]. However, long-term outcome of hybrid procedures might be limited by the known restenosis rates of stented areas [22]. The complete surgical multivessel revascularization on the beating heart (OPCAB) was introduced in the mid-1990's [2] and is a safe and well-established technique. Patients who undergo coronary surgery with this strategy were initially shown to have a lower incidence of postoperative complications and remarkable advantages in terms of hospital stay [23]. However, although there was a significantly lower deterioration in psychometric tests in OPCAB patients in the early postoperative course as compared to CCPB patients [24], this advantage of the OPCAB technique has resolved with respect to the 5-year cognitive and cardiac outcomes [25]. Furthermore, complete coronary revascularization may not be achievable in all patients by off-pump techniques owing to the complex anatomy of coronary lesions and the possibility of hemodynamic instability while the beating heart is manipulated [4]. Interestingly, recent studies show inferior long-term patency rates and incompleteness of revascularization with regard to OBCAB-techniques [26, 27]. In the recently published ROOBY trial [28], especially the lower patency rate of saphenous vein grafts in the OPCAB group accounted for the observed differences in graft function. However, with special attention to the prognostically important left internal thoracic artery grafts to the LAD culprit lesions, it could be shown that - with classification of those grafts according to the established FitzGibbon grade [29] - there were significantly fewer grade A grafts in the OPCAB group than in the cardiopulmonary bypass group indicating lower quality of graft anastomoses. As a consequence, multiple efforts were taken to achieve the same advantages with modified cardiopulmonary bypass systems as can be achieved with OPCAB approaches. The solution was miniaturization of CBP-systems thus resulting in reduction of foreign surfaces, avoidance of blood-air contact and significant reduction of priming volume. The advantages of such minimized systems have been shown in several clinical studies so far [30, 31]. Overall experience indicates an inferior biocompatibility of CCPB compared to Mini-HLM [32] which is considered to be caused by contact activation of blood cells with artificial surfaces and air, the ischemia and reperfusion injury and hemodilution. Furthermore, the endoxemia caused by intestinal hypoperfusion represents a predominant trigger of complement activation and profound endothelial damage [33]. In this context, a modern approach for assessing endothelial integrity includes the determination of circulating endothelial cells (CEC) in the peripheral blood. CEC are defined as mature endothelial cells in the peripheral blood, detached from vessel walls as a result of injury via mechanical strain or disease or inflammation via paracrine or endocrine factors. The correlation of CEC and cardiovascular disease and its implications have recently been reviewed extensively [34]. Under physiologic conditions, CEC occur in humans in the range of 5-10 cells per ml blood, whereas elevated numbers are found in patients with different vascular disorders and type 2 diabetes mellitus [35, 36]. The detachment of endothelial cells into the blood stream represents a serious injury of the endothelium as one of multiple severe adverse effects of CCPB [1, 11], and overall CEC values are significantly lower in OPCAB patients when compared to standard cardiopulmonary bypass procedures [37]. CEC do not only unveil endothelial damage but also correlate with activity and degree of endothelial injury [12]. Therefore, CEC are considered to represent a novel marker of the intrinsic endothelial damage caused by CCPB, and use of modern Mini-HLM systems were found to be associated with significantly reduced CEC release as compared to CCPB [11].
The main results of this present study indicate that a Mini-HLM approach by means of the ROCSafe™ system can achieve overall clinical results that are completely comparable to those of OPCAB revascularisation. Although non-elective patients and patients with insulin-dependent diabetes mellitus had to be excluded from the study as unstable angina and/or acute myocardial infarction as well as diabetes per se significantly increase CEC numbers [17], no further restrictions were imposed with regard to enrollment, and the study patients therefore represent an institution-based cohort of routine coronary surgical practice. As the development of modern and risk-adjusted concepts for complete and safe revascularization in coronary patients is one of the main goals in coronary surgery, use of Mini-HLM and thus minimizing the side effects of CCPB is a desirable modern approach. In today's economically affected health care systems, this conclusion is especially important as OPCAB procedures are associated with longer hospital stays and greater overall hospitalization costs in significant dimensions [38]. Increasingly, the referring cardiologists or the patients themselves insist on an OPCAB procedure. The medical decision to apply the OPCAB technique in these patients is a delicate balance between handling the pressure to compete for more CABG cases and providing sound surgical care [38]. Therefore, performing OPCAB in every single patient who seems to be a candidate for surgical myocardial revascularisation for the sole purpose of attracting more patients or due to other political and economic pressures may not be appropriate and economically hazardous [38]. With regard to the increasing overall excellent experience with Mini-HLM worldwide [39, 40], OPCAB should be restricted to carefully selected special cases, i.e. patients presenting with severely calcified aorta etc..
The described results should be considered provisional and worthy of further investigation in larger studies, because the relatively small sample size might represent a limitation to our conclusions. However, the major finding of the present investigation is the fact that CEC release and, thus, endothelial damage, is completely comparable between Mini-HLM procedures and the OPCAB technique.

Conclusion

Conceptional advantages of the closed minimized CPB-system ROCsafe™ result in morbidity and mortality comparable with OPCAB procedures. Mini-HLM, therefore, minimizes CPB-related systemic and organ injury as demonstrated by low CEC-values which indicates intact endothelial integrity. Furthermore, Mini-HLM combines OPCAB-benefits with less morbidity in high-risk-patients while facilitating more complete revascularisation in patients with complex lesions. Mini-HLM should therefore be applied as a routine and gold standard technique in coronary artery bypass surgery.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

TW (first author) created concept and design, performed most surgical procedures, performed data analysis and interpretation, calculated all statistics and drafted the article. YHC participated in the design of the study, performed surgical procedures, revised the manuscript critically and approved the final version. KF participated in the study concept and data analysis, revised the manuscript and approved the final manuscript. MS participated in data analysis, revised the article and approved the final manuscript. AS collected all data, participated in the analysis of data, revised the article and approved the final manuscript. TW (senior author) approved the concept of the study, revised the article and approved the final version. All authors have read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Kirklin JK, Westby S, Blackstone EH, Kirklin JW, Chenoweth DE, Pacifico AD: Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1983, 86: 845-57.PubMed Kirklin JK, Westby S, Blackstone EH, Kirklin JW, Chenoweth DE, Pacifico AD: Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1983, 86: 845-57.PubMed
2.
Zurück zum Zitat Buffolo E, de Andrade CS, Branco JN, Teles CA, Aguiar LF, Gomes WJ: Coronary artery bypass grafting without cardiopulmonary bypass. Ann Thorac Surg. 1996, 61: 63-66. 10.1016/0003-4975(95)00840-3.CrossRefPubMed Buffolo E, de Andrade CS, Branco JN, Teles CA, Aguiar LF, Gomes WJ: Coronary artery bypass grafting without cardiopulmonary bypass. Ann Thorac Surg. 1996, 61: 63-66. 10.1016/0003-4975(95)00840-3.CrossRefPubMed
3.
Zurück zum Zitat Feng ZZ, Shi J, Zhao XW, Xu ZF: Meta-analysis of on-pump and off-pump coronary arterial revascularization. Ann Thorac Surg. 2009, 87: 757-65. 10.1016/j.athoracsur.2008.11.042.CrossRefPubMed Feng ZZ, Shi J, Zhao XW, Xu ZF: Meta-analysis of on-pump and off-pump coronary arterial revascularization. Ann Thorac Surg. 2009, 87: 757-65. 10.1016/j.athoracsur.2008.11.042.CrossRefPubMed
4.
Zurück zum Zitat Tasdemir O, Vural KM, Karagoz H, Bayazit K: Coronary artery bypass grafting on the beating heart without the use of the extracorporeal circulation: review of 2052 cases. J Thorac Cardiovasc Surg. 1998, 116: 68-73. 10.1016/S0022-5223(98)70244-2.CrossRefPubMed Tasdemir O, Vural KM, Karagoz H, Bayazit K: Coronary artery bypass grafting on the beating heart without the use of the extracorporeal circulation: review of 2052 cases. J Thorac Cardiovasc Surg. 1998, 116: 68-73. 10.1016/S0022-5223(98)70244-2.CrossRefPubMed
5.
Zurück zum Zitat Magee MJ, Hebert E, Herbert MA, Prince SL, Dewey TM, Culica DV, Mack MJ: Fewer grafts performed in off-pump Bypass surgery: patient selection or incomplete revascularisation?. Ann Thorac Surg. 2009, 87: 1113-8. 10.1016/j.athoracsur.2008.12.088.CrossRefPubMed Magee MJ, Hebert E, Herbert MA, Prince SL, Dewey TM, Culica DV, Mack MJ: Fewer grafts performed in off-pump Bypass surgery: patient selection or incomplete revascularisation?. Ann Thorac Surg. 2009, 87: 1113-8. 10.1016/j.athoracsur.2008.12.088.CrossRefPubMed
6.
Zurück zum Zitat Hannan EL, Wu C, Smith CR, Higgins RS, Carlson RE, Culliford AT, Gold JP, Jones RH: Off-pump versus on-pump coronary artery bypass graft surgery: differences in short-term outcomes and in long-term mortality and need for subsequent revascularization. Circulation. 2007, 116: 1145-52. 10.1161/CIRCULATIONAHA.106.675595.CrossRefPubMed Hannan EL, Wu C, Smith CR, Higgins RS, Carlson RE, Culliford AT, Gold JP, Jones RH: Off-pump versus on-pump coronary artery bypass graft surgery: differences in short-term outcomes and in long-term mortality and need for subsequent revascularization. Circulation. 2007, 116: 1145-52. 10.1161/CIRCULATIONAHA.106.675595.CrossRefPubMed
7.
Zurück zum Zitat Curtis N, Vohra HA, Ohri SK: Mini-extracorporeal circuit cardiopulmonary bypass systems: a review. Perfusion. 2010, 25: 115-24. 10.1177/0267659110371705.CrossRefPubMed Curtis N, Vohra HA, Ohri SK: Mini-extracorporeal circuit cardiopulmonary bypass systems: a review. Perfusion. 2010, 25: 115-24. 10.1177/0267659110371705.CrossRefPubMed
8.
Zurück zum Zitat Beghi C, Nicolini F, Agostinelli A, Borrello B, Budillon AM, Bacciottini F, Friggeri M, Costa A, Belli L, Battistelli L, Gherli T: Mini-cardiopulmonary bypass system: results of a prospective randomized study. Ann Thorac Surg. 2006, 81: 1396-400. 10.1016/j.athoracsur.2005.10.015.CrossRefPubMed Beghi C, Nicolini F, Agostinelli A, Borrello B, Budillon AM, Bacciottini F, Friggeri M, Costa A, Belli L, Battistelli L, Gherli T: Mini-cardiopulmonary bypass system: results of a prospective randomized study. Ann Thorac Surg. 2006, 81: 1396-400. 10.1016/j.athoracsur.2005.10.015.CrossRefPubMed
9.
Zurück zum Zitat Kutschka I, Schoenrock U, El-Essawi A, Pahari D, Anssar M, Harringer W: A new minimized perfusion circuit provides highly effective ultrasound controlled deairing. Artificial Organs. 2007, 31: 215-20. 10.1111/j.1525-1594.2007.00367.x.CrossRefPubMed Kutschka I, Schoenrock U, El-Essawi A, Pahari D, Anssar M, Harringer W: A new minimized perfusion circuit provides highly effective ultrasound controlled deairing. Artificial Organs. 2007, 31: 215-20. 10.1111/j.1525-1594.2007.00367.x.CrossRefPubMed
10.
Zurück zum Zitat Kutschka I, Skorpil J, El Essawi A, Hajek T, Harringer W: Beneficial effects of modern perfusion concepts in aortic valve and aortic root surgery. Perfusion. 2009, 24: 37-44. 10.1177/0267659109106727.CrossRefPubMed Kutschka I, Skorpil J, El Essawi A, Hajek T, Harringer W: Beneficial effects of modern perfusion concepts in aortic valve and aortic root surgery. Perfusion. 2009, 24: 37-44. 10.1177/0267659109106727.CrossRefPubMed
11.
Zurück zum Zitat Skrabal CA, Choi YH, Kaminski A, Steiner M, Kundt G, Steinhoff G, Liebold A: Circulating endothelial cells demonstrate an attenuation of endothelial damage by minimizing the extracorporeal circulation. J Thorac Cardiovasc Surg. 2006, 132: 291-6. 10.1016/j.jtcvs.2006.03.017.CrossRefPubMed Skrabal CA, Choi YH, Kaminski A, Steiner M, Kundt G, Steinhoff G, Liebold A: Circulating endothelial cells demonstrate an attenuation of endothelial damage by minimizing the extracorporeal circulation. J Thorac Cardiovasc Surg. 2006, 132: 291-6. 10.1016/j.jtcvs.2006.03.017.CrossRefPubMed
12.
Zurück zum Zitat Woywodt A, Bahlmann FH, De Groot K, Haller H, Haubitz M: Circulating endothelial cells: life, death, detachment, and repair of the endothelial cell layer. Nephrol Dial Transplant. 2002, 17: 1728-30. 10.1093/ndt/17.10.1728.CrossRefPubMed Woywodt A, Bahlmann FH, De Groot K, Haller H, Haubitz M: Circulating endothelial cells: life, death, detachment, and repair of the endothelial cell layer. Nephrol Dial Transplant. 2002, 17: 1728-30. 10.1093/ndt/17.10.1728.CrossRefPubMed
13.
Zurück zum Zitat Erdbruegger U, Haubitz M, Woywodt A: Circulating endothelial cells: a novel marker for endothelial damage. Clinica Chimica Acta. 2006, 373: 17-26. 10.1016/j.cca.2006.05.016.CrossRef Erdbruegger U, Haubitz M, Woywodt A: Circulating endothelial cells: a novel marker for endothelial damage. Clinica Chimica Acta. 2006, 373: 17-26. 10.1016/j.cca.2006.05.016.CrossRef
14.
Zurück zum Zitat Quilici J, Banzet N, Paule P, Meynard JB, Mutin M, Bonnet JL, Ambrosi P, Sampol J, Dignat-George F: Circulating endothelial cell count as a diagnostic marker for non-ST-elevation acute coronary syndromes. Circulation. 2004, 110 (12): 1586-91. 10.1161/01.CIR.0000142295.85740.98.CrossRefPubMed Quilici J, Banzet N, Paule P, Meynard JB, Mutin M, Bonnet JL, Ambrosi P, Sampol J, Dignat-George F: Circulating endothelial cell count as a diagnostic marker for non-ST-elevation acute coronary syndromes. Circulation. 2004, 110 (12): 1586-91. 10.1161/01.CIR.0000142295.85740.98.CrossRefPubMed
15.
Zurück zum Zitat Mazzei V, Nasso G, Salamone G, Castorino F, Tommasini A, Anselmi A: Prospective randomized comparison of coronary bypass grafting with minimal extracorporeal circulation system (MECC) versus off-pump coronary surgery. Circulation. 2007, 1761-76. Mazzei V, Nasso G, Salamone G, Castorino F, Tommasini A, Anselmi A: Prospective randomized comparison of coronary bypass grafting with minimal extracorporeal circulation system (MECC) versus off-pump coronary surgery. Circulation. 2007, 1761-76.
16.
Zurück zum Zitat American College of Cardiology/American Heart Association Task Force on Practice Guidelines: ACC/AHA 2004 guideline update for coronary artery bypass graft surgery. Circulation. 2004, 110: 340-437. American College of Cardiology/American Heart Association Task Force on Practice Guidelines: ACC/AHA 2004 guideline update for coronary artery bypass graft surgery. Circulation. 2004, 110: 340-437.
17.
Zurück zum Zitat Mutin M, Canavy I, Blann A, Bory M, Sampol J, Dignat-George F: Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. Blood. 1999, 2951-8. Mutin M, Canavy I, Blann A, Bory M, Sampol J, Dignat-George F: Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. Blood. 1999, 2951-8.
18.
Zurück zum Zitat Woywodt A, Blann AD, Kirsch T, Erdbruegger U, Banzet N, Haubitz M, Dignat-George F: Isolation and enumeration of circulating endothelial cells by immunomagnetic isolation: proposal of a definition and a consensus protocol. J Thromb Haemost. 2006, 4: 671-7. 10.1111/j.1538-7836.2006.01794.x.CrossRefPubMed Woywodt A, Blann AD, Kirsch T, Erdbruegger U, Banzet N, Haubitz M, Dignat-George F: Isolation and enumeration of circulating endothelial cells by immunomagnetic isolation: proposal of a definition and a consensus protocol. J Thromb Haemost. 2006, 4: 671-7. 10.1111/j.1538-7836.2006.01794.x.CrossRefPubMed
19.
Zurück zum Zitat Grover FL: The Society of Thoracic Surgeons National Database: current status and future directions. Ann Thorac Surg. 1999, 68: 367-73. 10.1016/S0003-4975(99)00599-8.CrossRefPubMed Grover FL: The Society of Thoracic Surgeons National Database: current status and future directions. Ann Thorac Surg. 1999, 68: 367-73. 10.1016/S0003-4975(99)00599-8.CrossRefPubMed
20.
Zurück zum Zitat Cremer J, Strüber M, Wittwer T, Ruhparwar A, Harringer W, Zuk J, Mehler D, Haverich A: Off-Bypass Coronary Bypass Grafting via Minithoracotomy Using Mechanical Epicardial Stabilization. Ann Thorac Surg. 1997, 63: S79-83. 10.1016/S0003-4975(97)00338-X.CrossRefPubMed Cremer J, Strüber M, Wittwer T, Ruhparwar A, Harringer W, Zuk J, Mehler D, Haverich A: Off-Bypass Coronary Bypass Grafting via Minithoracotomy Using Mechanical Epicardial Stabilization. Ann Thorac Surg. 1997, 63: S79-83. 10.1016/S0003-4975(97)00338-X.CrossRefPubMed
21.
Zurück zum Zitat Wittwer T, Cremer J, Boonstra P, Grandjean J, Mariani M, Mügge A, Drexler H, den Heijer P, Leitner ER, Hepp A, Wehr M, Haverich A: Myocardial Hybrid Revascularization with Minimally Invasive Direct Coronary Artery Bypass Grafting (MIDCAB) combined with Coronary Angioplasty: Preliminary results of a multicenter study. Heart. 2000, 83: 58-63. 10.1136/heart.83.1.58.CrossRefPubMedPubMedCentral Wittwer T, Cremer J, Boonstra P, Grandjean J, Mariani M, Mügge A, Drexler H, den Heijer P, Leitner ER, Hepp A, Wehr M, Haverich A: Myocardial Hybrid Revascularization with Minimally Invasive Direct Coronary Artery Bypass Grafting (MIDCAB) combined with Coronary Angioplasty: Preliminary results of a multicenter study. Heart. 2000, 83: 58-63. 10.1136/heart.83.1.58.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Byrne JG, Leacche M, Vaughan DE, Zhao DX: Hybrid cardiovascular procedures. JACC Cardiovasc Interv. 2008, 1: 459-68. 10.1016/j.jcin.2008.07.002.CrossRefPubMed Byrne JG, Leacche M, Vaughan DE, Zhao DX: Hybrid cardiovascular procedures. JACC Cardiovasc Interv. 2008, 1: 459-68. 10.1016/j.jcin.2008.07.002.CrossRefPubMed
23.
Zurück zum Zitat Calafiore AM, Di Mauro M, Contini M, Di Giammarco G, Pano M, Vitolla G, Bivona A, Carella R, D'Alessandro S: Myocardial revascularization with and without cardiopulmonary bypass in multivessel disease: impact of the strategy on early outcome. Ann Thorac Surg. 2001, 72: 456-63. 10.1016/S0003-4975(01)02810-7.CrossRefPubMed Calafiore AM, Di Mauro M, Contini M, Di Giammarco G, Pano M, Vitolla G, Bivona A, Carella R, D'Alessandro S: Myocardial revascularization with and without cardiopulmonary bypass in multivessel disease: impact of the strategy on early outcome. Ann Thorac Surg. 2001, 72: 456-63. 10.1016/S0003-4975(01)02810-7.CrossRefPubMed
24.
Zurück zum Zitat Van Dijk D, Jansen EW, Hijman R, Nierich AP, Diephuis JC, Moons KG, Lahpor JR, Borst C, Keizer AM, Nathoe HM, Grobbee DE, De Jaegere PP, Kalkman CJ: Cognitive outcome after off-pump and on-pump techniques for coronary artery bypass graft surgery: a randomized trial. JAMA. 2002, 287: 1405-12. 10.1001/jama.287.11.1405.CrossRefPubMed Van Dijk D, Jansen EW, Hijman R, Nierich AP, Diephuis JC, Moons KG, Lahpor JR, Borst C, Keizer AM, Nathoe HM, Grobbee DE, De Jaegere PP, Kalkman CJ: Cognitive outcome after off-pump and on-pump techniques for coronary artery bypass graft surgery: a randomized trial. JAMA. 2002, 287: 1405-12. 10.1001/jama.287.11.1405.CrossRefPubMed
25.
Zurück zum Zitat Kozora E, Kongs S, Collins JF, Hattler B, Baltz J, Hampton M, Grover FL, Novitzky D, Shroyer AL: Cognitive outcomes after on- versus off-pump coronary artery bypass surgery. Ann Thorac Surg. 2010, 90: 1134-41. 10.1016/j.athoracsur.2010.05.076.CrossRefPubMed Kozora E, Kongs S, Collins JF, Hattler B, Baltz J, Hampton M, Grover FL, Novitzky D, Shroyer AL: Cognitive outcomes after on- versus off-pump coronary artery bypass surgery. Ann Thorac Surg. 2010, 90: 1134-41. 10.1016/j.athoracsur.2010.05.076.CrossRefPubMed
26.
Zurück zum Zitat Takagi H, Tanabashi T, Kawai N, Umemoto T: Off-pump coronary artery bypass sacrifices graft patency: meta analysis of randomized trials. J Thorac Cardiovasc Surg. 2007, 133: e2-e3. 10.1016/j.jtcvs.2006.08.062.CrossRefPubMed Takagi H, Tanabashi T, Kawai N, Umemoto T: Off-pump coronary artery bypass sacrifices graft patency: meta analysis of randomized trials. J Thorac Cardiovasc Surg. 2007, 133: e2-e3. 10.1016/j.jtcvs.2006.08.062.CrossRefPubMed
27.
Zurück zum Zitat Lim E, Drain A, Davies W, Edmonds L, Rosengard BR: A systematic review of randomized trials comparing revascularization rate and graft patency of off-pump and conventional coronary surgery. J Thorac Cardiovasc Surg. 2006, 132: 1409-13. 10.1016/j.jtcvs.2006.08.012. ReviewCrossRefPubMed Lim E, Drain A, Davies W, Edmonds L, Rosengard BR: A systematic review of randomized trials comparing revascularization rate and graft patency of off-pump and conventional coronary surgery. J Thorac Cardiovasc Surg. 2006, 132: 1409-13. 10.1016/j.jtcvs.2006.08.012. ReviewCrossRefPubMed
28.
Zurück zum Zitat Shroyer AL, Grover FL, Hallter B, Collins JF, McDonald GO, Kozora E, Lucke JC, Baltz JH, Novitzky D: Veterans Affairs Randomized On/Off Bypass (ROOBY) Study Group. On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med. 2009, 261: 1827-37.CrossRef Shroyer AL, Grover FL, Hallter B, Collins JF, McDonald GO, Kozora E, Lucke JC, Baltz JH, Novitzky D: Veterans Affairs Randomized On/Off Bypass (ROOBY) Study Group. On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med. 2009, 261: 1827-37.CrossRef
29.
Zurück zum Zitat FitzGibbon GM, Burton JR, Leach AJ: Coronary bypass graft fate: angiographic grading of 1400 consecutive grafts early after operation and of 1132 after one year. Circulation. 1978, 57: 1070-74.CrossRefPubMed FitzGibbon GM, Burton JR, Leach AJ: Coronary bypass graft fate: angiographic grading of 1400 consecutive grafts early after operation and of 1132 after one year. Circulation. 1978, 57: 1070-74.CrossRefPubMed
30.
Zurück zum Zitat Murakami T, Iwagaki H, Saito S, Ohtani S, Kuroki K, Kuinose M, Tanaka N, Tanemoto K: Equivalence of the acute cytokine surge and myocardial injury after coronary bypass grafting with and without a novel extracorporeal circulation system. J Int Med Res. 2005, 33: 133-49.CrossRefPubMed Murakami T, Iwagaki H, Saito S, Ohtani S, Kuroki K, Kuinose M, Tanaka N, Tanemoto K: Equivalence of the acute cytokine surge and myocardial injury after coronary bypass grafting with and without a novel extracorporeal circulation system. J Int Med Res. 2005, 33: 133-49.CrossRefPubMed
31.
Zurück zum Zitat Fromes Y, Gaillard D, Ponzio O, Chauffert M, Gerhardt MF, Deleuze P, Bical OM: Reduction of the inflammatory response following coronary bypass grafting with total minimal extracorporeal circulation. Eur J Cardiothorac Surg. 2002, 22: 527-33. 10.1016/S1010-7940(02)00372-X.CrossRefPubMed Fromes Y, Gaillard D, Ponzio O, Chauffert M, Gerhardt MF, Deleuze P, Bical OM: Reduction of the inflammatory response following coronary bypass grafting with total minimal extracorporeal circulation. Eur J Cardiothorac Surg. 2002, 22: 527-33. 10.1016/S1010-7940(02)00372-X.CrossRefPubMed
32.
Zurück zum Zitat Remadi JP, Rakotoarivello Z, Marticho P, Trojette F, Benamar A, Poulain H, Tribouilloy C: Aortic valve replacement with the minimal extracorporeal circulation (Jostra MECC system) versus standard cardiopulmonary bypass: a randomized prospective trial. J Thorac Cardiovasc Surg. 2004, 128: 436-41. 10.1016/j.jtcvs.2004.01.041.CrossRefPubMed Remadi JP, Rakotoarivello Z, Marticho P, Trojette F, Benamar A, Poulain H, Tribouilloy C: Aortic valve replacement with the minimal extracorporeal circulation (Jostra MECC system) versus standard cardiopulmonary bypass: a randomized prospective trial. J Thorac Cardiovasc Surg. 2004, 128: 436-41. 10.1016/j.jtcvs.2004.01.041.CrossRefPubMed
33.
Zurück zum Zitat Paparella D, Yau TM, Young E: Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update Eur J Cardiothoarc Surg. 2002, 21: 232-44.CrossRef Paparella D, Yau TM, Young E: Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update Eur J Cardiothoarc Surg. 2002, 21: 232-44.CrossRef
34.
Zurück zum Zitat Sabatier F, Camoin-Jau L, Anfosso F, Sampol J, Dignat-George F: Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. J Cell Moll Med. 2009, 13: 454-71. 10.1111/j.1582-4934.2008.00639.x.CrossRef Sabatier F, Camoin-Jau L, Anfosso F, Sampol J, Dignat-George F: Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. J Cell Moll Med. 2009, 13: 454-71. 10.1111/j.1582-4934.2008.00639.x.CrossRef
35.
Zurück zum Zitat McClung JA, Naseer N, Saleem M, Rossi GP, Weiss MB, Abraham NG, Kappas A: Circulating endothelial cells are elevated in patients with type 2 diabetes mellitus independently og HbA1c. Diabetologia. 2005, 48: 345-50. 10.1007/s00125-004-1647-5.CrossRefPubMed McClung JA, Naseer N, Saleem M, Rossi GP, Weiss MB, Abraham NG, Kappas A: Circulating endothelial cells are elevated in patients with type 2 diabetes mellitus independently og HbA1c. Diabetologia. 2005, 48: 345-50. 10.1007/s00125-004-1647-5.CrossRefPubMed
36.
Zurück zum Zitat Dignat-George F, Sampol J: Circulating endothelial cells in vascular disorders: new insights into an old concept. Eur J Haematol. 2000, 65: 215-20. 10.1034/j.1600-0609.2000.065004215.x.CrossRefPubMed Dignat-George F, Sampol J: Circulating endothelial cells in vascular disorders: new insights into an old concept. Eur J Haematol. 2000, 65: 215-20. 10.1034/j.1600-0609.2000.065004215.x.CrossRefPubMed
37.
Zurück zum Zitat Schmid FX, Vudattu N, Floerchinger B, Hilker M, Eissner G, Hoenicka M, Holler E, Birnbaum DE: Endothelial apoptosis and circulating endothelial cells after bypass grafting with and without cardiopulmonary bypass. Eur J Cardiothorac Surg. 2006, 496-500. Schmid FX, Vudattu N, Floerchinger B, Hilker M, Eissner G, Hoenicka M, Holler E, Birnbaum DE: Endothelial apoptosis and circulating endothelial cells after bypass grafting with and without cardiopulmonary bypass. Eur J Cardiothorac Surg. 2006, 496-500.
38.
Zurück zum Zitat Chu D, Bakaeen FG, Dao TK, Lemaire SA, Coselli JS, Huh J: On-pump versus off-pump coronary artery bypass grafting in a cohort of 63.000 patients. Ann Thorac Surg. 2009, 87: 1820-7. 10.1016/j.athoracsur.2009.03.052.CrossRefPubMed Chu D, Bakaeen FG, Dao TK, Lemaire SA, Coselli JS, Huh J: On-pump versus off-pump coronary artery bypass grafting in a cohort of 63.000 patients. Ann Thorac Surg. 2009, 87: 1820-7. 10.1016/j.athoracsur.2009.03.052.CrossRefPubMed
39.
Zurück zum Zitat Puehler T, Haneya A, Philipp A, Wiebe K, Keyser A, Rupprecht L, Hirt S, Kobuch R, Diez C, Hilker M, Schmid C: Minimal extracorporeal circulation: an alternative for on-pump and off-pump coronary revascularization. Ann Thorac Surg. 2009, 87: 766-72. 10.1016/j.athoracsur.2008.11.050.CrossRefPubMed Puehler T, Haneya A, Philipp A, Wiebe K, Keyser A, Rupprecht L, Hirt S, Kobuch R, Diez C, Hilker M, Schmid C: Minimal extracorporeal circulation: an alternative for on-pump and off-pump coronary revascularization. Ann Thorac Surg. 2009, 87: 766-72. 10.1016/j.athoracsur.2008.11.050.CrossRefPubMed
40.
Zurück zum Zitat Liebold A, Khosravi A, Westphal B, Skrabal C, Choi YH, Stamm C, Kaminski A, Alms A, Birken T, Zurakowski D, Steinhoff G: Effect of closed minimized cardiopulmonary bypass on cerebral tissue oxygenation and microembolization. J Thorac Cardiovasc Surg. 2006, 131: 268-76. 10.1016/j.jtcvs.2005.09.023.CrossRefPubMed Liebold A, Khosravi A, Westphal B, Skrabal C, Choi YH, Stamm C, Kaminski A, Alms A, Birken T, Zurakowski D, Steinhoff G: Effect of closed minimized cardiopulmonary bypass on cerebral tissue oxygenation and microembolization. J Thorac Cardiovasc Surg. 2006, 131: 268-76. 10.1016/j.jtcvs.2005.09.023.CrossRefPubMed
Metadaten
Titel
Off-pump or minimized on-pump coronary surgery - initial experience with Circulating Endothelial Cells (CEC) as a supersensitive marker of tissue damage
verfasst von
Thorsten Wittwer
Yeong-Hoon Choi
Klaus Neef
Mareike Schink
Anton Sabashnikov
Thorsten Wahlers
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Journal of Cardiothoracic Surgery / Ausgabe 1/2011
Elektronische ISSN: 1749-8090
DOI
https://doi.org/10.1186/1749-8090-6-142

Weitere Artikel der Ausgabe 1/2011

Journal of Cardiothoracic Surgery 1/2011 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.