Skip to main content
Erschienen in: Medical Gas Research 1/2012

Open Access 01.12.2012 | Letter to the Editor

Lactulose: an effective preventive and therapeutic option for ischemic stroke by production of hydrogen

verfasst von: Xiao Chen, Xiao Zhai, Zhimin Kang, Xuejun Sun

Erschienen in: Medical Gas Research | Ausgabe 1/2012

Abstract

Lactulose, a synthetic sugar not able to be digested and absorbed by human beings, is widely used to treat constipation and hepatic encephalopathy clinically. Through fermentation by the bacteria in the gastrointestinal tract, lactulose can produce considerable amount of hydrogen, which is protective for ischemic stroke as a unique antioxidant. We propose that lactulose can induce the production of endogenous hydrogen that in turn reduces oxidative stress and ameliorate the stroke damage in human beings.

Introduction

Currently stroke is the second leading cause of death in the Western world, ranking after heart diseases and before cancer [1], causing 10% of deaths worldwide [2]. It is estimated that stroke could soon be the most common cause of death worldwide [3]. An ischemic stroke can be due to ischemia (lack of blood flow) caused by blockage (thrombosis, arterial embolism), which may lead to rapidly developing loss of brain functions as a result of disturbance in the blood supply to the brain [4]. Stroke can affect patients physically, mentally, emotionally, or a combination of the three and bring heavy burdens to society.
Ischemia induces production of reactive oxygen species (ROS), which can react with and damage a number of cellular and extracellular elements. Evidence has accumulated showing that ROS are involved in cerebral ischemia and reperfusion. During cerebral ischemia, cerebral blood flow was partially or completely cut off in brain regions supplied by the occluded vessels. Reoxygenation due to spontaneous or thrombolytic reperfusion offers oxygen as a substrate for a number of enzymatic oxidation, constantly generating ROS like superoxide anion radicals(O2·-) and hydrogen peroxide(H2O2) [5]. ROS are known to be able to result in macromolecular damages including lipid peroxidation, protein oxidation, and DNA oxidation, which result in ischemic brain injury [6]. Clinically, a number of recent studies have revealed that stroke and oxidative stress are closely related and excess oxidative stress may have deleterious effects on clinical outcome in acute ischemic stroke [7, 8]. Therefore, antioxidants have been considered in prevention and treatment of stroke and certain agents with antioxidative effects did have neuroprotective effects [9].

Molecular hydrogen (H2) serves as a novel inflammation suppressor

In recent years, experimental evidences have documented that without influencing other less potent ROS, important in intracellular signaling, molecular hydrogen possesses the ability to selectively neutralize ONOO- and •OH, the most cytotoxic ROS, which can damage cellular macromolecules aggressively and indiscriminately. Thus, hydrogen can protect cells from oxidative stress injuries [10]. Therapeutic effects of hydrogen gas and hydrogen-rich saline have been experimentally confirmed in a number of studies, including hypoxia [11, 12], ischemia-reperfusion injuries in various tissues and organs [1318], and other injuries related to oxidative stress. Especially in brain ischemia, our previous research has demonstrated that hydrogen administration after hypoxia appeared to provide brain protection via inhibition of neuronal apoptosis in neonatal hypoxia-ischemia rat model [19]. Another study reported that 2.1% hydrogen-supplemented room air ventilation would preserve cerebrovascular reactivity (CR) and brain morphology after asphyxia/reventilation (A/R) in newborn pigs [20]. For transient cerebral ischemia, hydrogen also showed significant protective effects [21]. Several studies have demonstrated the neuroprotective effects of molecular hydrogen. Interestingly enough, even for some chronic neurodegenerative diseases, like the Alzheimer's disease [22] and Parkinson disease [23, 24], hydrogen showed certain protective effects.
As a novel antioxidant, hydrogen possesses a number of advantages. (1) Due to its high permeability, hydrogen can easily penetrate biomembranes and diffuse into the cytosol, mitochondria and nucleus. (2) It is nontoxic to the organisms, which has been proven by hyperbaric diving study for decades. (3) Due to its selectivity as an antioxidant, hydrogen has less impact on other less active but very important ROS within the cells.

Endogenous hydrogen is effective for alleviating oxidative stress

For therapeutic purposes, whether inhalation of hydrogen gas or injection or drinking of hydrogen-rich saline have unavoidable inconvenience. Hydrogen gas is highly flammable and explosive, thus being very dangerous. The effects of hydrogen-rich saline are not so ideally maintained. Therefore, frequent administration is required. Couldn't it be better if there is a way leading to persistent hydrogen generation under control? Endogenous hydrogen may give a perfect answer.
Early in 1969, a study published in the New England Journal of Medicine showed that endogenous hydrogen existed within human beings [25]. Studies have revealed that bacteria in the large intestine could generate endogenous hydrogen through anaerobic metabolism in human beings and animals [26]. Previously, the biologic effects of this little amount of hydrogen were often neglected, because studies have shown that the hydrogen level in normal terminal breath is about 5-10 ppm. However, in patients with lactose intolerance and bacterial disorders, the level may reach more than 90 ppm [27]. Hydrogen concentration has been measured in different organs of normal mice. The results showed that hydrogen level was very high in the large intestine, spleen, liver and gastric mucosa [28]. In the liver it reached to 42 μM, and in the large intestine and spleen it was even higher. A research on PC12 cells showed that a concentration of 25 μM of hydrogen in the medium would display a significant anti-oxidation effect [10]. These results indicated that endogenous hydrogen generated might have important biological effects.
Some of the recent findings further imply the potential therapeutic effects of endogenous hydrogen. Acarbose, which inhibits glucose absorption and often causes abdominal distention in diabetes mellitus treatment, shows an amazing cardiac protective effect. One of the main gases generated, which cause the abdominal distention, is hydrogen [29]. Oral administration of curcumin could also promote the production of endogenous hydrogen, which may be one of the mechanisms for curcumin treatment of some diseases [30]. Moreover, it is reported that oral administration of bacteria producing hydrogen gas can prevent Con A-induced hepatitis. And after antibiotic treatment, the protective effect amazingly disappeared, indicating that hydrogen produced by intestinal bacteria was the key for therapeutic effects [31].
Since hydrogen production in man is primarily dependent on the delivery of ingested, fermentable substrates to an abundant intestinal flora normally present only in the colon, identifying an ideal endogenous hydrogen inducer seems strikingly attractive.
Lactulose is a good option worth considering.

Lactulose mediates hydrogen production and is an ideal endogenous hydrogen inducer

Lactulose is a synthetic sugar used in the treatment of constipation [32] and hepatic encephalopathy. It is a disaccharide formed from one molecule fructose and one molecule of galactose and cannot be absorbed by human bodies but can be digested by bacteria colonizing within the gastrointestinal tract, especially in the colon. One of the main byproducts is hydrogen. Oral administration of lactulose significantly increases hydrogen production [33], which can be detected by hydrogen breath test, introduced several decades ago as a diagnostic test for small bowel bacterial overgrowth [34].
In 2004, it was observed that lactulose had some protective effects on DSS-induced colitis [35]. Interestingly enough, it demonstrated that lactulose reduced the severity of colonic lesions induced by DSS treatment in a dose-dependent manner, the effect at 100 mg/kg being more potent than that of 5-ASA. Lactulose also prevented the colon shortening and ameliorated the histological inflammation, together with significant attenuation of the increase in MPO activity as well as lipid peroxidation following DSS treatment. Lactulose lowered oxidative stress state. Hydrogen may be the key.
A study showed that 20 g lactulose administration could increase the exhaled hydrogen nearly to the same level of exhaled hydrogen as compared to the consumption of 300 ml hydrogen-rich saline and had a longer maintenance time of hydrogen concentration [32]. Therefore, oral administration of lactulose may be a better option in terms of maintenance of the appropriate hydrogen gas levels in the body. Furthermore, lactulose can treat constipation by increasing the water content and volume of the stools in the bowel, making them softer and easier to pass. As is known, constipation is one of the important risk factors for cerebrovascular accidents and a major complication after stroke.

Hypothesis

Lactulose has been proved effective in ameliorating oxidative stress injuries in DSS-induced mice colitis. Based on these observations and experiments, we hypothesize that lactulose may be a novel promising preventive and therapeutic option for stroke as an indirect antioxidant. By increasing gastrointestinal tract derived hydrogen, it may significantly reduce the possibility of stroke and alleviate ischemia/reperfusion injury after the stroke, improving the life quality of patients. What's more, it is noteworthy that lactulose probably has many other beneficial antioxidant effects on a wide range of aspects, such as cardiovascular diseases, neurodegenerative diseases et al., which still needs further study.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Literatur
1.
Zurück zum Zitat Donnan GA, Fisher M, Macleod M, Davis SM: Stroke. Lancet. 2008, 371: 1612-1623. 10.1016/S0140-6736(08)60694-7.CrossRefPubMed Donnan GA, Fisher M, Macleod M, Davis SM: Stroke. Lancet. 2008, 371: 1612-1623. 10.1016/S0140-6736(08)60694-7.CrossRefPubMed
2.
Zurück zum Zitat Soto S, Artaza T, Gomez R, Camacho FI, Rodriguez I, Gonzalez C, Potenciano JLM, Rodriguez R: Rib metastasis revealing hepatocellular carcinoma. Scand J Gastroenterol. 2000, 35: 333-336. 10.1080/003655200750024245.CrossRefPubMed Soto S, Artaza T, Gomez R, Camacho FI, Rodriguez I, Gonzalez C, Potenciano JLM, Rodriguez R: Rib metastasis revealing hepatocellular carcinoma. Scand J Gastroenterol. 2000, 35: 333-336. 10.1080/003655200750024245.CrossRefPubMed
3.
Zurück zum Zitat Murray CJ, Lopez AD: Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet. 1997, 349: 1269-1276. 10.1016/S0140-6736(96)07493-4.CrossRefPubMed Murray CJ, Lopez AD: Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet. 1997, 349: 1269-1276. 10.1016/S0140-6736(96)07493-4.CrossRefPubMed
4.
Zurück zum Zitat Sims NR, Muyderman H: Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta. 1802: 80-91. Sims NR, Muyderman H: Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta. 1802: 80-91.
5.
Zurück zum Zitat Boveris A, Chance B: The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973, 134: 707-716.PubMedCentralCrossRefPubMed Boveris A, Chance B: The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J. 1973, 134: 707-716.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Ozkul A, Akyol A, Yenisey C, Arpaci E, Kiylioglu N, Tataroglu C: Oxidative stress in acute ischemic stroke. J Clin Neurosci. 2007, 14: 1062-1066. 10.1016/j.jocn.2006.11.008.CrossRefPubMed Ozkul A, Akyol A, Yenisey C, Arpaci E, Kiylioglu N, Tataroglu C: Oxidative stress in acute ischemic stroke. J Clin Neurosci. 2007, 14: 1062-1066. 10.1016/j.jocn.2006.11.008.CrossRefPubMed
8.
Zurück zum Zitat Nanetti L, Raffaelli F, Vignini A, Perozzi C, Silvestrini M, Bartolini M, Provinciali L, Mazzanti L: Oxidative stress in ischaemic stroke. Eur J Clin Invest. 2011 Nanetti L, Raffaelli F, Vignini A, Perozzi C, Silvestrini M, Bartolini M, Provinciali L, Mazzanti L: Oxidative stress in ischaemic stroke. Eur J Clin Invest. 2011
9.
Zurück zum Zitat Green PS, Simpkins JW: Neuroprotective effects of estrogens: potential mechanisms of action. Int J Dev Neurosci. 2000, 18: 347-358. 10.1016/S0736-5748(00)00017-4.CrossRefPubMed Green PS, Simpkins JW: Neuroprotective effects of estrogens: potential mechanisms of action. Int J Dev Neurosci. 2000, 18: 347-358. 10.1016/S0736-5748(00)00017-4.CrossRefPubMed
10.
Zurück zum Zitat Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S: Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007, 13: 688-694. 10.1038/nm1577.CrossRefPubMed Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S: Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007, 13: 688-694. 10.1038/nm1577.CrossRefPubMed
11.
Zurück zum Zitat Matchett GA, Fathali N, Hasegawa Y, Jadhav V, Ostrowski RP, Martin RD, Dorotta IR, Sun X, Zhang JH: Hydrogen gas is ineffective in moderate and severe neonatal hypoxia-ischemia rat models. Brain Res. 2009, 1259: 90-97.CrossRefPubMed Matchett GA, Fathali N, Hasegawa Y, Jadhav V, Ostrowski RP, Martin RD, Dorotta IR, Sun X, Zhang JH: Hydrogen gas is ineffective in moderate and severe neonatal hypoxia-ischemia rat models. Brain Res. 2009, 1259: 90-97.CrossRefPubMed
12.
Zurück zum Zitat Cai JM, Kang ZM, Liu K, Liu WW, Li RP, Zhang JH, Luo X, Sun XJ: Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model. Brain Research. 2009, 1256: 129-137.CrossRefPubMed Cai JM, Kang ZM, Liu K, Liu WW, Li RP, Zhang JH, Luo X, Sun XJ: Neuroprotective effects of hydrogen saline in neonatal hypoxia-ischemia rat model. Brain Research. 2009, 1256: 129-137.CrossRefPubMed
13.
Zurück zum Zitat Chen CW, Chen QB, Mao YF, Xu SM, Xia CY, Shi XY, Zhang JH, Yuan HB, Sun XJ: Hydrogen-Rich Saline Protects Against Spinal Cord Injury in Rats. Neurochemical Research. 2010, 35: 1111-1118. 10.1007/s11064-010-0162-y.CrossRefPubMed Chen CW, Chen QB, Mao YF, Xu SM, Xia CY, Shi XY, Zhang JH, Yuan HB, Sun XJ: Hydrogen-Rich Saline Protects Against Spinal Cord Injury in Rats. Neurochemical Research. 2010, 35: 1111-1118. 10.1007/s11064-010-0162-y.CrossRefPubMed
14.
Zurück zum Zitat Mao YF, Zheng XF, Cai JM, You XM, Deng XM, Zhang JH, Jiang L, Sun XJ: Hydrogen-rich saline reduces lung injury induced by intestinal ischemia/reperfusion in rats. Biochem Biophys Res Commun. 2009, 381: 602-605. 10.1016/j.bbrc.2009.02.105.CrossRefPubMed Mao YF, Zheng XF, Cai JM, You XM, Deng XM, Zhang JH, Jiang L, Sun XJ: Hydrogen-rich saline reduces lung injury induced by intestinal ischemia/reperfusion in rats. Biochem Biophys Res Commun. 2009, 381: 602-605. 10.1016/j.bbrc.2009.02.105.CrossRefPubMed
15.
Zurück zum Zitat Chen H, Sun YP, Hu PF, Liu WW, Xiang HG, Li Y, Yan RL, Su N, Ruan CP, Sun XJ, Wang QA: The Effects of Hydrogen-Rich Saline on the Contractile and Structural Changes of Intestine Induced by Ischemia-Reperfusion in Rats. Journal of Surgical Research. 2009, 167: 316-322.CrossRefPubMed Chen H, Sun YP, Hu PF, Liu WW, Xiang HG, Li Y, Yan RL, Su N, Ruan CP, Sun XJ, Wang QA: The Effects of Hydrogen-Rich Saline on the Contractile and Structural Changes of Intestine Induced by Ischemia-Reperfusion in Rats. Journal of Surgical Research. 2009, 167: 316-322.CrossRefPubMed
16.
Zurück zum Zitat Fukuda KI, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S: Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochemical and Biophysical Research Communications. 2007, 361: 670-674. 10.1016/j.bbrc.2007.07.088.CrossRefPubMed Fukuda KI, Asoh S, Ishikawa M, Yamamoto Y, Ohsawa I, Ohta S: Inhalation of hydrogen gas suppresses hepatic injury caused by ischemia/reperfusion through reducing oxidative stress. Biochemical and Biophysical Research Communications. 2007, 361: 670-674. 10.1016/j.bbrc.2007.07.088.CrossRefPubMed
17.
Zurück zum Zitat Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, Endo J, Katayama T, Kawamura A, Kohsaka S, Makino S, Ohta S, Ogawa S, Fukuda K: Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochemical and Biophysical Research Communications. 2008, 373: 30-35. 10.1016/j.bbrc.2008.05.165.CrossRefPubMed Hayashida K, Sano M, Ohsawa I, Shinmura K, Tamaki K, Kimura K, Endo J, Katayama T, Kawamura A, Kohsaka S, Makino S, Ohta S, Ogawa S, Fukuda K: Inhalation of hydrogen gas reduces infarct size in the rat model of myocardial ischemia-reperfusion injury. Biochemical and Biophysical Research Communications. 2008, 373: 30-35. 10.1016/j.bbrc.2008.05.165.CrossRefPubMed
18.
Zurück zum Zitat Huang Y, Xie KL, Li JP, Xu N, Gong G, Wang GL, Yu YH, Dong HL, Xiong LZ: Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits. Brain Research. 2010, 1378: 125-136.CrossRefPubMed Huang Y, Xie KL, Li JP, Xu N, Gong G, Wang GL, Yu YH, Dong HL, Xiong LZ: Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits. Brain Research. 2010, 1378: 125-136.CrossRefPubMed
19.
Zurück zum Zitat Cai JM, Kang ZM, Liu WW, Luo X, Qiang S, Zhang JH, Ohta SG, Sun XJ, Xu WG, Tao HY, Li RP: Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model. Neuroscience Letters. 2008, 441: 167-172. 10.1016/j.neulet.2008.05.077.CrossRefPubMed Cai JM, Kang ZM, Liu WW, Luo X, Qiang S, Zhang JH, Ohta SG, Sun XJ, Xu WG, Tao HY, Li RP: Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model. Neuroscience Letters. 2008, 441: 167-172. 10.1016/j.neulet.2008.05.077.CrossRefPubMed
20.
Zurück zum Zitat Domoki F, Olah O, Zimmermann A, Nemeth I, Toth-Szuki V, Hugyecz M, Temesvari P, Bart F: Hydrogen is Neuroprotective and Preserves Cerebrovascular Reactivity in Asphyxiated Newborn Pigs. Pediatric Research. 2010, 68: 387-392.PubMed Domoki F, Olah O, Zimmermann A, Nemeth I, Toth-Szuki V, Hugyecz M, Temesvari P, Bart F: Hydrogen is Neuroprotective and Preserves Cerebrovascular Reactivity in Asphyxiated Newborn Pigs. Pediatric Research. 2010, 68: 387-392.PubMed
21.
Zurück zum Zitat Ji Q, Hui KL, Zhang LD, Sun XJ, Li WY, Duan ML: The Effect of Hydrogen-Rich Saline on the Brain of Rats with Transient Ischemia. Journal of Surgical Research. 2010, 168: E95-E101.CrossRef Ji Q, Hui KL, Zhang LD, Sun XJ, Li WY, Duan ML: The Effect of Hydrogen-Rich Saline on the Brain of Rats with Transient Ischemia. Journal of Surgical Research. 2010, 168: E95-E101.CrossRef
22.
Zurück zum Zitat Wang C, Li JA, Liu QA, Yang R, Zhang JH, Cao YP, Sun XJ: Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-kappa B activation in a rat model of amyloid-beta-induced Alzheimer's disease. Neuroscience Letters. 2011, 491: 127-132. 10.1016/j.neulet.2011.01.022.CrossRefPubMed Wang C, Li JA, Liu QA, Yang R, Zhang JH, Cao YP, Sun XJ: Hydrogen-rich saline reduces oxidative stress and inflammation by inhibit of JNK and NF-kappa B activation in a rat model of amyloid-beta-induced Alzheimer's disease. Neuroscience Letters. 2011, 491: 127-132. 10.1016/j.neulet.2011.01.022.CrossRefPubMed
23.
Zurück zum Zitat Fu Y, Ito M, Fujita Y, Ichihara M, Masuda A, Suzuki Y, Maesawa S, Kajita Y, Hirayama M, Ohsawa I, Ohta S, Ohno K: Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson's disease. Neuroscience Letters. 2009, 453: 81-85. 10.1016/j.neulet.2009.02.016.CrossRefPubMed Fu Y, Ito M, Fujita Y, Ichihara M, Masuda A, Suzuki Y, Maesawa S, Kajita Y, Hirayama M, Ohsawa I, Ohta S, Ohno K: Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson's disease. Neuroscience Letters. 2009, 453: 81-85. 10.1016/j.neulet.2009.02.016.CrossRefPubMed
24.
Zurück zum Zitat Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, Sakumi K, Yamakawa Y, Kido MA, Takaki A, Katafuchi T, Tanaka Y, Nakabeppu Y, Noda M: Hydrogen in Drinking Water Reduces Dopaminergic Neuronal Loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Parkinson's Disease. Plos One. 2009, 4: DOI:e724710.721371/journal.pone.0007247 Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, Sakumi K, Yamakawa Y, Kido MA, Takaki A, Katafuchi T, Tanaka Y, Nakabeppu Y, Noda M: Hydrogen in Drinking Water Reduces Dopaminergic Neuronal Loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Parkinson's Disease. Plos One. 2009, 4: DOI:e724710.721371/journal.pone.0007247
25.
Zurück zum Zitat Levitt MD: Production and excretion of hydrogen gas in man. N Engl J Med. 1969, 281: 122-127. 10.1056/NEJM196907172810303.CrossRefPubMed Levitt MD: Production and excretion of hydrogen gas in man. N Engl J Med. 1969, 281: 122-127. 10.1056/NEJM196907172810303.CrossRefPubMed
26.
Zurück zum Zitat Sobko T, Norman M, Norin E, Gustafsson LE, Lundberg JO: Birth-related increase in intracolonic hydrogen gas and nitric oxide as indicator of host-microbial interactions. Allergy. 2005, 60: 396-400. 10.1111/j.1398-9995.2005.00737.x.CrossRefPubMed Sobko T, Norman M, Norin E, Gustafsson LE, Lundberg JO: Birth-related increase in intracolonic hydrogen gas and nitric oxide as indicator of host-microbial interactions. Allergy. 2005, 60: 396-400. 10.1111/j.1398-9995.2005.00737.x.CrossRefPubMed
27.
Zurück zum Zitat Maffei HV, Metz G, Bampoe V, Shiner M, Herman S, Brook CG: Lactose intolerance, detected by the hydrogen breath test, in infants and children with chronic diarrhoea. Arch Dis Child. 1977, 52: 766-771. 10.1136/adc.52.10.766.PubMedCentralCrossRefPubMed Maffei HV, Metz G, Bampoe V, Shiner M, Herman S, Brook CG: Lactose intolerance, detected by the hydrogen breath test, in infants and children with chronic diarrhoea. Arch Dis Child. 1977, 52: 766-771. 10.1136/adc.52.10.766.PubMedCentralCrossRefPubMed
28.
Zurück zum Zitat Olson JW, Maier RJ: Molecular hydrogen as an energy source for Helicobacter pylori. Science. 2002, 298: 1788-1790. 10.1126/science.1077123.CrossRefPubMed Olson JW, Maier RJ: Molecular hydrogen as an energy source for Helicobacter pylori. Science. 2002, 298: 1788-1790. 10.1126/science.1077123.CrossRefPubMed
29.
Zurück zum Zitat Suzuki Y, Sano M, Hayashida K, Ohsawa I, Ohta S, Fukuda K: Are the effects of alpha-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract?. Febs Letters. 2009, 583: 2157-2159. 10.1016/j.febslet.2009.05.052.CrossRefPubMed Suzuki Y, Sano M, Hayashida K, Ohsawa I, Ohta S, Fukuda K: Are the effects of alpha-glucosidase inhibitors on cardiovascular events related to elevated levels of hydrogen gas in the gastrointestinal tract?. Febs Letters. 2009, 583: 2157-2159. 10.1016/j.febslet.2009.05.052.CrossRefPubMed
30.
Zurück zum Zitat Shimouchi A, Nose K, Takaoka M, Hayashi H, Kondo T: Effect of dietary turmeric on breath hydrogen. Dig Dis Sci. 2009, 54: 1725-1729. 10.1007/s10620-008-0550-1.CrossRefPubMed Shimouchi A, Nose K, Takaoka M, Hayashi H, Kondo T: Effect of dietary turmeric on breath hydrogen. Dig Dis Sci. 2009, 54: 1725-1729. 10.1007/s10620-008-0550-1.CrossRefPubMed
31.
Zurück zum Zitat Kajiya M, Sato K, Silva MJB, Ouhara K, Do PM, Shanmugam KT, Kawai T: Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis. Biochemical and Biophysical Research Communications. 2009, 386: 316-321. 10.1016/j.bbrc.2009.06.024.CrossRefPubMed Kajiya M, Sato K, Silva MJB, Ouhara K, Do PM, Shanmugam KT, Kawai T: Hydrogen from intestinal bacteria is protective for Concanavalin A-induced hepatitis. Biochemical and Biophysical Research Communications. 2009, 386: 316-321. 10.1016/j.bbrc.2009.06.024.CrossRefPubMed
32.
Zurück zum Zitat Voskuijl W, de Lorijn F, Verwijs W, Hogeman P, Heijmans J, Makel W, Taminiau J, Benninga M: PEG 3350 (Transipeg) versus lactulose in the treatment of childhood functional constipation: a double blind, randomised, controlled, multicentre trial. Gut. 2004, 53: 1590-1594. 10.1136/gut.2004.043620.PubMedCentralCrossRefPubMed Voskuijl W, de Lorijn F, Verwijs W, Hogeman P, Heijmans J, Makel W, Taminiau J, Benninga M: PEG 3350 (Transipeg) versus lactulose in the treatment of childhood functional constipation: a double blind, randomised, controlled, multicentre trial. Gut. 2004, 53: 1590-1594. 10.1136/gut.2004.043620.PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Florent C, Flourie B, Leblond A, Rautureau M, Bernier JJ, Rambaud JC: Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). J Clin Invest. 1985, 75: 608-613. 10.1172/JCI111738.PubMedCentralCrossRefPubMed Florent C, Flourie B, Leblond A, Rautureau M, Bernier JJ, Rambaud JC: Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). J Clin Invest. 1985, 75: 608-613. 10.1172/JCI111738.PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Rhodes JM, Middleton P, Jewell DP: The lactulose hydrogen breath test as a diagnostic test for small-bowel bacterial overgrowth. Scand J Gastroenterol. 1979, 14: 333-336. 10.3109/00365527909179892.CrossRefPubMed Rhodes JM, Middleton P, Jewell DP: The lactulose hydrogen breath test as a diagnostic test for small-bowel bacterial overgrowth. Scand J Gastroenterol. 1979, 14: 333-336. 10.3109/00365527909179892.CrossRefPubMed
35.
Zurück zum Zitat Rumi G, Tsubouchi R, Okayama M, Kato S, Mozsik G, Takeuchi K: Protective effect of lactulose on dextran sulfate sodium-induced colonic inflammation in rats. Dig Dis Sci. 2004, 49: 1466-1472.CrossRefPubMed Rumi G, Tsubouchi R, Okayama M, Kato S, Mozsik G, Takeuchi K: Protective effect of lactulose on dextran sulfate sodium-induced colonic inflammation in rats. Dig Dis Sci. 2004, 49: 1466-1472.CrossRefPubMed
Metadaten
Titel
Lactulose: an effective preventive and therapeutic option for ischemic stroke by production of hydrogen
verfasst von
Xiao Chen
Xiao Zhai
Zhimin Kang
Xuejun Sun
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
Medical Gas Research / Ausgabe 1/2012
Elektronische ISSN: 2045-9912
DOI
https://doi.org/10.1186/2045-9912-2-3

Weitere Artikel der Ausgabe 1/2012

Medical Gas Research 1/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.