Skip to main content
Erschienen in: Breast Cancer Research 1/2012

Open Access 01.02.2012 | Research article

Germline DNA copy number variation in familial and early-onset breast cancer

verfasst von: Ana CV Krepischi, Maria Isabel W Achatz, Erika MM Santos, Silvia S Costa, Bianca CG Lisboa, Helena Brentani, Tiago M Santos, Amanda Gonçalves, Amanda F Nóbrega, Peter L Pearson, Angela M Vianna-Morgante, Dirce M Carraro, Ricardo R Brentani, Carla Rosenberg

Erschienen in: Breast Cancer Research | Ausgabe 1/2012

Abstract

Introduction

Genetic factors predisposing individuals to cancer remain elusive in the majority of patients with a familial or clinical history suggestive of hereditary breast cancer. Germline DNA copy number variation (CNV) has recently been implicated in predisposition to cancers such as neuroblastomas as well as prostate and colorectal cancer. We evaluated the role of germline CNVs in breast cancer susceptibility, in particular those with low population frequencies (rare CNVs), which are more likely to cause disease."

Methods

Using whole-genome comparative genomic hybridization on microarrays, we screened a cohort of women fulfilling criteria for hereditary breast cancer who did not carry BRCA1/BRCA2 mutations.

Results

The median numbers of total and rare CNVs per genome were not different between controls and patients. A total of 26 rare germline CNVs were identified in 68 cancer patients, however, a proportion that was significantly different (P = 0.0311) from the control group (23 rare CNVs in 100 individuals). Several of the genes affected by CNV in patients and controls had already been implicated in cancer.

Conclusions

This study is the first to explore the contribution of germline CNVs to BRCA1/2-negative familial and early-onset breast cancer. The data suggest that rare CNVs may contribute to cancer predisposition in this small cohort of patients, and this trend needs to be confirmed in larger population samples.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​bcr3109) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

ACVK participated in the design of the study, performed part of the molecular genetics analysis and drafted the manuscript. SSC carried out part of the array-CGH experiments. BCGL and DMC carried out the screening for BRCA1/2 mutations. AG carried out the real-time PCR assays for CNV validation. MIWA was the physician responsible for the clinical trial and the selection and classification of the families and also revised the manuscript. AFN and EMMS participated in the clinical trial and the classification of the families. HB and TMS performed the statistical analysis. RRB and AMVM participated in the design of the study and revised the manuscript. PLP and CR revised the manuscript critically gave their final approval of the version to be published.
Abkürzungen
bp
base pair
CNV
copy number variation
array-CGH
comparative genomic hybridization on microarray
kb
kilobase
DGV
Database of Genomic Variants
UCSC
University of California Santa Cruz.

Introduction

It has been estimated that all known cancer susceptibility genes account for only 1% to 15% of familial cancers [1, 2]. Approximately 5% to 10% of hereditary breast and ovarian cancers result from dominant mutations in known single genes [36], particularly BRCA1/BRCA2. Therefore, the basis for a large fraction of genetic predisposition in families with breast and/or ovarian cancer remains to be uncovered.
Recent studies have highlighted DNA copy number variation (CNV) as the most prevalent type of structural variation in the human genome [79], and its role in normal development and disease has been demonstrated through its impact on gene expression and protein structure [1013]. In particular, CNVs involving deletions have been reported as a cause of cancer susceptibility, occurring in up to 30% of highly penetrant cancer-predisposing genes, including BRCA1, BRCA2, APC, SMAD4 and TP53, as well as mismatch repair genes [1416] (reviewed in [17, 18]).
Germline gains and losses of large DNA segments have recently been reported as factors predisposing individuals to neuroblastoma, prostate and colorectal cancer and BRCA1-associated ovarian cancer [1924]. Nevertheless, whole-genome CNV profiling of patients fulfilling criteria for hereditary breast and ovarian cancer, but without BRCA1/BRCA2 mutations, has not been reported. In the present study, we investigated the germline CNV profiles of 68 unrelated familial and early-onset breast cancer patients who were negative for BRCA1/BRCA2 mutations, with the aim of detecting new genes contributing to breast and/or ovarian cancer predisposition.

Materials and methods

Study approval

The research protocol was approved by the ethics committee of the AC Camargo Cancer Hospital, São Paulo, Brazil (protocol 1175/08), and informed consent was obtained from the subjects.

Patients

Samples of peripheral blood cells for DNA extraction were collected after informed consent was obtained from 68 women attending the AC Camargo Cancer Hospital prior to any systemic treatment. They were selected for fulfilling at least one of the criteria for hereditary breast and ovarian cancer published in the National Comprehensive Cancer Network Practice Guidelines in Oncology version 1.2010 [25].
Confirmation of the family history of cancer was obtained whenever possible on the basis of pathology reports, medical records and/or death certificates. All women had previously tested negative for BRCA1/BRCA2 pathogenic mutations (based on Sanger sequencing of coding sequences). Because most of the affected relatives were already dead, were inaccessible or refused to participate, we were unable to investigate CNV segregation in the majority of the cases.
The criteria used to select patients, type of cancer, and age at cancer diagnosis are given in Additional file 1. Most of the patients (n = 48) were familial cases of hereditary breast and/or ovarian cancer in which at least one other family member was affected. The remaining 20 patients were considered hereditary breast and/or ovarian cancer patients for being isolated cases of early-onset cancer (≤ 45 years of age). Most of the tumors were invasive ductal breast carcinomas. Aside from two patients who had only ovarian cancer (patients 9 and 34), all of the other sixty-six patients had breast cancer (bilateral in patient 67, and patients 10 and 16 also had ovarian cancer).

Control sample

DNA samples were obtained from the peripheral blood cells of control participants after their informed consent was obtained. One hundred DNA samples (seventy-eight women and twenty-two men) were provided by the Genetic Center of the Institute of Biosciences, University of São Paulo, São Paulo, Brazil. They were obtained from noncarrier relatives of patients affected by mental impairment with clear genetic etiology unrelated to cancer predisposition (namely, fragile × syndrome or de novo chromosomal rearrangements). No information regarding their cancer history was available. Age-matching of controls and patients was considered unnecessary for this study since CNV frequency in blood is generally considered stable and unrelated to chronological age.

Comparative genomic hybridization based on microarray (array-CGH)

We performed comparative genomic hybridization based on microarray (array-CGH) using a 180 K whole-genome platform (design 22060; Agilent Technologies, Santa Clara, CA, USA), which has an average probe spacing of 18 kb. Briefly, samples were labeled with Cy3- and Cy5-deoxycytidine triphosphates by random priming. Purification, hybridization and washing were carried out as previously reported [26, 27]. Scanned images of the arrays were processed using Feature Extraction software (Agilent Technologies).
We applied the Genomic Workbench software (Agilent Technologies) for calling DNA CNV using the aberration detection method 2 statistical algorithm with a sensitivity threshold of 6.7. Poor quality hybridization (QC > 0.3) was disregarded. Duplication or deletion of genomic segments was considered when the log2 ratio of the Cy3/Cy5 intensities of a given region encompassing at least three probes was > 0.3 or < -0.3, respectively. All hybridizations were gender-matched and processed in reverse-labeling duplicates as described previously [28]. CNVs that were not detected in both experiments were disregarded.

Copy number validation by real-time PCR

Selected CNVs detected in the patient group were validated by real-time quantitative PCR (qPCR) [29] using the SYBR Green system (Roche Applied Science, Indianapolis, IN, USA) on a 7500 Fast Real-Time PCR System apparatus (Applied Biosystems, Foster City, CA, USA). As controls or for copy number calibration, we used three DNA samples obtained from healthy donors and the qPCR values for the GAPD and HPRT genes for normalization. All samples were run in duplicate, and the data were analyzed with Microsoft Excel software (Microsoft Corp, Redmond, WA, USA) using the comparative ΔΔCt cycle threshold method (Applied Biosystems), which assumes that the calibrator DNA has two copies of the control genes.

Data analysis

Detected CNVs were compared to CNV data from oligoarray studies documented in the Database of Genomic Variants (DGV) [30]. We classified the CNVs into "rare" and "common," with rare being those that encompassed coding sequences which had never been documented as variable in the general population (DGV). CNVs were evaluated regarding proportion of total and rare CNVs, frequency of deletions and duplications, length, and gene content using the Mann-Whitney U test and Fisher's exact test.
Gene annotation was performed using the University of California Santa Cruz Genome Browser (UCSC) [31], BioMart in the Ensembl Genome Browser [32] and Catalog of Somatic Mutations. We investigated the biological features of genes contained within the rare CNVs using GOTree Machine (GOTM) software [33] to measure the enrichment in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) categories. GOTM reports only those enrichments that are statistically significant as determined by the hypergeometric test [34].

Results

Full CNV data on the controls and patients can be found in Additional file 2. A whole extra copy of the × chromosome was identified in one patient. This chromosomal numerical alteration was not considered a CNV. The array-CGH results are summarized in Table 1. We found a total of 1,238 CNVs in 168 individuals. CNVs observed in both patient and control samples corresponded to 81.3% of the total, all of which overlapped common CNVs (DGV). CNVs detected exclusively in one of the groups corresponded to 110 events in patients and 121 in controls. The distribution of CNVs did not differ between patients and controls (P = 0.1724, Mann-Whitney U test).
Table 1
Summary of DNA copy number variation data from breast and/or ovarian cancer patients and controlsa
Copy number variation
Controls (n= 100)
Patients (n= 68)
Total CNVs
702
536
Rare variants
23
26
   Deletions
9
12
   Duplications
14
14
Median CNVs per individual (IQR)b
7.0 (4 to 9)
7.5 (5 to 10)
aCNV = copy number variation. bIQR = interquartile range.
Only 49 of the 1,238 CNVs could be classified as rare, and none of them were recurrent. Those CNVs classified as rare based on DGV data corresponded to 4% (49 of 1,238 CNVs) of all CNVs detected in our study. The log2 ratios of the rare CNVs (all outside the log2 -0.65 to log2 0.45 range) were not suggestive of mosaicism, indicating that these CNVs are likely constitutive. In the control group, 3.28% (23 of 702) of CNVs detected in 23 of 100 individuals (23%) were classified as rare, whereas 26 of 536 rare CNVs (4.85%) were found in 25 of 68 patients (37%). The median numbers of total and rare CNVs per genome did not differ between controls and patients. However, the proportion of rare CNVs in patients was higher than in the controls (P = 0.0311, Fisher's exact test). The relative frequencies of duplications and deletions among rare CNVs were similar between controls (14 duplications and 9 deletions) and patients (14 duplications and 12 deletions).
We also inspected the rare CNVs for length and gene content (Table 2). The length of rare CNVs in controls and patients did not differ significantly. The lengths of rare deletions or duplications did not differ between patients and controls or within the patient group alone. However, only in the control group were the deletions found to be significantly smaller than the duplications (P = 0.0089, Mann-Whitney U test).
Table 2
Size and gene content of rare copy number variationsa
Rare CNVs
Control group (n= 23 CNVs)
Patient group (n= 26 CNVs)
Length range (kb)
31 to 684
32 to 1,592
Median size (IQR)b (kb)
225.5 (125.8 to 275.3)
136.7 (70.3 to 278.0)
Deletions (kb)
127.2 (43.7 to 225.5)
145.0 (124.6 to 229.5)
Duplications (kb)
249.5 (202.9.4 to 350.4)
119.2 (50.0 to 278.0)
Gene number/individual
0.4 (44 of 100)
0.8 (57 of 68)
aCNV = copy number variation. bIQR = interquartile range.
The 26 rare CNVs and the affected genes detected in patients are described in Table 3. The published literature regarding those genes already reported to be altered in cancer is listed in Additional file 3. The rare CNVs identified in the control group are listed in Additional file 4. To evaluate whether the rare CNVs detected among cancer patients represent common CNVs in the Brazilian population, we compiled CNV data obtained from independent samples studied in our laboratory using 180 K array-CGH. These individuals (120 females and 38 males) were selected on the basis of criteria other than cancer history, including 52 patients with dementia, 56 cases of nonsyndromic hearing loss and 51 cases of Müllerian anomalies (C Rosenberg; ACV Krepischi; unpublished data). None of the rare CNVs documented in this study were detected in these independent cohorts of patients.
Table 3
Genomic positions (build 36-Hg18), size, type and affected genes of the 26 rare copy number variations identified in patientsa
Chromosome
Cytoband
Start site
Size (bp)
CNV type
Gene Names
Patient
chr1
p31.1
76,801,602
550,723
del
ST6GALNAC3, ST6GALNAC5, PIGK
3
chr1
q44
243,610,556
153,230
del
KIF26B
16
chr1
p32.1
59,559,568
41,339
del
FGGY
15
chr2
p25.1
9,165,985
192,606
del
ASAP2
21
chr2
q22.2
143,463,273
300,408
dup
KYNU, ARHGAP15
7
chr2
q32.2
190,015,149
45,366
dup
WDR75
28
chr3
p24.3
18,759,412
635,060
dup
KCNH8, MIR4791
11
chr3
q28
193,405,249
135,458
dup
FGF12
1
chr4
q31.3
152,508,270
136,605
del
FAM160A1
29
chr6
p12.1
55,468,168
33,031
dup
HMGCLL1
30
chr9
p21.3
20,661,515
136,814
del
KIAA1797, MIR491
13
chr9
p24.1
5,130,196
168,153
del
INSL6, INSL4, RLN2
20
chr9
q31.3
111,832,790
340,164
del
PALM2-AKAP2, AKAP2, C9orf152, TXN, TXNDC8, SVEP1
22
chr10
p13
16,970,291
103,018
dup
CUBN
19
chr11
q12.3
62,290,497
38,091
dup
POLR2G, TAF6L, TMEM179B, TMEM223, NXF1
25
chr16
q23.3
81,315,382
136,618
del
CDH13
5
chr16
q11.2
45,058,042
198,742
dup
ANKRD26P1, SHCBP1, VPS35
6
chr17
q25.1
71,478,161
33,362
dup
ACOX1, TEN1, CDK3
5
chr18
q12.1
27,990,329
64,132
dup
MEP1B
18
chr21
q21.3
29,391,572
496,425
del
C21orf7, LINC00189, BACH1, GRIK1
8
chr21
q22.3
46,538,913
210,594
dup
YBEY, C21orf58, PCNT, DIP2A
12
chrX
q22.3
109,193,988
31,659
del
TMEM164, MIR3978
23
chrX
q25
126,971,799
88,694
del
ACTRT1
17
chrX
q13.1
68,398,248
639,366
dup
FAM155B, EDA
27
chrX
p22.31
6,499,677
1,592,274
dup
HDHD1, STS, VCX, PNPLA4
15
chrX
q13.3
75,294,586
88,796
dup
CXorf26
14
aCNV = copy number variation; del = deletion; dup = duplication.
In one family, the patient with early-onset breast cancer (patient 3), as well as her affected sister, who presented with breast cancer at 28 years of age, were found to carry a 540 kb 1p31.1 microdeletion (Figure 1A). The heterozygous deletion was confirmed in the two affected sisters by qPCR. In the second family, a 90 kb microdeletion at Xq25 was detected in two affected sisters, one of whom presented with bilateral breast cancer (patient 17).
Figure 1 depicts two additional rare CNVs identified by array-CGH and validated by qPCR in unrelated patients. Figure 1B shows a 137 kb deletion at 9p21.3 detected in patient 13. Figure 1C illustrates a 640-kb duplication mapped at Xq13.1 (patient 27).
We characterized the function of genes located in rare CNVs in both patients and controls by GO term and KEGG pathway analysis using the Gene Ontology Tree Machine. We did not detect any significant difference in gene content in either patients or controls.

Discussion

We used array-CGH to investigate the role of rare germline CNVs in probands of individuals with a familial history of breast and ovarian cancer. Because evaluation of CNV profiles depends on ethnic background, array platform and method of analysis [3538], all experiments were performed using the same platform, the same analytical parameters and a Brazilian control group. We disregarded the possibility that the CNVs were somatically acquired because none of the results were suggestive of mosaicism. Furthermore, the limited data available indicate that CNV profiles are rather stable in adult tissues (reviewed in [39]).
Common CNVs often contain cancer-related genes and likely play a role in carcinogenesis [40]. However, only a minority of CNVs, those with low population frequencies (rare CNVs), would be likely to contain genes that are highly penetrant genetic factors for disease susceptibility, including cancer [7, 41]. In our study, the median numbers of total and rare CNVs per genome were quite similar in patients and controls, reflecting a lack of genomic instability in this cohort of patients. These results are in agreement with data derived from a study of BRCA1-associated ovarian cancer patients [42]. Nevertheless, the patients did present a higher proportion of rare CNVs compared to controls. None of these rare CNVs were present in an independent cohort of more than 150 individuals, providing support for their nonpolymorphic nature in the Brazilian population. Assuming that some of these rare CNVs are cancer-related, the patients would carry an increased cancer risk proportionate to the number of rare genomic imbalances. The reason why we found a greater proportion of rare CNVs in patients than in controls is not clear. We could speculate that deleterious CNVs tend to be eliminated and, for some reason, conceivably less efficient apoptosis or DNA repair mechanisms, this selection would be less stringent in these patients. Whatever the reason may be, the connection between this finding and the patients' phenotypes deserves investigation.
Part of the rare genomic imbalances harbors genes that could potentially affect cancer susceptibility (see Table 3). For example, a 540 kb microdeletion at 1p31.1 was detected in two affected sisters (Figure 1A). Among the genes mapped to this deleted segment, the most relevant to cancer progression is probably ST6GALNAC5, a sialyltransferase recently reported to mediate breast cancer metastasis to the brain [43]. Another interesting alteration detected in a patient, an approximately 137 kb deletion at 9p21.3, encompassed the KIA1797 and the MIR491 genes (Figure 1B). A germline CNV affecting this genomic segment was recently reported in a colorectal cancer cohort [23]. The finding of a similar 9p21.3 deletion in independent cohorts of cancer patients strengthens their pathogenic role in cancer predisposition.
Our data support the hypothesis that germline DNA CNV is a genetic factor contributing to breast cancer predisposition, which is in accord with the findings of other studies indicating CNVs as risk factors in cancer, including neuroblastoma [19], colorectal cancer [22, 23], hepatocellular carcinoma [44], aggressive prostate cancer [20], nasopharyngeal carcinoma[45]and BRCA1-associated ovarian cancer[38]. Our findings of a possible association of a cancer predisposition phenotype with rare CNVs affecting different genes are in line with the genetic heterogeneity reported in breast cancer. This picture is different from most of the aforementioned studies, which detected recurrent common CNVs associated with cancer risk, except for prostate, colorectal and ovarian cancer CNV studies, which exhibited high CNV heterogeneity.

Conclusions

Our analysis of rare CNVs in a small cohort of BRCA1/BRCA2 mutation-negative breast and/or ovarian cancer families suggests an intriguing excess in the proportion of rare CNVs compared to controls. The future challenge will be to expand sample sizes and to follow cosegregation of given CNVs with cancer phenotype within families to identify which of the genes involved in the rare CNVs might contribute to familial breast cancer predisposition.

Acknowledgements

This work was supported by grants from the Brazilian National Institute of Science and Technology in Oncogenomics (FAPESP 2008/57887-9 and CNPq 573589/08-9) and FAPESP (2009/00898-1). We thank the Biobank of the AC Camargo Hospital for providing DNA samples. We are indebted to the patients and their families for their participation in the trial.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

ACVK participated in the design of the study, performed part of the molecular genetics analysis and drafted the manuscript. SSC carried out part of the array-CGH experiments. BCGL and DMC carried out the screening for BRCA1/2 mutations. AG carried out the real-time PCR assays for CNV validation. MIWA was the physician responsible for the clinical trial and the selection and classification of the families and also revised the manuscript. AFN and EMMS participated in the clinical trial and the classification of the families. HB and TMS performed the statistical analysis. RRB and AMVM participated in the design of the study and revised the manuscript. PLP and CR revised the manuscript critically gave their final approval of the version to be published.
Literatur
1.
Zurück zum Zitat Fearon ER: Human cancer syndromes: clues to the origin and nature of cancer. Science. 1997, 278: 1043-1050. 10.1126/science.278.5340.1043.CrossRefPubMed Fearon ER: Human cancer syndromes: clues to the origin and nature of cancer. Science. 1997, 278: 1043-1050. 10.1126/science.278.5340.1043.CrossRefPubMed
2.
Zurück zum Zitat Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K: Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000, 343: 78-85. 10.1056/NEJM200007133430201.CrossRefPubMed Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K: Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000, 343: 78-85. 10.1056/NEJM200007133430201.CrossRefPubMed
3.
Zurück zum Zitat Chompret A: [Clinical and molecular diagnosis of inherited breast-ovarian cancer] [in French]. J Gynecol Obstet Biol Reprod (Paris). 2003, 32: 101-119. Chompret A: [Clinical and molecular diagnosis of inherited breast-ovarian cancer] [in French]. J Gynecol Obstet Biol Reprod (Paris). 2003, 32: 101-119.
5.
Zurück zum Zitat Foulkes WD: Inherited susceptibility to common cancers. N Engl J Med. 2008, 359: 2143-2153. 10.1056/NEJMra0802968.CrossRefPubMed Foulkes WD: Inherited susceptibility to common cancers. N Engl J Med. 2008, 359: 2143-2153. 10.1056/NEJMra0802968.CrossRefPubMed
6.
7.
Zurück zum Zitat Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, Macarthur DG, MacDonald JR, Onyiah I, Pang AW, Robson S, Stirrups K, Valsesia A, Walter K, Wei J, Wellcome Trust Case Control Consortium, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME: Origins and functional impact of copy number variation in the human genome. Nature. 2010, 464: 704-712. 10.1038/nature08516.CrossRefPubMed Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, Macarthur DG, MacDonald JR, Onyiah I, Pang AW, Robson S, Stirrups K, Valsesia A, Walter K, Wei J, Wellcome Trust Case Control Consortium, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME: Origins and functional impact of copy number variation in the human genome. Nature. 2010, 464: 704-712. 10.1038/nature08516.CrossRefPubMed
8.
Zurück zum Zitat Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C: Detection of large-scale variation in the human genome. Nat Genet. 2004, 36: 949-951. 10.1038/ng1416.CrossRefPubMed Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C: Detection of large-scale variation in the human genome. Nat Genet. 2004, 36: 949-951. 10.1038/ng1416.CrossRefPubMed
9.
Zurück zum Zitat Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Månér S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M: Large-scale copy number polymorphism in the human genome. Science. 2004, 305: 525-528. 10.1126/science.1098918.CrossRefPubMed Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, Månér S, Massa H, Walker M, Chi M, Navin N, Lucito R, Healy J, Hicks J, Ye K, Reiner A, Gilliam TC, Trask B, Patterson N, Zetterberg A, Wigler M: Large-scale copy number polymorphism in the human genome. Science. 2004, 305: 525-528. 10.1126/science.1098918.CrossRefPubMed
10.
Zurück zum Zitat Feuk L, Carson AR, Scherer SW: Structural variation in the human genome. Nat Rev Genet. 2006, 7: 85-97.CrossRefPubMed Feuk L, Carson AR, Scherer SW: Structural variation in the human genome. Nat Rev Genet. 2006, 7: 85-97.CrossRefPubMed
11.
Zurück zum Zitat Ng PC, Levy S, Huang J, Stockwell TB, Walenz BP, Li K, Axelrod N, Busam DA, Strausberg RL, Venter JC: Genetic variation in an individual human exome. PLoS Genet. 2008, 4: e1000160-10.1371/journal.pgen.1000160.CrossRefPubMedPubMedCentral Ng PC, Levy S, Huang J, Stockwell TB, Walenz BP, Li K, Axelrod N, Busam DA, Strausberg RL, Venter JC: Genetic variation in an individual human exome. PLoS Genet. 2008, 4: e1000160-10.1371/journal.pgen.1000160.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Stankiewicz P, Lupski JR: Structural variation in the human genome and its role in disease. Annu Rev Med. 2010, 61: 437-455. 10.1146/annurev-med-100708-204735.CrossRefPubMed Stankiewicz P, Lupski JR: Structural variation in the human genome and its role in disease. Annu Rev Med. 2010, 61: 437-455. 10.1146/annurev-med-100708-204735.CrossRefPubMed
13.
Zurück zum Zitat Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavaré S, Deloukas P, Hurles ME, Dermitzakis ET: Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science. 2007, 315: 848-853. 10.1126/science.1136678.CrossRefPubMedPubMedCentral Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavaré S, Deloukas P, Hurles ME, Dermitzakis ET: Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science. 2007, 315: 848-853. 10.1126/science.1136678.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Bunyan DJ, Eccles DM, Sillibourne J, Wilkins E, Thomas NS, Shea-Simonds J, Duncan PJ, Curtis CE, Robinson DO, Harvey JF, Cross NC: Dosage analysis of cancer predisposition genes by multiplex ligation-dependent probe amplification. Br J Cancer. 2004, 91: 1155-1159. 10.1038/sj.bjc.6602121.CrossRefPubMedPubMedCentral Bunyan DJ, Eccles DM, Sillibourne J, Wilkins E, Thomas NS, Shea-Simonds J, Duncan PJ, Curtis CE, Robinson DO, Harvey JF, Cross NC: Dosage analysis of cancer predisposition genes by multiplex ligation-dependent probe amplification. Br J Cancer. 2004, 91: 1155-1159. 10.1038/sj.bjc.6602121.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Casilli F, Tournier I, Sinilnikova OM, Coulet F, Soubrier F, Houdayer C, Hardouin A, Berthet P, Sobol H, Bourdon V, Muller D, Fricker JP, Capoulade-Metay C, Chompret A, Nogues C, Mazoyer S, Chappuis P, Maillet P, Philippe C, Lortholary A, Gesta P, Bézieau S, Toulas C, Gladieff L, Maugard CM, Provencher DM, Dugast C, Delvincourt C, Nguyen TD, Faivre L, et al: The contribution of germline rearrangements to the spectrum of BRCA2 mutations. J Med Genet. 2006, 43: e49-10.1136/jmg.2005.040212.CrossRefPubMedPubMedCentral Casilli F, Tournier I, Sinilnikova OM, Coulet F, Soubrier F, Houdayer C, Hardouin A, Berthet P, Sobol H, Bourdon V, Muller D, Fricker JP, Capoulade-Metay C, Chompret A, Nogues C, Mazoyer S, Chappuis P, Maillet P, Philippe C, Lortholary A, Gesta P, Bézieau S, Toulas C, Gladieff L, Maugard CM, Provencher DM, Dugast C, Delvincourt C, Nguyen TD, Faivre L, et al: The contribution of germline rearrangements to the spectrum of BRCA2 mutations. J Med Genet. 2006, 43: e49-10.1136/jmg.2005.040212.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Petrij-Bosch A, Peelen T, van Vliet M, van Eijk R, Olmer R, Drüsedau M, Hogervorst FB, Hageman S, Arts PJ, Ligtenberg MJ, Meijers-Heijboer H, Klijn JG, Vasen HF, Cornelisse CJ, van 't Veer LJ, Bakker E, van Ommen GJ, Devilee P: BRCA1 genomic deletions are major founder mutations in Dutch breast cancer patients. Nat Genet. 1997, 17: 341-345. 10.1038/ng1197-341.CrossRefPubMed Petrij-Bosch A, Peelen T, van Vliet M, van Eijk R, Olmer R, Drüsedau M, Hogervorst FB, Hageman S, Arts PJ, Ligtenberg MJ, Meijers-Heijboer H, Klijn JG, Vasen HF, Cornelisse CJ, van 't Veer LJ, Bakker E, van Ommen GJ, Devilee P: BRCA1 genomic deletions are major founder mutations in Dutch breast cancer patients. Nat Genet. 1997, 17: 341-345. 10.1038/ng1197-341.CrossRefPubMed
17.
Zurück zum Zitat Kuiper RP, Ligtenberg MJ, Hoogerbrugge N, Geurts van Kessel A: Germline copy number variation and cancer risk. Curr Opin Genet Dev. 2010, 20: 282-289. 10.1016/j.gde.2010.03.005.CrossRefPubMed Kuiper RP, Ligtenberg MJ, Hoogerbrugge N, Geurts van Kessel A: Germline copy number variation and cancer risk. Curr Opin Genet Dev. 2010, 20: 282-289. 10.1016/j.gde.2010.03.005.CrossRefPubMed
18.
Zurück zum Zitat Shlien A, Baskin B, Achatz MI, Stavropoulos DJ, Nichols KE, Hudgins L, Morel CF, Adam MP, Zhukova N, Rotin L, Novokmet A, Druker H, Shago M, Ray PN, Hainaut P, Malkin D: A common molecular mechanism underlies two phenotypically distinct 17p13.1 microdeletion syndromes. Am J Hum Genet. 2010, 87: 631-642. 10.1016/j.ajhg.2010.10.007.CrossRefPubMedPubMedCentral Shlien A, Baskin B, Achatz MI, Stavropoulos DJ, Nichols KE, Hudgins L, Morel CF, Adam MP, Zhukova N, Rotin L, Novokmet A, Druker H, Shago M, Ray PN, Hainaut P, Malkin D: A common molecular mechanism underlies two phenotypically distinct 17p13.1 microdeletion syndromes. Am J Hum Genet. 2010, 87: 631-642. 10.1016/j.ajhg.2010.10.007.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Diskin SJ, Hou C, Glessner JT, Attiyeh EF, Laudenslager M, Bosse K, Cole K, Mossé YP, Wood A, Lynch JE, Pecor K, Diamond M, Winter C, Wang K, Kim C, Geiger EA, McGrady PW, Blakemore AI, London WB, Shaikh TH, Bradfield J, Grant SF, Li H, Devoto M, Rappaport ER, Hakonarson H, Maris JM: Copy number variation at 1q21.1 associated with neuroblastoma. Nature. 2009, 459: 987-991. 10.1038/nature08035.CrossRefPubMedPubMedCentral Diskin SJ, Hou C, Glessner JT, Attiyeh EF, Laudenslager M, Bosse K, Cole K, Mossé YP, Wood A, Lynch JE, Pecor K, Diamond M, Winter C, Wang K, Kim C, Geiger EA, McGrady PW, Blakemore AI, London WB, Shaikh TH, Bradfield J, Grant SF, Li H, Devoto M, Rappaport ER, Hakonarson H, Maris JM: Copy number variation at 1q21.1 associated with neuroblastoma. Nature. 2009, 459: 987-991. 10.1038/nature08035.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Liu W, Sun J, Li G, Zhu Y, Zhang S, Kim ST, Sun J, Wiklund F, Wiley K, Isaacs SD, Stattin P, Xu J, Duggan D, Carpten JD, Isaacs WB, Grönberg H, Zheng SL, Chang BL: Association of a germ-line copy number variation at 2p24.3 and risk for aggressive prostate cancer. Cancer Res. 2009, 69: 2176-2179. 10.1158/0008-5472.CAN-08-3151.CrossRefPubMedPubMedCentral Liu W, Sun J, Li G, Zhu Y, Zhang S, Kim ST, Sun J, Wiklund F, Wiley K, Isaacs SD, Stattin P, Xu J, Duggan D, Carpten JD, Isaacs WB, Grönberg H, Zheng SL, Chang BL: Association of a germ-line copy number variation at 2p24.3 and risk for aggressive prostate cancer. Cancer Res. 2009, 69: 2176-2179. 10.1158/0008-5472.CAN-08-3151.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Lucito R, Suresh S, Walter K, Pandey A, Lakshmi B, Krasnitz A, Sebat J, Wigler M, Klein AP, Brune K, Palmisano E, Maitra A, Goggins M, Hruban RH: Copy-number variants in patients with a strong family history of pancreatic cancer. Cancer Biol Ther. 2007, 6: 1592-1599. 10.4161/cbt.6.10.4725.CrossRefPubMed Lucito R, Suresh S, Walter K, Pandey A, Lakshmi B, Krasnitz A, Sebat J, Wigler M, Klein AP, Brune K, Palmisano E, Maitra A, Goggins M, Hruban RH: Copy-number variants in patients with a strong family history of pancreatic cancer. Cancer Biol Ther. 2007, 6: 1592-1599. 10.4161/cbt.6.10.4725.CrossRefPubMed
22.
Zurück zum Zitat Thean LF, Loi C, Ho KS, Koh PK, Eu KW, Cheah PY: Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. Genes Chromosomes Cancer. 2010, 49: 99-106.PubMed Thean LF, Loi C, Ho KS, Koh PK, Eu KW, Cheah PY: Genome-wide scan identifies a copy number variable region at 3q26 that regulates PPM1L in APC mutation-negative familial colorectal cancer patients. Genes Chromosomes Cancer. 2010, 49: 99-106.PubMed
23.
Zurück zum Zitat Venkatachalam R, Verwiel ET, Kamping EJ, Hoenselaar E, Görgens H, Schackert HK, van Krieken JH, Ligtenberg MJ, Hoogerbrugge N, van Kessel AG, Kuiper RP: Identification of candidate predisposing copy number variants in familial and early-onset colorectal cancer patients. Int J Cancer. 2011, 129: 1635-1642. 10.1002/ijc.25821.CrossRefPubMed Venkatachalam R, Verwiel ET, Kamping EJ, Hoenselaar E, Görgens H, Schackert HK, van Krieken JH, Ligtenberg MJ, Hoogerbrugge N, van Kessel AG, Kuiper RP: Identification of candidate predisposing copy number variants in familial and early-onset colorectal cancer patients. Int J Cancer. 2011, 129: 1635-1642. 10.1002/ijc.25821.CrossRefPubMed
24.
Zurück zum Zitat Yoshihara K, Tajima A, Adachi S, Quan J, Sekine M, Kase H, Yahata T, Inoue I, Tanaka K: Germline copy number variations in BRCA1-associated ovarian cancer patients. Genes Chromosomes Cancer. 2011, 50: 167-177. 10.1002/gcc.20841.CrossRefPubMed Yoshihara K, Tajima A, Adachi S, Quan J, Sekine M, Kase H, Yahata T, Inoue I, Tanaka K: Germline copy number variations in BRCA1-associated ovarian cancer patients. Genes Chromosomes Cancer. 2011, 50: 167-177. 10.1002/gcc.20841.CrossRefPubMed
26.
Zurück zum Zitat Krepischi-Santos AC, Rajan D, Temple IK, Shrubb V, Crolla JA, Huang S, Beal S, Otto PA, Carter NP, Vianna-Morgante AM, Rosenberg C: Constitutional haploinsufficiency of tumor suppressor genes in mentally retarded patients with microdeletions in 17p13.1. Cytogenet Genome Res. 2009, 125: 1-7. 10.1159/000218743.CrossRefPubMedPubMedCentral Krepischi-Santos AC, Rajan D, Temple IK, Shrubb V, Crolla JA, Huang S, Beal S, Otto PA, Carter NP, Vianna-Morgante AM, Rosenberg C: Constitutional haploinsufficiency of tumor suppressor genes in mentally retarded patients with microdeletions in 17p13.1. Cytogenet Genome Res. 2009, 125: 1-7. 10.1159/000218743.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Krepischi AC, Knijnenburg J, Bertola DR, Kim CA, Pearson PL, Bijlsma E, Szuhai K, Kok F, Vianna-Morgante AM, Rosenberg C: Two distinct regions in 2q24.2-q24.3 associated with idiopathic epilepsy. Epilepsia. 2010, 51: 2457-2460. 10.1111/j.1528-1167.2010.02742.x.CrossRefPubMed Krepischi AC, Knijnenburg J, Bertola DR, Kim CA, Pearson PL, Bijlsma E, Szuhai K, Kok F, Vianna-Morgante AM, Rosenberg C: Two distinct regions in 2q24.2-q24.3 associated with idiopathic epilepsy. Epilepsia. 2010, 51: 2457-2460. 10.1111/j.1528-1167.2010.02742.x.CrossRefPubMed
28.
Zurück zum Zitat Allemeersch J, Van Vooren S, Hannes F, De Moor B, Vermeesch JR, Moreau Y: An experimental loop design for the detection of constitutional chromosomal aberrations by array CGH. BMC Bioinformatics. 2009, 10: 380-10.1186/1471-2105-10-380.CrossRefPubMedPubMedCentral Allemeersch J, Van Vooren S, Hannes F, De Moor B, Vermeesch JR, Moreau Y: An experimental loop design for the detection of constitutional chromosomal aberrations by array CGH. BMC Bioinformatics. 2009, 10: 380-10.1186/1471-2105-10-380.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.CrossRefPubMed
34.
Zurück zum Zitat Zhang B, Schmoyer D, Kirov S, Snoddy J: GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics. 2004, 5: 16-10.1186/1471-2105-5-16.CrossRefPubMedPubMedCentral Zhang B, Schmoyer D, Kirov S, Snoddy J: GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics. 2004, 5: 16-10.1186/1471-2105-5-16.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, Szpiech ZA, Degnan JH, Wang K, Guerreiro R, Bras JM, Schymick JC, Hernandez DG, Traynor BJ, Simon-Sanchez J, Matarin M, Britton A, van de Leemput J, Rafferty I, Bucan M, Cann HM, Hardy JA, Rosenberg NA, Singleton AB: Genotype, haplotype and copy-number variation in worldwide human populations. Nature. 2008, 451: 998-1003. 10.1038/nature06742.CrossRefPubMed Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, Szpiech ZA, Degnan JH, Wang K, Guerreiro R, Bras JM, Schymick JC, Hernandez DG, Traynor BJ, Simon-Sanchez J, Matarin M, Britton A, van de Leemput J, Rafferty I, Bucan M, Cann HM, Hardy JA, Rosenberg NA, Singleton AB: Genotype, haplotype and copy-number variation in worldwide human populations. Nature. 2008, 451: 998-1003. 10.1038/nature06742.CrossRefPubMed
36.
Zurück zum Zitat Perry GH, Ben-Dor A, Tsalenko A, Sampas N, Rodriguez-Revenga L, Tran CW, Scheffer A, Steinfeld I, Tsang P, Yamada NA, Park HS, Kim JI, Seo JS, Yakhini Z, Laderman S, Bruhn L, Lee C: The fine-scale and complex architecture of human copy-number variation. Am J Hum Genet. 2008, 82: 685-695. 10.1016/j.ajhg.2007.12.010.CrossRefPubMedPubMedCentral Perry GH, Ben-Dor A, Tsalenko A, Sampas N, Rodriguez-Revenga L, Tran CW, Scheffer A, Steinfeld I, Tsang P, Yamada NA, Park HS, Kim JI, Seo JS, Yakhini Z, Laderman S, Bruhn L, Lee C: The fine-scale and complex architecture of human copy-number variation. Am J Hum Genet. 2008, 82: 685-695. 10.1016/j.ajhg.2007.12.010.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Pinto D, Darvishi K, Shi X, Rajan D, Rigler D, Fitzgerald T, Lionel AC, Thiruvahindrapuram B, MacDonald JR, Mills R, Prasad A, Noonan K, Gribble S, Prigmore E, Donahoe PK, Smith RS, Park JH, Hurles ME, Carter NP, Lee C, Scherer SW, Feuk L: Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat Biotechnol. 2011, 29: 512-520. 10.1038/nbt.1852.CrossRefPubMedPubMedCentral Pinto D, Darvishi K, Shi X, Rajan D, Rigler D, Fitzgerald T, Lionel AC, Thiruvahindrapuram B, MacDonald JR, Mills R, Prasad A, Noonan K, Gribble S, Prigmore E, Donahoe PK, Smith RS, Park JH, Hurles ME, Carter NP, Lee C, Scherer SW, Feuk L: Comprehensive assessment of array-based platforms and calling algorithms for detection of copy number variants. Nat Biotechnol. 2011, 29: 512-520. 10.1038/nbt.1852.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat White SJ, Vissers LE, Geurts van Kessel A, de Menezes RX, Kalay E, Lehesjoki AE, Giordano PC, van de Vosse E, Breuning MH, Brunner HG, den Dunnen JT, Veltman JA: Variation of CNV distribution in five different ethnic populations. Cytogenet Genome Res. 2007, 118: 19-30. 10.1159/000106437.CrossRefPubMed White SJ, Vissers LE, Geurts van Kessel A, de Menezes RX, Kalay E, Lehesjoki AE, Giordano PC, van de Vosse E, Breuning MH, Brunner HG, den Dunnen JT, Veltman JA: Variation of CNV distribution in five different ethnic populations. Cytogenet Genome Res. 2007, 118: 19-30. 10.1159/000106437.CrossRefPubMed
39.
Zurück zum Zitat Mkrtchyan H, Gross M, Hinreiner S, Polytiko A, Manvelyan M, Mrasek K, Kosyakova N, Ewers E, Nelle H, Liehr T, Bhatt S, Thoma K, Gebhart E, Wilhelm S, Fahsold R, Volleth M, Weise A: The human genome puzzle: the role of copy number variation in somatic mosaicism. Curr Genomics. 2010, 11: 426-431. 10.2174/138920210793176047.CrossRefPubMedPubMedCentral Mkrtchyan H, Gross M, Hinreiner S, Polytiko A, Manvelyan M, Mrasek K, Kosyakova N, Ewers E, Nelle H, Liehr T, Bhatt S, Thoma K, Gebhart E, Wilhelm S, Fahsold R, Volleth M, Weise A: The human genome puzzle: the role of copy number variation in somatic mosaicism. Curr Genomics. 2010, 11: 426-431. 10.2174/138920210793176047.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Shlien A, Malkin D: Copy number variations and cancer susceptibility. Curr Opin Oncol. 2010, 22: 55-63. 10.1097/CCO.0b013e328333dca4.CrossRefPubMed Shlien A, Malkin D: Copy number variations and cancer susceptibility. Curr Opin Oncol. 2010, 22: 55-63. 10.1097/CCO.0b013e328333dca4.CrossRefPubMed
41.
Zurück zum Zitat Korbel JO, Urban AE, Grubert F, Du J, Royce TE, Starr P, Zhong G, Emanuel BS, Weissman SM, Snyder M, Gerstein MB: Systematic prediction and validation of breakpoints associated with copy-number variants in the human genome. Proc Natl Acad Sci USA. 2007, 104: 10110-10115. 10.1073/pnas.0703834104.CrossRefPubMedPubMedCentral Korbel JO, Urban AE, Grubert F, Du J, Royce TE, Starr P, Zhong G, Emanuel BS, Weissman SM, Snyder M, Gerstein MB: Systematic prediction and validation of breakpoints associated with copy-number variants in the human genome. Proc Natl Acad Sci USA. 2007, 104: 10110-10115. 10.1073/pnas.0703834104.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Yoshihara K, Tajima A, Adachi S, Quan J, Sekine M, Kase H, Yahata T, Inoue I, Tanaka K: Germline copy number variations in BRCA1-associated ovarian cancer patients. Genes Chromosomes Cancer. 2011, 50: 167-177. 10.1002/gcc.20841.CrossRefPubMed Yoshihara K, Tajima A, Adachi S, Quan J, Sekine M, Kase H, Yahata T, Inoue I, Tanaka K: Germline copy number variations in BRCA1-associated ovarian cancer patients. Genes Chromosomes Cancer. 2011, 50: 167-177. 10.1002/gcc.20841.CrossRefPubMed
43.
Zurück zum Zitat Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massagué J: Genes that mediate breast cancer metastasis to the brain. Nature. 2009, 459: 1005-1009. 10.1038/nature08021.CrossRefPubMedPubMedCentral Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, Minn AJ, van de Vijver MJ, Gerald WL, Foekens JA, Massagué J: Genes that mediate breast cancer metastasis to the brain. Nature. 2009, 459: 1005-1009. 10.1038/nature08021.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Clifford RJ, Zhang J, Meerzaman DM, Lyu MS, Hu Y, Cultraro CM, Finney RP, Kelley JM, Efroni S, Greenblum SI, Nguyen CV, Rowe WL, Sharma S, Wu G, Yan C, Zhang H, Chung YH, Kim JA, Park NH, Song IH, Buetow KH: Genetic variations at loci involved in the immune response are risk factors for hepatocellular carcinoma. Hepatology. 2010, 52: 2034-2043. 10.1002/hep.23943.CrossRefPubMed Clifford RJ, Zhang J, Meerzaman DM, Lyu MS, Hu Y, Cultraro CM, Finney RP, Kelley JM, Efroni S, Greenblum SI, Nguyen CV, Rowe WL, Sharma S, Wu G, Yan C, Zhang H, Chung YH, Kim JA, Park NH, Song IH, Buetow KH: Genetic variations at loci involved in the immune response are risk factors for hepatocellular carcinoma. Hepatology. 2010, 52: 2034-2043. 10.1002/hep.23943.CrossRefPubMed
45.
Zurück zum Zitat Tse KP, Su WH, Yang ML, Cheng HY, Tsang NM, Chang KP, Hao SP, Yao SY, Chang YS: A gender-specific association of CNV at 6p21.3 with NPC susceptibility. Hum Mol Genet. 2011, 20: 2889-2896. 10.1093/hmg/ddr191.CrossRefPubMedPubMedCentral Tse KP, Su WH, Yang ML, Cheng HY, Tsang NM, Chang KP, Hao SP, Yao SY, Chang YS: A gender-specific association of CNV at 6p21.3 with NPC susceptibility. Hum Mol Genet. 2011, 20: 2889-2896. 10.1093/hmg/ddr191.CrossRefPubMedPubMedCentral
Metadaten
Titel
Germline DNA copy number variation in familial and early-onset breast cancer
verfasst von
Ana CV Krepischi
Maria Isabel W Achatz
Erika MM Santos
Silvia S Costa
Bianca CG Lisboa
Helena Brentani
Tiago M Santos
Amanda Gonçalves
Amanda F Nóbrega
Peter L Pearson
Angela M Vianna-Morgante
Dirce M Carraro
Ricardo R Brentani
Carla Rosenberg
Publikationsdatum
01.02.2012
Verlag
BioMed Central
Erschienen in
Breast Cancer Research / Ausgabe 1/2012
Elektronische ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr3109

Weitere Artikel der Ausgabe 1/2012

Breast Cancer Research 1/2012 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.