Skip to main content
Erschienen in: Respiratory Research 3/2001

Open Access 01.06.2001 | Review

The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis

verfasst von: Akos Somoskovi, Linda M Parsons, Max Salfinger

Erschienen in: Respiratory Research | Ausgabe 3/2001

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Multidrug-resistant (MDR) strains of Mycobacterium tuberculosis have emerged worldwide. In many countries and regions, these resistant strains constitute a serious threat to the efficacy of tuberculosis control programs. An important element in gaining control of this epidemic is developing an understanding of the molecular basis of resistance to the most important antituberculosis drugs: isoniazid, rifampin, and pyrazinamide. On the basis of this information, more exacting laboratory testing, and ultimately more appropriate and timely treatment regimens, can be developed.
Abkürzungen
AcpM
acyl carrier protein
InhA
fatty-acid enoyl-acyl carrier protein reductase
KasA
β-ketoacyl-ACP synthase
katG =
catalase-peroxidase gene
MDR
multidrug resistant
pncA =
pyrazinamidase gene
POA
pyrazinoic acid
rpoB =
RNA polymerase β-subunit gene.

Introduction

Mycobacterium tuberculosis and other members of the M tuberculosis complex use several strategies to resist the action of antimicrobial agents. First, the mycobacterial cell is surrounded by a specialized, highly hydrophobic cell wall that results in decreased permeability to many compounds (Fig. 1) [1,2]. Active drug efflux systems and degrading or inactivating enzymes, and the genes that are associated with these functions, have been found in M tuberculosis [3,4]. However, genetic studies have shown that resistance of M tuberculosis to antimycobacterial drugs is the consequence of spontaneous mutations in genes that encode either the target of the drug, or enzymes that are involved in drug activation. Resistance-associated point mutations, deletions, or insertions have been described for all first-line drugs (isoniazid, rifampin, pyrazinamide, ethambutol, and streptomycin), and for several second-line and newer drugs (ethionamide, fluoroquinolones, macrolides, nitroimidazopyrans) [[58]]. However, no single genetic alteration has yet been found that results in the MDR phenotype (defined as resistance at least to isoniazid and rifampin). Rather, MDR develops by sequential acquisition of mutations at different loci, usually because of inappropriate patient treatment. Because MDR strains are the result of cumulative mutations, growth of M tuberculosis can successfully be controlled in the host by concomitant treatment with more than one drug. Thus, treatment regimens that consist of three to four drugs are used routinely to treat patients with tuberculosis.
The World Health Organization [9] has recently recommended the following terminology changes for the different types of resistance to antituberculosis drugs. Isolation of drug-resistant M tuberculosis from patients without a history of previous treatment should be referred to as 'drug resistance among new cases' (instead of 'primary resistance'). Isolation of a drug-resistant strain from patients who have been treated for tuberculosis for at least 1 month should be referred to as 'drug resistance among previously treated patients' (instead of 'acquired resistance'). The more common of these occurrences is 'drug resistance among previously treated patients', in which inadequate treatment or lack of adherence by the patient results in the selection of naturally occurring resistant mutants [10]. Less common is cross-resistance, in which resistance occurs between drugs that are chemically related and/or have a similar target within the mycobacterial cell (ie rifampin and other rifamycin derivatives, or isoniazid and ethionamide) [11,12]. However, the in vivo relevance of the cross-resistance seen in vitro is not always clear.
The present review gives a concise summary of the mechanism of action and the molecular basis of resistance to isoniazid, rifampin, and pyrazinamide, the three most important antituberculosis drugs. In addition, the importance of using molecular assays for the rapid detection of drug-resistant strains of M tuberculosis is emphasized.

Isoniazid

Isoniazid is a pro-drug that requires activation in isoniazid-susceptible mycobacterial species. Based on in vitro experiments, it has been proposed [13] that the activation of isoniazid results in a number of highly reactive species that are capable of either oxidizing or acylating groups in proteins. However, the actual form of isoniazid that is active in vivo is still unknown. It was observed soon after isoniazid was introduced in the 1950s that isoniazid-resistant clinical isolates frequently lost catalase and peroxidase activity [14]. However, the association of this enzyme with isoniazid activation was not proven until the early 1990s, when the primary mycobacterial catalase-peroxidase gene (katG) was cloned and sequenced [15]. That study and others [8,16] revealed that mutations in this gene are found in 42–58% of isoniazid-resistant clinical isolates. A large number of different mutations have been described thus far; however, the Ser315Thr mutation is found most often, occurring in approximately 40% of all isoniazid-resistant strains [8,16,17]. The Ser315Thr mutation results in an enzyme without the ability to activate isoniazid, but retains approximately 50% of its catalase-peroxidase activity [18]. Thus, the altered catalase-peroxidase provides high-level resistance to isoniazid, while retaining a level of oxidative protection that is sufficient to enable the organism to maintain detoxifying activity against host antibacterial radicals. Isolates that carry other, less frequently occurring mutations in katG have been described as exhibiting varying levels of isoniazid resistance and catalase-peroxidase activity [8,[1618]].
Significant evidence supports the concept that isoniazid blocks the synthesis of cell-wall mycolic acids, the major components of the envelope of M tuberculosis (Fig. 1). Two intracellular targets for the drug are currently being actively investigated [19,20]: the fatty-acid enoyl-acyl carrier protein reductase (InhA), and a complex of an acyl carrier protein (AcpM) and a β-ketoacyl-ACP synthase (KasA). These enzymes are involved in synthesis of mycolic acids, and mutations have been found in the promoter regions, or less commonly in the genes that encode these proteins (inhA, acpM, and kasA), in clinical isolates that exhibit low-level resistance to isoniazid (for review [8]). It is proposed that over-expression of one or more of these target proteins may be the reason for isoniazid resistance in these strains. However, the role of kasA mutations in isoniazid resistance is presently unclear, because similar mutations were also found in isoniazid-susceptible isolates, and, in cases of isoniazid resistance, mutations were also found in katG or inhA [21,22].
Mutations in the promoter region of a gene that encodes an alkyl hydroperoxidase reductase (ahpC) have been found in approximately 10% of isoniazid-resistant isolates, but mutations in katG were also found in these isolates [8,16,23]. The resulting over-expression of alkyl hydroperoxidase reductase may compensate for the loss of catalase-peroxidase activity in these mycobacteria [24].

Rifampin

One of the main reasons for treatment failure and fatal clinical outcome in tuberculosis patients is resistance to rifampin [25]. In addition to a significant early bactericidal effect on metabolically active M tuberculosis, rifampin also exhibits excellent late sterilizing action on semidormant organisms undergoing short bursts of metabolic activity. The recognition of this late effect of rifampin, and the additional effectiveness of pyrazinamide, has allowed for the reduction of routine tuberculosis treatment from 1 year to 6 months [26,27]. Whereas monoresistance to isoniazid is quite common, monoresistance to rifampin is rare. Instead, rifampin resistance occurs most often in strains that are also resistant to isoniazid; thus, rifampin resistance can be used as a surrogate marker for MDR.
The mechanism of action of rifampin is to inhibit mycobacterial transcription by targeting DNA-dependent RNA polymerase (Fig. 1). The development of resistance to rifampin is due to mutations in a well-defined, 81 base pair (bp) (27 codons) central region of the gene that encodes the β-subunit of RNA polymerase (rpoB) [28]. More than 96% of the rifampin-resistant strains contain a mutation in this 81 bp region of rpoB, thus facilitating a straightforward approach to detecting rifampin resistance and/or MDR rapidly [8,16].
The most common mutations (65–86%) alter either codon 526 or codon 531, and result in high-level resistance to rifampin (minimal inhibitory concentration [MIC] >32 μg/ml). However, not all mutations within the 81 bp region exhibit the same level of resistance. For example, alterations in codons 511, 516, 518, and 522 result in organisms that have low-level resistance to rifampin and another rifamycin derivative (rifapentin), but remain susceptible to two other rifamycins (rifabutin and rifalazyn) [29,30] (Parsons LM, unpublished data). Rare mutations associated with rifampin resistance have also been found in the amino-terminal region of rpoB [8,31]. Most reference laboratories that use molecular methods examine only the 81 bp region. However, it is advisable to screen for amino-terminal mutations in cases in which rifampin resistance is suspected, but no mutation is found in the 81 bp region.

Pyrazinamide

Pyrazinamide has an excellent sterilizing effect on semidormant tubercle bacilli and, when used in combination with rifampin, shortens the duration of treatment of tuberculosis patients from 1 year to 6 months [26]. Pyrazinamide, a nicotinamide analog that is believed to target an enzyme involved in fatty-acid synthesis [32], is a pro-drug that is converted to its active form (pyrazinoic acid [POA]) by the mycobacterial enzyme pyrazinamidase. In M tuberculosis, an accumulation of intracellular POA occurs when the extracellular pH is acidic. Experimental evidence suggests that pyrazinamide diffuses into M tuberculosis in a passive manner, is converted into POA by pyrazinamidase, and, because of an inefficient efflux system, accumulates in huge amounts in the bacterial cytoplasm [33,34]. The accumulation of POA lowers the intracellular pH to a suboptimal level that is likely to inactivate a vital target enzyme such as fatty acid synthase I [32].
It has been observed that the pyrazinamide-resistant M tuberculosis isolates usually lose their pyrazinamidase activity [35]. After cloning and sequencing the gene that encodes pyrazinamidase (pncA), it was found that 72–97% of all pyrazinamide-resistant clinical isolates tested carry a mutation in the structural gene or in the putative promoter region of the gene [8,36]. However, the involvement of other mechanisms (ie those that involve pyrazinamide uptake, pncA regulation, or POA efflux) is indicated by the existence of isolates that exhibit a high level of pyrazinamide resistance without mutations in the pncA gene [37]. Two other members of the M tuberculosis complex, M bovis and M bovis BCG, are naturally resistant to pyrazinamide. In these organisms, pyrazinamide resistance is due to a unique C to G point mutation in codon 169 of pncA. In contrast, mutations in pyrazinamide-resistant M tuberculosis have been found scattered throughout pncA [36].

Conclusion

The action and mechanism of resistance to the three most important antituberculosis drugs are still not fully understood. However, current molecular evidence indicates that routine application of rapid molecular tests in the clinical management of drug-resistant tuberculosis is essential. Many approaches have been used successfully to detect and identify the most common mutations associated with drug resistance [8,16,38]. In many instances, the knowledge gained from determining the particular mutation can provide significant information on the following: drug resistance, the level of resistance, cross-resistance to similar drugs, relatedness of strains, and virulence.
Total dependence on results that are provided 2–4 weeks (or even months) later by the conventional 'gold standard' susceptibility methods might not be sufficient for optimal patient outcome. The tuberculosis laboratory should no longer allow its pace to be dictated by the slow growth of the pathogenic mycobacteria. Rather, the laboratory is a vital part of a renewed global commitment that is aimed at the elimination of tuberculosis [39]. The ultimate goals are provision of timely, appropriate, and adequate services. These must be provided, and continually evaluated and updated. A highly infectious tuberculosis patient must have access to state-of-the-art laboratory services, even if the patient resides in an area where a local laboratory is not capable of providing those services. Innovative ideas, such as centralized testing by a large public health laboratory, may be required to achieve this goal. District, state, or national boundaries should not limit access to these laboratory services. The benefits of providing new and more clinically relevant assays to a larger population, especially in high-incidence regions of the world, would be of great public health significance to all populations.
Literatur
1.
Zurück zum Zitat Jarlier W, Nikaido H: Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett. 1994, 123: 11-18. 10.1016/0378-1097(94)90267-4.PubMedCrossRef Jarlier W, Nikaido H: Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett. 1994, 123: 11-18. 10.1016/0378-1097(94)90267-4.PubMedCrossRef
2.
Zurück zum Zitat Lee RE, Brennan PJ, Besra GS: Mycobacterium tuberculosis cell envelope. Curr Top Microbiol Immunol. 1996, 215: 1-27.PubMed Lee RE, Brennan PJ, Besra GS: Mycobacterium tuberculosis cell envelope. Curr Top Microbiol Immunol. 1996, 215: 1-27.PubMed
3.
Zurück zum Zitat Kwon HH, Tomioka H, Saito H: Distribution and characterization of beta-lactamases of mycobacteria and related organisms. Tuber Lung Dis. 1995, 76: 141-148.PubMedCrossRef Kwon HH, Tomioka H, Saito H: Distribution and characterization of beta-lactamases of mycobacteria and related organisms. Tuber Lung Dis. 1995, 76: 141-148.PubMedCrossRef
4.
Zurück zum Zitat Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998, 393: 537-544. 10.1038/31159.PubMedCrossRef Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998, 393: 537-544. 10.1038/31159.PubMedCrossRef
5.
Zurück zum Zitat Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker WR: A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature. 2000, 405: 962-966. 10.1038/35016103.PubMedCrossRef Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker WR: A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature. 2000, 405: 962-966. 10.1038/35016103.PubMedCrossRef
6.
Zurück zum Zitat Vester B, Douthwaite S: Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother. 2001, 45: 1-12. 10.1128/AAC.45.1.1-12.2001.PubMedPubMedCentralCrossRef Vester B, Douthwaite S: Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother. 2001, 45: 1-12. 10.1128/AAC.45.1.1-12.2001.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Heym B, Honore N, Truffot-Pernot C, Banerjee A, Schurra C, Jacobs WR, van Embden JD, Grosset JH, Cole ST: Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet. 1994, 344: 293-298. 10.1016/S0140-6736(94)91338-2.PubMedCrossRef Heym B, Honore N, Truffot-Pernot C, Banerjee A, Schurra C, Jacobs WR, van Embden JD, Grosset JH, Cole ST: Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet. 1994, 344: 293-298. 10.1016/S0140-6736(94)91338-2.PubMedCrossRef
8.
Zurück zum Zitat Zhang Y, Telenti A: Genetics of drug resistance in Mycobacterium tuberculosis. In: Molecular Genetics of Mycobacteria. Edited by Hatful GF, Jacobs WR Jr. Washington DC: ASM Press;. 2000, 235-254. Zhang Y, Telenti A: Genetics of drug resistance in Mycobacterium tuberculosis. In: Molecular Genetics of Mycobacteria. Edited by Hatful GF, Jacobs WR Jr. Washington DC: ASM Press;. 2000, 235-254.
9.
Zurück zum Zitat World Health Organization Global Tuberculosis Programme and International Union Against Tuberculosis and Lung Disease: Anti-tuberculosis Drug Resistance in the World, Report No. 2. Prevalence and Trends. WHO/CDS/TB/2000.278. Geneva: World Health Organization;. 2000 World Health Organization Global Tuberculosis Programme and International Union Against Tuberculosis and Lung Disease: Anti-tuberculosis Drug Resistance in the World, Report No. 2. Prevalence and Trends. WHO/CDS/TB/2000.278. Geneva: World Health Organization;. 2000
10.
Zurück zum Zitat International Union Against Tuberculosis and Lung Disease: Guidelines for surveillance of drug resistance in tuberculosis. WHO Geneva/IUATLD Paris. Int J Tuberc Lung Dis. 1998, 2: 72-89. International Union Against Tuberculosis and Lung Disease: Guidelines for surveillance of drug resistance in tuberculosis. WHO Geneva/IUATLD Paris. Int J Tuberc Lung Dis. 1998, 2: 72-89.
11.
Zurück zum Zitat DeBarber AE, Mdluli K, Bosman M, Bekker LG, Barry CE: Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2000, 97: 9677-9682. 10.1073/pnas.97.17.9677.PubMedPubMedCentralCrossRef DeBarber AE, Mdluli K, Bosman M, Bekker LG, Barry CE: Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci USA. 2000, 97: 9677-9682. 10.1073/pnas.97.17.9677.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Yang B, Koga H, Ohno H, Ogawa K, Fukuda M, Hirakata Y, Maesaki S, Tomono K, Tashiro T, Kohno S: Relationship between antimycobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J Antimicrob Chemother. 1998, 42: 621-628. 10.1093/jac/42.5.621.PubMedCrossRef Yang B, Koga H, Ohno H, Ogawa K, Fukuda M, Hirakata Y, Maesaki S, Tomono K, Tashiro T, Kohno S: Relationship between antimycobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J Antimicrob Chemother. 1998, 42: 621-628. 10.1093/jac/42.5.621.PubMedCrossRef
13.
Zurück zum Zitat Johnsson K, Schultz PG: Mechanistic studies of the oxidation of isoniazid by the catalase peroxidase from Mycobacterium tuberculosis. J Am Chem Soc. 1994, 116: 7425-7426.CrossRef Johnsson K, Schultz PG: Mechanistic studies of the oxidation of isoniazid by the catalase peroxidase from Mycobacterium tuberculosis. J Am Chem Soc. 1994, 116: 7425-7426.CrossRef
14.
Zurück zum Zitat Middlebrook G: Isoniazid resistance and catalase activity of tubercle bacilli. Am Rev Tuberc. 1954, 69: 471-472.PubMed Middlebrook G: Isoniazid resistance and catalase activity of tubercle bacilli. Am Rev Tuberc. 1954, 69: 471-472.PubMed
15.
Zurück zum Zitat Zhang Y, Heym B, Allen B, Young D, Cole S: The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992, 358: 591-593. 10.1038/358591a0.PubMedCrossRef Zhang Y, Heym B, Allen B, Young D, Cole S: The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992, 358: 591-593. 10.1038/358591a0.PubMedCrossRef
16.
Zurück zum Zitat Ramaswamy S, Musser JM: Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuberc Lung Dis. 1998, 79: 3-29. 10.1054/tuld.1998.0002.CrossRef Ramaswamy S, Musser JM: Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuberc Lung Dis. 1998, 79: 3-29. 10.1054/tuld.1998.0002.CrossRef
17.
Zurück zum Zitat Marttila HJ, Soini H, Eerola E, Vyshnevskaya E, Vyshnevskiy BI, Otten TF, Vasilyef AV, Viljanen MK: A Ser315Thr substitution in KatG is predominant in genetically heterogeneous multidrug-resistant Mycobacterium tuberculosis isolates originating from the St. Petersburg area in Russia. Antimicrob Agents Chemother. 1998, 42: 2443-2445.PubMedPubMedCentral Marttila HJ, Soini H, Eerola E, Vyshnevskaya E, Vyshnevskiy BI, Otten TF, Vasilyef AV, Viljanen MK: A Ser315Thr substitution in KatG is predominant in genetically heterogeneous multidrug-resistant Mycobacterium tuberculosis isolates originating from the St. Petersburg area in Russia. Antimicrob Agents Chemother. 1998, 42: 2443-2445.PubMedPubMedCentral
18.
Zurück zum Zitat Rouse DA, DeVito JA, Li Z, Byer H, Morris SL: Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: effects on catalase-peroxidase activities and isoniazid resistance. Mol Microbiol. 1996, 22: 583-592. 10.1046/j.1365-2958.1996.00133.x.PubMedCrossRef Rouse DA, DeVito JA, Li Z, Byer H, Morris SL: Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: effects on catalase-peroxidase activities and isoniazid resistance. Mol Microbiol. 1996, 22: 583-592. 10.1046/j.1365-2958.1996.00133.x.PubMedCrossRef
19.
Zurück zum Zitat Vilchèze C, Morbidoni HR, Weisbrod TR, Iwamoto H, Kuo M, Sacchettini JC, Jacobs WR: Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J Bacteriol. 2000, 182: 4059-4067. 10.1128/JB.182.14.4059-4067.2000.PubMedPubMedCentralCrossRef Vilchèze C, Morbidoni HR, Weisbrod TR, Iwamoto H, Kuo M, Sacchettini JC, Jacobs WR: Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J Bacteriol. 2000, 182: 4059-4067. 10.1128/JB.182.14.4059-4067.2000.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Slayden RA, Lee RE, Barry CE: Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Mol Microbiol. 2000, 38: 514-525. 10.1046/j.1365-2958.2000.02145.x.PubMedCrossRef Slayden RA, Lee RE, Barry CE: Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Mol Microbiol. 2000, 38: 514-525. 10.1046/j.1365-2958.2000.02145.x.PubMedCrossRef
21.
Zurück zum Zitat Lee AS, Lim IH, Tang LL, Telenti A, Wong SY: Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore. Antimicrob Agents Chemother. 1999, 43: 2087-2089.PubMedPubMedCentral Lee AS, Lim IH, Tang LL, Telenti A, Wong SY: Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore. Antimicrob Agents Chemother. 1999, 43: 2087-2089.PubMedPubMedCentral
22.
Zurück zum Zitat Piatek AS, Telenti A, Murray MR, El-Hajj H, Jacobs WR, Kramer FR, Alland D: Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: Implications for rapid susceptibility testing. Antimicrob Agents Chemother. 2000, 44: 103-110.PubMedPubMedCentralCrossRef Piatek AS, Telenti A, Murray MR, El-Hajj H, Jacobs WR, Kramer FR, Alland D: Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: Implications for rapid susceptibility testing. Antimicrob Agents Chemother. 2000, 44: 103-110.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE, Stover CK: Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science. 1996, 272: 1641-1643.PubMedCrossRef Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE, Stover CK: Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science. 1996, 272: 1641-1643.PubMedCrossRef
24.
Zurück zum Zitat Wilson T, de Lisle GW, Marcinkeviciene JA, Blanchard JS, Collins DM: Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology. 1998, 144: 2687-2695.PubMedCrossRef Wilson T, de Lisle GW, Marcinkeviciene JA, Blanchard JS, Collins DM: Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology. 1998, 144: 2687-2695.PubMedCrossRef
25.
Zurück zum Zitat Mitchison DA, Nunn AJ: Influence of initial drug resistance on the response to short-course chemotherapy of pulmonary tuberculosis. Am Rev Respir Dis. 1986, 133: 423-430.PubMed Mitchison DA, Nunn AJ: Influence of initial drug resistance on the response to short-course chemotherapy of pulmonary tuberculosis. Am Rev Respir Dis. 1986, 133: 423-430.PubMed
26.
Zurück zum Zitat Grosset J: The sterilizing value of rifampicin and pyrazinamide in experimental short-course chemotherapy. Bull Int Union Tuberc. 1978, 53: 5-12.PubMed Grosset J: The sterilizing value of rifampicin and pyrazinamide in experimental short-course chemotherapy. Bull Int Union Tuberc. 1978, 53: 5-12.PubMed
27.
Zurück zum Zitat Mitchison DA: The Garrod Lecture. Understanding the chemotherapy of tuberculosis: current problems. J Antimicrob Chemother. 1992, 29: 477-493.PubMedCrossRef Mitchison DA: The Garrod Lecture. Understanding the chemotherapy of tuberculosis: current problems. J Antimicrob Chemother. 1992, 29: 477-493.PubMedCrossRef
28.
Zurück zum Zitat Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T: Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993, 341: 647-650. 10.1016/0140-6736(93)90417-F.PubMedCrossRef Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T: Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993, 341: 647-650. 10.1016/0140-6736(93)90417-F.PubMedCrossRef
29.
Zurück zum Zitat Moghazeh SL, Pan X, Arain T, Stover CK, Musser JM, Kreiswirth BN: Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob Agents Chemother. 1996, 40: 2655-2657.PubMedPubMedCentral Moghazeh SL, Pan X, Arain T, Stover CK, Musser JM, Kreiswirth BN: Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob Agents Chemother. 1996, 40: 2655-2657.PubMedPubMedCentral
30.
Zurück zum Zitat Ohno H, Koga H, Kohno S, Tashiro T, Hara K: Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan. Antimicrob Agents Chemother. 1996, 40: 1053-1056.PubMedPubMedCentral Ohno H, Koga H, Kohno S, Tashiro T, Hara K: Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan. Antimicrob Agents Chemother. 1996, 40: 1053-1056.PubMedPubMedCentral
31.
Zurück zum Zitat Heep M, Rieger U, Beck D, Lehn N: Mutations in the beginning of the rpoB gene can induce resistance to rifamycins in both Helicobacter pylori and Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2000, 44: 1075-1077. 10.1128/AAC.44.4.1075-1077.2000.PubMedPubMedCentralCrossRef Heep M, Rieger U, Beck D, Lehn N: Mutations in the beginning of the rpoB gene can induce resistance to rifamycins in both Helicobacter pylori and Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2000, 44: 1075-1077. 10.1128/AAC.44.4.1075-1077.2000.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Zimhony O, Cox JS, Welch JT, Vilcheze C, Jacobs WR: Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nature Med. 2000, 6: 1043-1047. 10.1038/79558.PubMedCrossRef Zimhony O, Cox JS, Welch JT, Vilcheze C, Jacobs WR: Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nature Med. 2000, 6: 1043-1047. 10.1038/79558.PubMedCrossRef
33.
Zurück zum Zitat Salfinger M, Crowle AJ, Reller LB: Pyrazinamide and pyrazinoic acid activity against tubercle bacilli in cultured human macrophages and in the BACTEC system. J Infect Dis. 1990, 162: 201-207.PubMedCrossRef Salfinger M, Crowle AJ, Reller LB: Pyrazinamide and pyrazinoic acid activity against tubercle bacilli in cultured human macrophages and in the BACTEC system. J Infect Dis. 1990, 162: 201-207.PubMedCrossRef
34.
Zurück zum Zitat Zhang Y, Scorpio A, Nikaido H, Sun Z: Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Bacteriol. 1999, 181: 2044-2049.PubMedPubMedCentral Zhang Y, Scorpio A, Nikaido H, Sun Z: Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Bacteriol. 1999, 181: 2044-2049.PubMedPubMedCentral
35.
Zurück zum Zitat Konno K, Feldman FM, McDermont W: Pyrazinamide susceptibility and amidase activity of the tubercle bacilli. Am Rev Respir Dis. 1967, 95: 461-469.PubMed Konno K, Feldman FM, McDermont W: Pyrazinamide susceptibility and amidase activity of the tubercle bacilli. Am Rev Respir Dis. 1967, 95: 461-469.PubMed
36.
Zurück zum Zitat Scorpio A, Zhang Y: Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the anti-tuberculous drug pyrazinamide in tubercle bacillus. Nature Med. 1996, 2: 662-667.PubMedCrossRef Scorpio A, Zhang Y: Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the anti-tuberculous drug pyrazinamide in tubercle bacillus. Nature Med. 1996, 2: 662-667.PubMedCrossRef
37.
Zurück zum Zitat Raynaud C, Laneelle MA, Senaratne RH, Draper P, Laneelle G, Daffe M: Mechanisms of pyrazinamide resistance in mycobacteria: importance of lack of uptake in addition to lack of pyrazinamidase activity. Microbiology. 1999, 145: 1359-1367.PubMedCrossRef Raynaud C, Laneelle MA, Senaratne RH, Draper P, Laneelle G, Daffe M: Mechanisms of pyrazinamide resistance in mycobacteria: importance of lack of uptake in addition to lack of pyrazinamidase activity. Microbiology. 1999, 145: 1359-1367.PubMedCrossRef
38.
Zurück zum Zitat Van Rie A, Warren R, Mshanga I, Jordaan AM, van der Spuy GD, Richardson M, Simpson J, Gie RP, Enarson DA, Beyers N, van Helden PD, Victor TC: Analysis for a limited number of gene codons can predict drug resistance of Mycobacterium tuberculosis in a high-incidence community. J Clin Microbiol. 2001, 39: 636-641. 10.1128/JCM.39.2.636-641.2001.PubMedPubMedCentralCrossRef Van Rie A, Warren R, Mshanga I, Jordaan AM, van der Spuy GD, Richardson M, Simpson J, Gie RP, Enarson DA, Beyers N, van Helden PD, Victor TC: Analysis for a limited number of gene codons can predict drug resistance of Mycobacterium tuberculosis in a high-incidence community. J Clin Microbiol. 2001, 39: 636-641. 10.1128/JCM.39.2.636-641.2001.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Hale YM, Desmond EP, Jost KC, Salfinger M: Access to newer laboratory procedures: a call for action. Int J Tuberc Lung Dis. 2000, 4(suppl 2): S171-S175. Hale YM, Desmond EP, Jost KC, Salfinger M: Access to newer laboratory procedures: a call for action. Int J Tuberc Lung Dis. 2000, 4(suppl 2): S171-S175.
40.
Zurück zum Zitat Parsons LM, Driscoll JR, Taber HW, Salfinger M: Drug resistance in tuberculosis. Infect Dis Clin North Am. 1997, 11: 905-928.PubMedCrossRef Parsons LM, Driscoll JR, Taber HW, Salfinger M: Drug resistance in tuberculosis. Infect Dis Clin North Am. 1997, 11: 905-928.PubMedCrossRef
Metadaten
Titel
The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis
verfasst von
Akos Somoskovi
Linda M Parsons
Max Salfinger
Publikationsdatum
01.06.2001
Verlag
BioMed Central
Erschienen in
Respiratory Research / Ausgabe 3/2001
Elektronische ISSN: 1465-993X
DOI
https://doi.org/10.1186/rr54

Weitere Artikel der Ausgabe 3/2001

Respiratory Research 3/2001 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.