Skip to main content
Erschienen in: BMC Infectious Diseases 1/2016

Open Access 01.12.2016 | Research article

Effects of inappropriate empirical antibiotic therapy on mortality in patients with healthcare-associated methicillin-resistant Staphylococcus aureus bacteremia: a propensity-matched analysis

verfasst von: Young Kyung Yoon, Dae Won Park, Jang Wook Sohn, Hyo Youl Kim, Yeon-Sook Kim, Chang-Seop Lee, Mi Suk Lee, Seong-Yeol Ryu, Hee-Chang Jang, Young Ju Choi, Cheol-In Kang, Hee Jung Choi, Seung Soon Lee, Shin Woo Kim, Sang Il Kim, Eu Suk Kim, Jeong Yeon Kim, Kyung Sook Yang, Kyong Ran Peck, Min Ja Kim

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2016

Abstract

Background

The purported value of empirical therapy to cover methicillin-resistant Staphylococcus aureus (MRSA) has been debated for decades. The purpose of this study was to evaluate the effects of inappropriate empirical antibiotic therapy on clinical outcomes in patients with healthcare-associated MRSA bacteremia (HA-MRSAB).

Methods

A prospective, multicenter, observational study was conducted in 15 teaching hospitals in the Republic of Korea from February 2010 to July 2011. The study subjects included adult patients with HA-MRSAB. Covariate adjustment using the propensity score was performed to control for bias in treatment assignment. The predictors of in-hospital mortality were determined by multivariate logistic regression analyses.

Results

In total, 345 patients with HA-MRSAB were analyzed. The overall in-hospital mortality rate was 33.0 %. Appropriate empirical antibiotic therapy was given to 154 (44.6 %) patients. The vancomycin minimum inhibitory concentrations of the MRSA isolates ranged from 0.5 to 2 mg/L by E-test. There was no significant difference in mortality between propensity-matched patient pairs receiving inappropriate or appropriate empirical antibiotics (odds ratio [OR] = 1.20; 95 % confidence interval [CI] = 0.71–2.03). Among patients with severe sepsis or septic shock, there was no significant difference in mortality between the treatment groups. In multivariate analyses, severe sepsis or septic shock (OR = 5.45; 95 % CI = 2.14–13.87), Charlson’s comorbidity index (per 1-point increment; OR = 1.52; 95 % CI = 1.27–1.83), and prior receipt of glycopeptides (OR = 3.24; 95 % CI = 1.08–9.67) were independent risk factors for mortality.

Conclusion

Inappropriate empirical antibiotic therapy was not associated with clinical outcome in patients with HA-MRSAB. Prudent use of empirical glycopeptide therapy should be justified even in hospitals with high MRSA prevalence.

Background

Methicillin-resistant Staphylococcus aureus (MRSA) has been a major cause of healthcare-associated bacteremia [1, 2]. MRSA bacteremia (MRSAB), with a mortality rate as high as 40 %, is a grave concern because a clinical cure may not be achieved using standard therapy in some cases [36]. Evidence-based therapy and the identification of mortality-related risk factors for MRSAB continue to represent significant clinical challenges for clinicians.
Previous studies determined the independent predictors of mortality among patients with MRSAB, including old age (≥60 years), underlying cardiac diseases, a higher Charlson’s comorbidity index, pneumonia, septic shock, metastatic infection, non-eradicable foci, and higher vancomycin minimum inhibitory concentrations (MICs) of the MRSA isolates [79]. However, studies evaluating the presence of relationships between clinical outcome and inappropriate empirical antibiotic therapies in patients with MRSAB have yielded conflicting results [1016]. The conflicting results on the benefits of early empirical antibiotic therapy are probably due to differing definitions of “inappropriate” therapy on the basis of in vitro susceptibility data, impact of potentially confounding variables, and selection or information biases such as the baseline severity of illness [17, 18]. The definition and criteria items used to denote the appropriate antibiotic therapy should include the criterion matching the in vitro susceptibility and the timing of the administration of the antibiotics as well as their optimal dose and usage [19, 20]. A recent meta-analysis involving 510 MRSAB episodes demonstrated an overall 2-fold increased survival benefit with the administration of appropriate empirical therapy for MRSAB episodes, but there are some problems with heterogeneity across the studies [21]. In the meanwhile, the prudent use of glycopeptides has been an important component of hospital antimicrobial stewardship programs to contain the emergence of glycopeptide resistance, especially in high-prescribing countries with a high prevalence of MRSA. Thus, empirical glycopeptides use for MRSAB should be guided on the basis of scientific data.
The purpose of this study was to assess the influence of inappropriate empirical antimicrobial therapy on mortality in patients with healthcare associated-MRSAB (HA-MRSAB) in a hospital setting in which the prevalence of MRSA was high.

Methods

Study design and setting

A prospective, multi-center, observational study was conducted to compare clinical outcomes between patients receiving inappropriate or appropriate antibiotics for the treatment of HA-MRSAB in 15 teaching hospitals in the Republic of Korea from February 2010 to July 2011. This cross-sectional study was performed in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines. Two analytical strategies were used: (1) for the non-matched case–control study (n = 345), the clinical outcomes of 154 patients who received appropriate empirical antibiotic treatment was compared with those of 191 patients who received inappropriate treatment; and (2) for the propensity score- matched (1:1) case–control study, the outcome was compared between 127 pairs of patients who received inappropriate or appropriate empirical antibiotics. Cases were defined as the patients treated with inappropriate empirical antibiotics, and controls were defined as those with HA-MRSAB who were treated with appropriate empirical antibiotics. The primary endpoint was all-cause in-hospital mortality. The secondary endpoints were mortality attributable to MRSAB, persistent fever, and persistent MRSAB.
All 15 participating hospitals have long had a high prevalence of MRSA, which accounted for about approximately 70 % of all S. aureus isolates. Clinical data were collected at each participating site via a standardized web-based case report form. A representative infectious disease specialist from each site prospectively reviewed and interpreted clinical data for the enrolled patients. A trough serum concentration of vancomycin was measured routinely in 13 of the 15 participating hospitals in this study.

Study population

Study subjects included hospitalized adult patients (aged ≥18 years) with HA-MRSAB who had ≥1 positive blood culture for MRSA. Our study excluded the subjects who did not receive the active antibiotics against MRSA, after confirming that the index blood culture was positive for MRSA. All patients were followed up until death or hospital discharge. If a patient had more than 1 episode of HA-MRSAB during the study period, only the first episode was included. Patients with polymicrobial bacteremia were excluded from the analysis specifically evaluating the influence of empirical antimicrobial therapy for HA-MRSAB. Physicians treated patients according to routine medical practices without standardized protocols of intervention.

Definitions

Patients with healthcare-associated or nosocomial MRSAB were included in this study. MRSAB diagnosed within 48 h of hospital admission was considered healthcare-associated infection, if the patient met any healthcare-associated criteria in the preceding 3 months, including admission to a hospital, nursing home, or other healthcare facility for more than 2 days, specialized home care, treatment at a medical day unit, surgery, dialysis, or permanent indwelling catheters. MRSAB diagnosed after 48 h of hospital admission was considered nosocomial infection.
The primary focus of HA-MRSAB was determined by the organ affected and classified as follows: catheter-related bloodstream infection (CR-BSI) [22], lower respiratory tract, intra-abdominal, urinary tract, skin and soft tissue, bone and joint, or central nervous system infection; or unknown when no other site of infection was evident [23]. Sepsis, severe sepsis, and septic shock were diagnosed in accordance with standard criteria [24].
Definitive therapy was defined as the antibiotic therapy administered subsequent to the receipt of the final blood culture and antibiotic susceptibility results [17]. Empirical antibiotic therapy was defined as initial antibiotic treatment started before the pathogen was identified and antimicrobial susceptibility test results were obtained. Empirical antibiotic therapy was defined as appropriate if the pathogen was shown in in vitro studies to be susceptible to the antibiotic administered intravenously with optimal dosing and if the timing of administration was within 48 h of obtaining the index positive blood culture. If it did not meet any of these criteria, it was regarded as inappropriate antibiotic therapy. Prior antibiotic exposure was defined as the receipt of >3 doses of antibiotics within 3 months before the occurrence of HA-MRSAB. The duration of bacteremia after definitive antibiotic therapy was calculated as the number of days from initiation of definitive antibiotic treatment against HA-MRSAB to the day on which the first negative blood culture was obtained.
Mortality attributable to MRSA bacteremia was defined as death with positive blood cultures for MRSA and persistent fever, but no other definitive causes of death. Persistent MRSAB and persistent fever were defined as positive blood cultures for MRSA for ≥7 days and as a fever ≥38.0 °C for ≥7 days after the commencement of appropriate antibiotic treatment, respectively.

Variables

The clinical data of patients were extracted from medical records, including age, gender, medical history, comorbid medical conditions, Charlson’s comorbidity index [25], primary site of infection, risk factors predisposing to infections within 3 months before the occurrence of HA-MRSAB, APACHE II scores [26], Pitt’s bacteremia score [27] on the day of index positive blood culture sampling, presence of severe sepsis or septic shock, mortality attributable to MRSAB, and in-hospital mortality.

Microbiological tests

The identification of MRSA and antibiotic susceptibility tests were performed in each hospital using the MicroScan Pos Combo Panel Type 6 automated system (Baxter Diagnostics, West Sacramento, CA, USA) or VITEK II automated system (bioMérieux, Hazelwood, MO, USA). All MRSA isolates from index blood cultures were collected at the coordinating center and immediately stored at −70 °C until August 2012 when the MICs of vancomycin were further determined by the E-test (bioMérieux, Marcy l’Etoile, France) according to the manufacturer’s instructions.

Statistical analysis

Categorical variables were denoted as count (proportion) and compared using Pearson’s chi-squared test, Fisher’s exact test, or McNemar’s test. Continuous variables were expressed as the mean ± standard deviation or median (inter-quartile range [IQR]) and compared using two-sample Student’s t-tests, the Mann–Whitney U test, or Wilcoxon’s signed-rank test. All tests were two-tailed, and a P-value <0.05 was considered statistically significant.
For the covariate adjustment between patients receiving inappropriate or appropriate empirical antibiotic therapy, variables that represented the probability of being treated inadequately were found. In univariate analysis of 345 patients with HA-MRSAB, baseline and clinical characteristics were compared between the two treatment groups. Variables at the 10 % significance level were considered independent variables for the propensity scores, including category of infection, trauma, primary focus of HA-MRSAB (such as CR-BSI, pneumonia, or urinary tract infection), severe sepsis or septic shock, infective endocarditis, retention of foreign body, surgery, and recent exposure to immunosuppressive agents such as systemic corticosteroids on a regular basis or antineoplastic chemotherapy, third-generation cephalosporins, or fluoroquinolones during the preceding 30 days. Patients who received inappropriate empirical antibiotic therapy were matched 1:1 with patients who received appropriate empirical antibiotic therapy with regard to 5 digits of the propensity score without replacement [28, 29]. To confirm whether we had a good match, the absolute standardized differences for each covariate in the model and distribution of propensity scores were evaluated [30]. To determine the predictors of in-hospital mortality in patients with HA-MRSAB, multivariate conditional logistic regression analyses within the matched data set were performed with all variables with a P-value ≤0.10 in the univariate analysis as well as the main variable of inappropriate empirical antibiotic therapy.
Within the unmatched data set, inverse probability of treatment weighting (IPTW) based on the propensity score was also used to control for bias in treatment assignment [30, 31].
Data were analyzed using IBM SPSS Statistics version 20.0 (IBM Corporation, Armonk, NY, USA), R 2.15.2 (The R Foundation for Statistical Computing, Vienna, Austria), and SAS 9.2 (SAS Institute, Cary, NC, USA).

Results

During the study period, a total of 345 patients with HA-MRSAB were included in our analysis. Their demographic and clinical characteristics are presented in Table 1. The most common primary focus of HA-MRSAB was CR-BSI (51.3 %), followed by pneumonia (11.6 %), surgical wound infection (7.0 %), intra-abdominal infection (21.0 %), skin and soft tissue infection (4.9 %), and others (4.2 %). The all-cause in-hospital mortality and MRSAB-related mortality rates were 33.0 (114/345) and 16.5 % (57/345), respectively. An in-hospital mortality rate of at least 25 % was noted for pneumonia (55 %), central nervous system infections, MRSAB of unknown origin (44.4 %), intra-abdominal infections (38.1 %), CR-BSI (33.3 %), and cardiovascular infections (28.6 %), whereas mortality rates of less than 25 % were observed for urinary tract infections, surgical wound infections, skin and soft tissue infections, bone and joint infections, and head and neck infections. Six patients died before the culture results were reported as follows: 4 patients presented with septic shock and 2 patients displayed high APACHE II scores of 30 and 39, respectively.
Table 1
Demographic and clinical characteristics of 345 patients with healthcare-associated methicillin-resistant Staphylococcus aureus bacteremia according to the appropriateness of initial empirical antimicrobial therapy
Variables
All (n = 345)
Appropriate (n = 154, 44.6 %)
Inappropriate (n = 191, 55.4 %)
Odds ratio (95 % confidence interval)
Male sex
154 (44.6)
97 (43.9)
124 (56.1)
0.92 (0.59–1.43)
Age (years), median (IQR)
67 (52–75)
66 (51–74)
67 (53–75)
0.99 (0.98–1.01)
Category of infection
    
 Healthcare-associateda
51 (14.8)
29 (18.8)
22 (11.5)
1.78 (0.98–3.25)
 Nosocomial
294 (85.2)
125 (81.2)
169 (88.5)
Comorbidity
    
 Malignancy
97 (28.1)
47 (30.5)
50 (26.2)
0.81 (0.50–1.29)
 Metabolic
122 (35.4)
52 (33.8)
70 (36.6)
1.14 (0.73–1.77)
 Trauma
29 (8.4)
10 (6.5)
19 (9.9)
1.59 (0.72–3.53)
 Charlson’s comorbidity indexb, median (IQR)
2 (1–4)
2 (1–5)
2 (1–4)
1.09 (1.00–1.20)
Primary focus of HA-MRSAB
 CR-BSI
177 (51.3)
93 (60.4)
84 (44.0)
0.52 (0.34–0.79)
 Pneumonia
40 (11.6)
13 (8.4)
27 (14.1)
1.79 (0.89–3.59)
Clinical severity
 Development of severe sepsis or septic shock
99 (28.7)
50 (32.5)
49 (25.7)
0.72 (0.45–1.15)
 Pitt’s bacteremia score at onset of bacteremiac, median (IQR)
1 (0–2)
1 (0–3)
1 (0–2)
1.08 (0.96–1.21)
Predisposing factors
    
 Surgical operation
84 (24.3)
29 (18.8)
55 (28.8)
1.74 (1.05–2.91)
 Foreign body retention
15 (4.3)
12 (7.8)
3 (1.6)
0.189 (0.05–0.69)
 Prior antibiotics use
219 (63.5)
99 (64.3)
120 (62.8)
0.94 (0.60–1.46)
 Vancomycin MIC, mg/L
1 (1–1.5)
1 (1–1.5)
1 (1–1.5)
1.57 (0.81–3.04)
Outcomes
    
 In-hospital mortality
114 (33.0)
51 (33.1)
63 (33.0)
0.99 (0.63–1.56)
 MRSAB-related mortality
57 (16.5)
24 (15.6)
33 (17.3)
1.13 (0.64–2.01)
IQR interquartile range, APACHE acute physiology and chronic health evaluation, CR-BSI catheter-related bloodstream infection, MIC minimum inhibitory concentration, MRSAB methicillin-resistant Staphylococcus aureus bacteremia
aMRSAB diagnosed within 48 h of hospital admission was considered healthcare-associated infection, if the patient presented with any healthcare-associated factor in the preceding 3 months
bCharlson’s comorbidity score was calculated at the onset of MRSA bacteremia infection
cPitt’s bacteremia score and APACHE II scores were assessed at the onset of MRSA bacteremia
Of the 345 patients with HA-MRSAB, 154 (44.6 %) patients received appropriate empirical antibiotic therapy. The antibiotics used for definitive therapy were vancomycin (n = 201, 58.3 %), teicoplanin (n = 96, 27.8 %), arbekacin (n = 63, 18.3 %), linezolid (n = 34, 9.9 %), and tigecycline (n = 8, 2.3 %). Combination antibiotic therapy was administered to 15 patients as follows: glycopeptides plus rifampin (n = 11), linezolid plus arbekacin (n = 2), tigecycline plus arbekacin (n = 1), and teicoplanin plus arbekacin (n = 1).
For the non-matched case–control study (n = 345), the clinical outcomes of 154 patients who received appropriate empirical antibiotic therapy was compared with those of 191 patients who received inappropriate therapy. There were no significant differences in in-hospital mortality (odds ratio [OR] = 0.99; 95 % confidence interval [CI] = 0.63–1.56) or MRSAB-related mortality (OR = 1.13; 95 % CI = 0.64–2.01) between the two treatment groups (Table 1).

Propensity score-matched analysis

For the propensity score-matched (1:1) case–control study, only 127 patient pairs were matched according to the propensity score, because some variables, namely catheter-related bloodstream infection, retention of foreign body, surgical operation, and Charlson’s comorbidity index, showed large differences between the two groups. Comparisons of demographic, clinical, and microbiological characteristics between the propensity-matched 127 pairs receiving inappropriate or appropriate empirical antibiotics are shown in Table 2. There were no significant differences in in-hospital mortality (OR = 1.20; 95 % CI = 0.71–2.03) or MRSAB-related mortality (OR = 1.34; 95 % CI = 0.68–2.62) between the two treatment groups (Table 2). The antibiotics used for the appropriate empirical antibiotic therapy were vancomycin (n = 93, 73.2 %), teicoplanin (n = 22, 17.3 %), and arbekacin (n = 12, 9.4 %).
Table 2
Comparison of clinical and microbiological characteristics and outcomes among patients with healthcare-associated methicillin-resistant Staphylococcus aureus bacteremia according to the appropriateness of empirical antibiotic therapy or treatment outcome in the propensity-matched analyses
Variables
Total
Empirical antibiotic therapy
Treatment outcome
Inappropriate (n = 127)
Appropriate (n = 127)
OR (95 % CI)
Non-survival (n = 81, 31.9 %)
Survival (n = 173, 68.1 %)
OR (95 % CI)
Male sex
165 (65.0)
84 (66.1)
81 (63.8)
1.03 (0.62–1.72)
59 (70.2)
106 (62.4)
0.66 (0.38–1.15)
Age (years), median (IQR)
67 (52–75)
68 (53–76)
65 (51–73)
0.99 (0.97–1.00)
72 (60–79)
63 (48–72)
1.03 (1.01–1.05)
Category of infection
       
 Healthcare-associateda
32 (12.6)
16 (12.6)
16 (12.6)
1.07 (0.52–2.23)
4 (4.8)
28 (16.5)
2.31 (0.91–5.84)
 Nosocomial
222 (87.4)
111 (87.4)
111 (87.4)
80 (95.2)
142 (83.5)
Comorbidity
       
 Malignancy
68 (26.8)
30 (23.6)
38 (29.9)
0.66 (0.37–1.16)
33 (39.3)
35 (20.6)
2.63 (1.46–4.73)
 Trauma
24 (9.4)
14 (11.0)
10 (7.9)
1.33 (0.56–3.17)
7 (8.3)
17 (10.0)
0.93 (0.37–2.35)
 Charlson’s comorbidity indexb, median (IQR)
2 (1–4)
2 (1–4)
2 (1–4)
1.08 (0.97–1.19)
3 (2–6)
2 (0–2)
1.37 (1.21–1.54)
Predisposing factors
   
 Foreign body retention
4 (1.6)
2 (1.6)
2 (1.6)
1.00 (0.14–7.21)
1 (1.2)
3 (1.8)
0.71 (0.07–6.92)
 Surgical operation
48 (18.9)
24 (18.9)
24 (18.9)
1.00 (0.53–1.87)
14 (16.7)
34 (20.0)
1.09 (0.56–2.12)
 Prior antibiotic use
151 (59.4)
73 (57.5)
78 (61.4)
1.00 (0.60–1.66)
58 (69.0)
93 (54.7)
2.39 (1.33–4.30)
 Third-generation cephalosporins
78 (30.7)
40 (31.5)
38 (29.9)
1.15 (0.68–1.95)
27 (32.1)
51 (30.0)
1.40 (0.81–2.44)
 Fluoroquinolones
39 (15.4)
17 (113.4)
22 (17.3)
0.89 (0.45–1.75)
16 (19.8)
23 (13.5)
1.96 (0.99–3.91)
 Glycopeptides
36 (14.2)
14 (11.0)
22 (17.3)
0.77 (0.38–1.57)
19 (22.6)
17 (10.0)
2.15 (1.05–4.41)
Primary focus of HA-MRSAB
      
 CR-BSI
144 (56.7)
72 (56.7)
72 (56.7)
1.03 (0.63–1.70)
52 (61.9)
92 (54.1)
1.03 (0.61–1.75)
 Pneumonia
22 (8.7)
12 (9.4)
10 (7.9)
0.41 (0.62-3.21)
11 (13.1)
11 (6.5)
3.35 (1.46–7.67)
Clinical severity
       
 Development of severe sepsis or septic shock
75 (29.5)
33 (26.0)
42 (33.1)
0.64 (0.37–1.09)
43 (51.2)
32 (18.8)
5.24 (2.93–9.38)
 Pitt’s bacteremia scorec, median (IQR)
1 (0–3)
1 (0–3)
1 (0–3)
1.08 (0.94–1.24)
3 (1–4)
1 (0–2)
0..96 (0.82–1.12)
Vancomycin MIC, mg/L
     
 MIC ≥1.0 mg/L
211 (96.3)
106 (98.1)
105 (94.6)
1.15 (0.52–2.54)
69 (95.8)
142 (96.6)
1.76 (0.36–8.71)
 MIC ≥1.5 mg/L
94 (42.9)
39 (36.1)
55 (49.5)
0.60 (0.31–1.16)
34 (47.2)
60 (40.8)
1.60 (0.91–2.83)
 MIC ≥2 mg/L
19 (8.7)
8 (7.4)
11 (9.9)
0.47 (0.08–2.61)
9 (12.5)
10 (6.8)
2.46 (0.95–6.34)
 Appropriate empirical antibiotic therapy, n (%)
127 (50.0)
   
42 (50.0)
85 (50.0)
1.20 (0.71–2.03)
Definitive therapy
       
 Vancomycin
145 (57.1)
68 (53.5)
77 (60.6)
0.75 (0.46–1.23)
48 (57.1)
97 (57.1)
1.00 (0.59–1.70)
 Teicoplanin
75 (29.5)
38 (29.9)
37 (29.1)
1.04 (0.61–1.78)
26 (31.0)
49 (28.8)
1.11 (0.63–1.96)
 Linezolid
28 (11.0)
16 (12.6)
12 (9.4)
1.38 (0.63–3.05)
9 (10.7)
19 (11.2)
0.95 (0.41–2.21)
 Arbekacin
45 (17.7)
25 (19.7)
20 (15.7)
1.31 (0.69–2.51)
10 (11.9)
35 (20.6)
0.52 (0.24–1.11)
 Tigecycline
4 (1.6)
2 (1.6)
2 (1.6)
1.00 (0.14–6.99)
2 (2.4)
2 (1.2)
2.05 (0.28–14.80)
 Rifampind
9 (3.5)
7 (5.5)
2 (1.6)
3.65 (0.74–17.9)
0
9 (5.3)
0.95 (0.91–0.98)
Outcomes
       
 In-hospital mortality
84 (33.1)
42 (33.1)
42 (33.1)
1.20 (0.71–2.03)
  
1.20 (0.71–2.03)
 MRSAB-related mortality
40 (15.7)
21 (16.5)
19 (15.0)
1.34 (0.68–2.62)
40 (47.6)
0
2.03 (1.62–2.53)
CR-BSI catheter-related bloodstream infection, IQR interquartile range, MIC minimum inhibitory concentration, MRSA methicillin-resistant Staphylococcus aureus, MRSAB methicillin-resistant Staphylococcus aureus bacteremia
aMRSAB diagnosed within 48 h of hospital admission was considered healthcare-associated infection, if the patient presented with healthcare-associated factor in the preceding 3 months
bCharlson’s comorbidity index was calculated at the first identification of MRSA bloodstream infection
cPitt’s bacteremia score was assessed at the first identification of MRSA bloodstream infection
dRifampin, which was prescribed in the survivals for the maintenance combination treatment during the finishing step for the small number of study cases
To assess the effect of empirical antibiotic therapy according to the clinical severity of HA-MRSAB, the clinical outcomes of patients with HA-MRSAB in association with empirical antibiotic therapy and the severity of HA-MRSAB were analyzed (Table 3). For the subgroup with severe sepsis (n = 75), septic shock (n = 45), or a higher Charlson’s comorbidity index (≥3) (n = 108), there were no significant differences in either in-hospital mortality or MRSAB-related mortality between the patients receiving inappropriate or appropriate empirical antibiotic treatment (Table 3).
Table 3
Comparison of in-hospital mortality rates according to the clinical severity of healthcare-associated methicillin-resistant Staphylococcus aureus bacteremia in the propensity-matched analyses
 
Empirical antibiotic therapy
In-hospital mortality, n (%)
OR (95 % CI)
MRSA-related mortality, n (%)
OR (95 % CI)
Severe sepsis or septic shock (n = 75)
 Yes
Appropriate
24 (57.1)
1.02 (0.41–2.56)
13 (31.0)
1.12 (0.42–2.96)
 
Inappropriate
19 (57.9)
11 (33.3)
 No
Appropriate
18 (21.2)
1.21 (0.60–2.43)
6 (7.1)
1.57 (0.54–4.51)
 
Inappropriate
23 (24.5)
10 (10.6)
Septic shock (n = 45)
 Yes
Appropriate
20 (66.7)
1.00 (0.27–3.72)
12 (40.0)
1.00 (0.28–3.54)
 
Inappropriate
10 (66.7)
6 (40.0)
 No
Appropriate
22 (22.7)
1.36 (0.73–2.55)
7 (7.2)
1.99 (0.78–5.10)
 
Inappropriate31
32 (28.6)
15 (13.4)
Charlson’s comorbidity index ≥3 (n = 108)
   
 Yes
Appropriate
31 (56.4)
0.62 (0.29–1.32)
13 (23.6)
0.83 (0.33–2.05)
 
Inappropriate
24 (44.4)
 
11 (20.8)
 
 No
Appropriate
11 (15.3)
1.82 (0.79–4.18)
6 (8.3)
1.75 (0.60–5.09)
 
Inappropriate
18 (24.7)
 
10 (13.7)
 
MRSA methicillin-resistant Staphylococcus aureus
The covariate balance of independent variables for the propensity scores between the unmatched and matched data sets is presented in Table 4. In the propensity score-matched analysis, matched standardized differences should be less than 0.20 and preferably 0.10 for the balanced distribution of the relevant variables between the two groups [32, 33]. Figure 1 demonstrates graphic overlays of distribution of the propensity scores before and after matching between the two treatment groups.
Table 4
Covariate balance of independent variables for the propensity scores between unmatched and matched data sets
 
Absolute standardized difference (%)
 
Unmatched data
Matched data
Nosocomial infection
20.49
0.00
Trauma
12.60
10.78
Surgical operation
23.56
0.00
Immunosuppressive agents
15.43
10.73
Prior exposure to third-generation cephalosporins
11.91
3.41
Prior exposure to fluoroquinolones
12.36
10.94
Prior exposure to glycopeptides
14.06
18.14
CR-BSI
33.30
0.00
Pneumonia
18.07
5.60
Urinary tract infection
19.90
18.11
Severe sepsis or septic shock
15.05
15.58
Retention of foreign body
29.78
0.00
Infective endocarditis
15.25
18.11
Charlson’s comorbidity index
21.35
16.12
Pitt’s bacteremia score
13.35
11.08
Age
10.47
13.89
Vancomycin MICs
15.67
17.59
CR-BSI catheter-related bloodstream infection, MIC minimum inhibitory concentration
The factors associated with all-cause in-hospital mortality in patients with HA-MRSAB were determined in the propensity score-matched set. For the 254 patients included, demographic, clinical, and microbiological characteristics were compared between 84 non-survivors and 170 survivors (Table 2).
In multivariate conditional logistic regression analysis, severe sepsis or septic shock (OR = 5.45; 95 % CI = 2.14–13.87), Charlson’s comorbidity index (per 1-point increment; OR = 1.52; 95 % CI = 1.27–1.83), and prior receipt of glycopeptides (OR = 3.24; 95 % CI = 1.08–9.67) were found to be independent risk factors for in-hospital mortality (Table 5).
Table 5
Multivariate conditional logistic regression analysis of risk factors for in-hospital mortality in patients with healthcare-associated methicillin-resistant Staphylococcus aureus bacteremia in the propensity-matched analyses
 
Unmatched data set (n = 345)
Unmatched data set (IPTW, n = 345)
Matched data set (n = 254)
Independent variable
OR (95 % CI)
P-value
OR (95 % CI)
P-value
OR (95 % CI)
P-value
Inappropriate empirical antibiotic therapy
1.26 (0.64–2.48)
0.499
1.33 (0.83–2.12)
0.236
NAa
0.988
Nosocomial infection
2.24 (0.87–5.80)
0.096
2.62 (1.28–5.37)
0.009
  
Trauma
0.60 (0.18–1.97)
0.398
0.66 (0.28–1.52)
0.329
1.95 (0.50–7.56)
0.335
Surgical operation
1.20 (0.54–2.66)
0.656
1.22 (0.69–2.17)
0.493
  
Prior exposure to third- generation cephalosporins
1.34 (0.68–2.63)
0.399
1.23 (0.76–2.00)
0.407
0.93 (0.41–2.10)
0.853
Prior exposure to fluoroquinolones
0.51 (0.22–1.22)
0.129
0.66 (0.35–1.24)
0.193
1.24 (0.44–3.51)
0.683
Prior exposure to glycopeptides
2.85 (1.20–6.77)
0.018
2.86 (1.55–5.28)
0.001
3.24 (1.08–9.67)
0.035
CR-BSI
0.92 (0.44–1.92)
0.825
0.79 (0.47–1.32)
0.360
  
Pneumonia
0.37 (0.14–1.00)
0.050
0.28 (0.14–0.59)
0.001
2.15 (0.51–9.04)
0.296
Severe sepsis or septic shock
3.84 (1.85–7.96)
<0.001
3.64 (2.17–6.10)
<0.001
5.45 (2.14–13.87)
<0.001
Retention of foreign body
1.63 (0.40–6.71)
0.500
1.96 (0.62–6.18)
0.250
  
Charlson’s comorbidity index (per 1-point increment)
0.66 (0.57–0.77)
<0.001
0.68 (0.61–0.75)
<0.001
1.52 (1.27–1.83)
<0.001
Pitt’s bacteremia score (per 1-point increment)
0.77 (0.64–0.93)
<0.001
0.76 (0.66–0.87)
<0.001
1.23 (0.99–1.54)
0.067
Age (per 1-year increment)
0.96 (0.94–0.98)
0.001
0.97 (0.95–0.98)
<0.001
1.02 (1.00–1.05)
0.105
Vancomycin MICs
0.48 (0.20–1.16)
0.103
0.42 (0.23–0.79)
0.007
1.55 (0.52–4.62)
0.433
CR-BSI catheter-related bloodstream infection, IPTW inverse probability of treatment weighted, OR odds ratio, 95 % CI 95 % confidence interval, MIC minimum inhibitory concentration, NA not available
aThese variables were not available because they displayed perfect marginal homogeneity with respect to each category concerning inappropriate initial empirical antibiotic therapy
As shown in Table 6, in multivariate logistic regression models of risk factors for in-hospital mortality using naïve, propensity score matching, or IPTW approaches, inappropriate empirical antibiotic therapy was not an independent predictor for mortality (Table 6).
Table 6
Evaluation of the association between inappropriate empirical antibiotic therapy and in-hospital mortality in patients with healthcare-associated methicillin-resistant Staphylococcus aureus bacteremia
  
Number
P-value
OR
95 % CI
LL
UL
Model 1
Unmatched sample, no adjustment
345
0.979
1.01
0.64
1.58
Model 2
Unmatched sample with no PS, adjusted for all covariates
345
0.499
0.79
0.40
1.56
Model 3
Unmatched sample with IPTW, adjusted for all covariates
345
0.236
0.75
0.47
1.20
Model 4
PS-matched sample, no adjustment
254
0.984
 
NAa
.
Model 5
PS-matched sample adjusted for all covariates
254
0.988
 
NAa
.
PS propensity score, IPTW inverse probability of treatment weighted, OR odds ratio, 95 % CI 95 % confidence interval, LL lower limit, UL upper limit
aThese variables were not available because they displayed perfect marginal homogeneity with respect to each category concerning inappropriate initial empirical antibiotic therapy

Microbiological factors and clinical outcomes

A total of 296 (85.8 %) MRSA isolates were available for analyzing vancomycin MICs using the E- test. The measured vancomycin MIC range was 0.5–2 mg/L; vancomycin MIC50 and MIC90 were both 1.5 mg/L. There was no difference in mortality outcomes between the two groups categorized as each reference cut-off of vancomycin MICs: ≥1.0 mg/L (OR = 1.76; 95 % CI = 0.36–8.71), ≥1.5 mg/L (OR = 1.60; 95 % CI = 0.91–2.83) and ≥2.0 mg/L (OR = 2.46; 95 % CI = 0.95–6.34) (Table 2).

Discussion

This propensity-matched study investigated the impact of inappropriate empirical antibiotic therapy on mortality after adjusting for potentially confounding factors that influence the receipt of inappropriate empirical antibiotic therapy in patients with HA-MRSAB in hospitals with a high prevalence of MRSA. This study found that an initial delay in the use of definitive antibiotics to which the MRSA isolates were susceptible did not necessarily prejudice the clinical outcomes of patients with HA-MRSAB and that the impetuous use of glycopeptide as empirical therapy targeting MRSA isolates should be moderated in terms of increasing antibiotic resistance.
Although initial empirical broad-spectrum antibiotic therapy, sometimes involving combination treatment, in bacteremic patients may appear to be an attractive treatment strategy before microbiological results are available, it can lead to increases in antibiotic resistance, costs, and adverse events. Studies investigating the association between inappropriate empirical antibiotic therapy and mortality among patients with bloodstream infections have reported conflicting findings. Thirteen studies have assessed the effects of empirical antibiotic therapy on mortality in study populations with MRSAB [1016, 21, 3436]. Seven of these study demonstrated that timely empirical therapy for MRSAB was associated with reduced mortality [10, 1214, 21, 35, 36]. By contrast, six other studies reported an opposite result [11, 15, 16, 19, 20, 34]. Interestingly, three studies conducted in Asia reported that an initial delay in the use of definitive antibiotics to which the MRSA isolates were susceptible did not have a detrimental effect on mortality [11, 19, 20]. Paul et al. [21] speculated that the studies did not confirm an advantage to empirical vancomycin treatment, as the prevalence of vancomycin MICs >1.5 mg/L might be higher in Asia than in other locations [7, 9, 3739].
On the contrary, a lack of agreement in the association between appropriate antibiotic therapy and mortality in bacteremic patients among the previous studies might be attributable to methodological heterogeneity. Appropriate antibiotic therapy and mortality were not consistently measured, and significant confounding variables were not always considered in the final analysis [17]. Therefore, in the present study on patients with HA-MRSAB, we obviously defined the appropriateness of antibiotic therapy in terms of its in vitro activity against the MRSA isolates, the timing and routes of administration, and the doses of the prescribed antibiotics; we also defined empirical and definitive antibiotic therapy clearly. We conducted multivariate analysis to adjust for confounding variables, including clinical severity and patients’ comorbidity at the onset of HA-MRSAB. Although the previous studies used a multivariate logistic regression analyses, residual confounding associated with the choice of appropriate or inappropriate empirical antibiotics was not fully excluded. Thus, our propensity-matched analysis calibrated all covariates that affect both the outcome and treatment assignment between patients who received appropriate and inappropriate empirical antibiotics.
In this study, there was no significant difference in mortality between the 127 pairs of propensity-matched patients who received inappropriate or appropriate empirical antibiotics. These results were comparable with the findings from a study by Kim et al. using a propensity score [20]. Among 345 patients with HA-MRSAB analyzed in our study, empirical antibiotic therapy against MRSA isolates was given to 154 (44.6 %) patients. It was previously described that infections due to gram-positive organisms do not have a rapid course, unlike those caused by gram-negative pathogens [40, 41]. In two meta-analyses of febrile neutropenic patients, there was no statistically significant difference in mortality between those who received a glycopeptide as part of the empirical regimen and those who did not receive glycopeptides [42, 43]. In addition, a large retrospective review from the National Cancer Institute suggested that the addition of vancomycin can be delayed until after four days of antibiotic monotherapy against Pseudomonas aeruginosa without any resulting increase in morbidity or mortality, even when a gram-positive infection was proven [44, 45].
In this study, the in-hospital mortality rate of HA-MRSAB was 33.1 %, which is comparable to the range from 29 % to 45 % reported in other studies [10, 12, 16, 36]. Within our propensity score-matched data set, three prognostic factors were associated with in-hospital mortality in patients with HA-MRSAB: severe sepsis or septic shock, Charlson’s comorbidity index at the onset of HA-MRSAB, and prior receipt of glycopeptides. These findings were similar to those of other studies [1115, 20, 21]. In particular, prior exposure to glycopeptides was reported as an independent predictor of treatment failure for MRSAB in several studies [12, 13, 15, 20, 21]. This fact strengthens the hypothesis that the empirical use of glycopeptides should be judicious even in patients suspected to have MRSAB. In addition, a higher vancomycin MIC has been recognized as one of the predictors associated with increased mortality and treatment failure among patients with MRSAB [46, 47]. Prior exposure to glycopeptides is likely to be associated with mortality in patients with MRSAB, as recent exposure to vancomycin may lead to increased vancomycin MICs [48]. In this study, we failed to identify a significant impact of higher vancomycin MIC values on mortality in patients with HA-MRSAB, probably due to use of several antibiotics with activity against MRSAB. Vancomycin was used as a definite antibiotic in 58.3 % of the 345 patients with HA-MRSAB analyzed in the study.
There are some potential limitations in our study. First, the multivariate propensity-matched analysis still has a residual risk for confounding given the non-randomized, controlled study design. Second, it should be acknowledged that culture sampling itself might have been delayed in some cases due to difficulties in suspecting the presence of MRSAB. Third, different kinds of antibiotics used for definitive therapy against MRSA can affect the clinical outcomes. However, there was no statistical difference in the distribution of definitive antibiotics in the comparative analyses of empirical antibiotic therapy or treatment outcomes. Fourth, vancomycin MIC for MRSA isolates was determined using the thawed, stored strains in this study, which can lead to an overall decline in vancomycin MICs measured for the same strains at the time of isolation. The effects of storage on the vancomycin MIC of the isolates may be considered confounders [49]. Lastly, this study showed a lack of significant difference in the hospital mortality between patients who received inappropriate or appropriate empirical antibiotics. This may imply an inconclusive result from the limited sample size, rather than a lack of any effect of appropriate empirical antibiotic therapy.

Conclusions

In conclusion, empirical inappropriate antibiotic therapy was not a significant predictor of mortality in patients with HA-MRSAB in hospitals with a high prevalence of MRSA. These findings suggest that it may be safe to await microbiological results and guide the use of definitive antibiotics in patients suspected of having HA-MRSAB. Although earlier proper antibiotic prescribing is usually recommended for bacteremic patients by most experts, the empirical use of glycopeptides should be guided by the presence of predictors of MRSAB as well as the risk factors associated with MRSAB-related mortality.

Abbreviations

CR-BSI, catheter-related bloodstream infection; HA-MRSAB, healthcare-associated methicillin-resistant Staphylococcus aureus bacteremia; IPTW, inverse probability of treatment weighting; IQR, inter-quartile range; MICs, minimum inhibitory concentrations; MRSA, methicillin-resistant Staphylococcus aureus; MRSAB, methicillin-resistant Staphylococcus aureus bacteremia

Acknowledgements

None.

Funding

This study was financially supported in part by a grant (A102065) from the Korean Health 21 R&D project, Ministry for Health, Welfare and Family Affairs, Republic of Korea, the City of Seoul Grant #10920 and a National Research Foundation of Korea grant funded by the Korean government (No. K20902001448-10E0100-03010). The funders had no role in study design, data collection, data analysis, data interpretation, or writing the report.

Availability of data and materials

The data analyzed in this study can be accessed by sending a request to the corresponding author, after considering the progress of the ongoing post hoc analysis and with the approval of the Institutional Review Boards.

Authors’ contributions

YKY performed the data verification, analyzed the data, and drafted the manuscript. MJK designed the study, and participated in manuscript revisions. KRP conceived the study. KSY conducted the statistical analysis. JYK performed the data verification and the integrity of the data. DWP, JWS, HYK, YSK, CSL, MSL, SYR, HCJ, YJC, CIK, HJC, SSL, SWK, SIK, and ESK contributed clinical data. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing intersts.
Not applicable.
The study protocol was approved by the Institutional Review Board prior to starting the study at Korea University Anam Hospital (AN11209-002). As this observational study required no additional procedure apart from routine medical practice, the board waived the need for informed consent.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Marra AR, Camargo LF, Pignatari AC, Sukiennik T, Behar PR, Medeiros EA, et al. Nosocomial bloodstream infections in Brazilian hospitals: analysis of 2,563 cases from a prospective nationwide surveillance study. J Clin Microbiol. 2011;49:1866–71.CrossRefPubMedPubMedCentral Marra AR, Camargo LF, Pignatari AC, Sukiennik T, Behar PR, Medeiros EA, et al. Nosocomial bloodstream infections in Brazilian hospitals: analysis of 2,563 cases from a prospective nationwide surveillance study. J Clin Microbiol. 2011;49:1866–71.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39:309–17.CrossRefPubMed Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39:309–17.CrossRefPubMed
3.
Zurück zum Zitat Hall 2nd RG, Giuliano CA, Haase KK, Hazlewood KA, Frei CR, Forcade NA, et al. Empiric guideline-recommended weight-based vancomycin dosing and mortality in methicillin-resistant Staphylococcus aureus bacteremia: a retrospective cohort study. BMC Infect Dis. 2012;12:104.CrossRefPubMedPubMedCentral Hall 2nd RG, Giuliano CA, Haase KK, Hazlewood KA, Frei CR, Forcade NA, et al. Empiric guideline-recommended weight-based vancomycin dosing and mortality in methicillin-resistant Staphylococcus aureus bacteremia: a retrospective cohort study. BMC Infect Dis. 2012;12:104.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Moise-Broder PA, Sakoulas G, Eliopoulos GM, Schentag JJ, Forrest A, Moellering Jr RC. Accessory gene regulator group II polymorphism in methicillin-resistant Staphylococcus aureus is predictive of failure of vancomycin therapy. Clin Infect Dis. 2004;38:1700–5.CrossRefPubMed Moise-Broder PA, Sakoulas G, Eliopoulos GM, Schentag JJ, Forrest A, Moellering Jr RC. Accessory gene regulator group II polymorphism in methicillin-resistant Staphylococcus aureus is predictive of failure of vancomycin therapy. Clin Infect Dis. 2004;38:1700–5.CrossRefPubMed
5.
Zurück zum Zitat Walraven CJ, North MS, Marr-Lyon L, Deming P, Sakoulas G, Mercier RC. Site of infection rather than vancomycin MIC predicts vancomycin treatment failure in methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2011;66:2386–92.CrossRefPubMed Walraven CJ, North MS, Marr-Lyon L, Deming P, Sakoulas G, Mercier RC. Site of infection rather than vancomycin MIC predicts vancomycin treatment failure in methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2011;66:2386–92.CrossRefPubMed
6.
Zurück zum Zitat Rojas L, Bunsow E, Muñoz P, Cercenado E, Rodríguez-Créixems M, et al. Vancomycin MICs do not predict the outcome of methicillin-resistant Staphylococcus aureus bloodstream infections in correctly treated patients. J Antimicrob Chemother. 2012;67:1760–8.CrossRefPubMed Rojas L, Bunsow E, Muñoz P, Cercenado E, Rodríguez-Créixems M, et al. Vancomycin MICs do not predict the outcome of methicillin-resistant Staphylococcus aureus bloodstream infections in correctly treated patients. J Antimicrob Chemother. 2012;67:1760–8.CrossRefPubMed
7.
Zurück zum Zitat Lin SH, Liao WH, Lai CC, Liao CH, Tan CK, Wang CY, et al. Risk factors for mortality in patients with persistent methicillin-resistant Staphylococcus aureus bacteraemia in a tertiary care hospital in Taiwan. J Antimicrob Chemother. 2010;65:1792–8.CrossRefPubMed Lin SH, Liao WH, Lai CC, Liao CH, Tan CK, Wang CY, et al. Risk factors for mortality in patients with persistent methicillin-resistant Staphylococcus aureus bacteraemia in a tertiary care hospital in Taiwan. J Antimicrob Chemother. 2010;65:1792–8.CrossRefPubMed
8.
Zurück zum Zitat Liao CH, Chen SY, Huang YT, Hsueh PR. Outcome of patients with methicillin-resistant Staphylococcus aureus bacteraemia at an Emergency Department of a medical centre in Taiwan. Int J Antimicrob Agents. 2008;32:326–32.CrossRefPubMed Liao CH, Chen SY, Huang YT, Hsueh PR. Outcome of patients with methicillin-resistant Staphylococcus aureus bacteraemia at an Emergency Department of a medical centre in Taiwan. Int J Antimicrob Agents. 2008;32:326–32.CrossRefPubMed
9.
Zurück zum Zitat Wang JL, Wang JT, Sheng WH, Chen YC, Chang SC. Nosocomial methicillin-resistant Staphylococcus aureus (MRSA) bacteremia in Taiwan: mortality analyses and the impact of vancomycin, MIC = 2 mg/L, by the broth microdilution method. BMC Infect Dis. 2010;10:159.CrossRefPubMedPubMedCentral Wang JL, Wang JT, Sheng WH, Chen YC, Chang SC. Nosocomial methicillin-resistant Staphylococcus aureus (MRSA) bacteremia in Taiwan: mortality analyses and the impact of vancomycin, MIC = 2 mg/L, by the broth microdilution method. BMC Infect Dis. 2010;10:159.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Gómez J, García-Vázquez E, Baños R, Canteras M, Ruiz J, Baños V, et al. Predictors of mortality in patients with methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia: the role of empiric antibiotic therapy. Eur J Clin Microbiol Infect Dis. 2007;26:239–45.CrossRefPubMed Gómez J, García-Vázquez E, Baños R, Canteras M, Ruiz J, Baños V, et al. Predictors of mortality in patients with methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia: the role of empiric antibiotic therapy. Eur J Clin Microbiol Infect Dis. 2007;26:239–45.CrossRefPubMed
11.
Zurück zum Zitat Fang CT, Shau WY, Hsueh PR, Chen YC, Wang JT, Hung CC, et al. Early empirical glycopeptide therapy for patients with methicillin-resistant Staphylococcus aureus bacteraemia: impact on the outcome. J Antimicrob Chemother. 2006;57:511–9.CrossRefPubMed Fang CT, Shau WY, Hsueh PR, Chen YC, Wang JT, Hung CC, et al. Early empirical glycopeptide therapy for patients with methicillin-resistant Staphylococcus aureus bacteraemia: impact on the outcome. J Antimicrob Chemother. 2006;57:511–9.CrossRefPubMed
12.
Zurück zum Zitat Marchaim D, Kaye KS, Fowler VG, Anderson DJ, Chawla V, Golan Y, et al. Case–control study to identify factors associated with mortality among patients with methicillin-resistant Staphylococcus aureus bacteraemia. Clin Microbiol Infect. 2010;16:747–52.CrossRefPubMed Marchaim D, Kaye KS, Fowler VG, Anderson DJ, Chawla V, Golan Y, et al. Case–control study to identify factors associated with mortality among patients with methicillin-resistant Staphylococcus aureus bacteraemia. Clin Microbiol Infect. 2010;16:747–52.CrossRefPubMed
13.
Zurück zum Zitat Rodríguez-Baño J, Millán AB, Domínguez MA, Borraz C, González MP, Almirante B, et al. Impact of inappropriate empirical therapy for sepsis due to health care-associated methicillin-resistant Staphylococcus aureus. J Infect. 2009;58:131–7.CrossRefPubMed Rodríguez-Baño J, Millán AB, Domínguez MA, Borraz C, González MP, Almirante B, et al. Impact of inappropriate empirical therapy for sepsis due to health care-associated methicillin-resistant Staphylococcus aureus. J Infect. 2009;58:131–7.CrossRefPubMed
14.
Zurück zum Zitat Schramm GE, Johnson JA, Doherty JA, Micek ST, Kollef MH. Methicillin-resistant Staphylococcus aureus sterile-site infection: The importance of appropriate initial antimicrobial treatment. Crit Care Med. 2006;34:2069–74.CrossRefPubMed Schramm GE, Johnson JA, Doherty JA, Micek ST, Kollef MH. Methicillin-resistant Staphylococcus aureus sterile-site infection: The importance of appropriate initial antimicrobial treatment. Crit Care Med. 2006;34:2069–74.CrossRefPubMed
15.
Zurück zum Zitat Soriano A, Marco F, Martínez JA, Pisos E, Almela M, Dimova VP, et al. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2008;46:193–200.CrossRefPubMed Soriano A, Marco F, Martínez JA, Pisos E, Almela M, Dimova VP, et al. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2008;46:193–200.CrossRefPubMed
16.
Zurück zum Zitat Khatib R, Saeed S, Sharma M, Riederer K, Fakih MG, Johnson LB. Impact of initial antibiotic choice and delayed appropriate treatment on the outcome of Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis. 2006;25:181–5.CrossRefPubMed Khatib R, Saeed S, Sharma M, Riederer K, Fakih MG, Johnson LB. Impact of initial antibiotic choice and delayed appropriate treatment on the outcome of Staphylococcus aureus bacteremia. Eur J Clin Microbiol Infect Dis. 2006;25:181–5.CrossRefPubMed
17.
Zurück zum Zitat McGregor JC, Rich SE, Harris AD, Perencevich EN, Osih R, Lodise Jr TP, et al. A systematic review of the methods used to assess the association between appropriate antibiotic therapy and mortality in bacteremic patients. Clin Infect Dis. 2007;45:329–37.CrossRefPubMed McGregor JC, Rich SE, Harris AD, Perencevich EN, Osih R, Lodise Jr TP, et al. A systematic review of the methods used to assess the association between appropriate antibiotic therapy and mortality in bacteremic patients. Clin Infect Dis. 2007;45:329–37.CrossRefPubMed
18.
Zurück zum Zitat van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. Predictors of mortality in Staphylococcus aureus Bacteremia. Clin Microbiol Rev. 2012;25:362–86.CrossRefPubMedPubMedCentral van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. Predictors of mortality in Staphylococcus aureus Bacteremia. Clin Microbiol Rev. 2012;25:362–86.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Lee CH, Chien CC, Liu JW. Timing of initiating glycopeptide therapy for methicillin-Resistant Staphylococcus aureus bacteremia: the impact on clinical outcome. Scientific World Journal. 2013;2013:457435.PubMedPubMedCentral Lee CH, Chien CC, Liu JW. Timing of initiating glycopeptide therapy for methicillin-Resistant Staphylococcus aureus bacteremia: the impact on clinical outcome. Scientific World Journal. 2013;2013:457435.PubMedPubMedCentral
20.
Zurück zum Zitat Kim SH, Park WB, Lee KD, Kang CI, Bang JW, Kim HB, et al. Outcome of inappropriate initial antimicrobial treatment in patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2004;54:489–97.CrossRefPubMed Kim SH, Park WB, Lee KD, Kang CI, Bang JW, Kim HB, et al. Outcome of inappropriate initial antimicrobial treatment in patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2004;54:489–97.CrossRefPubMed
21.
Zurück zum Zitat Paul M, Kariv G, Goldberg E, Raskin M, Shaked H, Hazzan R, et al. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2010;65:2658–65.CrossRefPubMed Paul M, Kariv G, Goldberg E, Raskin M, Shaked H, Hazzan R, et al. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2010;65:2658–65.CrossRefPubMed
22.
Zurück zum Zitat Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O’Grady NP, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49:1–45.CrossRefPubMedPubMedCentral Mermel LA, Allon M, Bouza E, Craven DE, Flynn P, O’Grady NP, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49:1–45.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36:309–32.CrossRefPubMed Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36:309–32.CrossRefPubMed
24.
Zurück zum Zitat Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Joseph L. Harrison’s principles of Internal Medicine (ed 18). USA: Mc Graw Hill; 2008. Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Joseph L. Harrison’s principles of Internal Medicine (ed 18). USA: Mc Graw Hill; 2008.
25.
Zurück zum Zitat Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994;47:1245–51.CrossRefPubMed Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994;47:1245–51.CrossRefPubMed
26.
Zurück zum Zitat Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRefPubMed Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRefPubMed
27.
Zurück zum Zitat Chow JW, Fine MJ, Shlaes DM, Quinn JP, Hooper DC, Johnson MP, et al. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med. 1991;115:585–90.CrossRefPubMed Chow JW, Fine MJ, Shlaes DM, Quinn JP, Hooper DC, Johnson MP, et al. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med. 1991;115:585–90.CrossRefPubMed
28.
Zurück zum Zitat Rubin DB. Estimating causal effects from large data sets using propensity scores. Ann Intern Med. 1997;127:757–63.CrossRefPubMed Rubin DB. Estimating causal effects from large data sets using propensity scores. Ann Intern Med. 1997;127:757–63.CrossRefPubMed
29.
Zurück zum Zitat Braitman LE, Rosenbaum PR. Rare outcomes, common treatments: analytic strategies using propensity scores. Ann Intern Med. 2002;137:693–5.CrossRefPubMed Braitman LE, Rosenbaum PR. Rare outcomes, common treatments: analytic strategies using propensity scores. Ann Intern Med. 2002;137:693–5.CrossRefPubMed
30.
Zurück zum Zitat Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46:399–424.CrossRefPubMedPubMedCentral Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46:399–424.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Sugihara M. Survival analysis using inverse probability of treatment weighted methods based on the generalized propensity score. Pharm Stat. 2010;9:21–34.CrossRefPubMed Sugihara M. Survival analysis using inverse probability of treatment weighted methods based on the generalized propensity score. Pharm Stat. 2010;9:21–34.CrossRefPubMed
32.
Zurück zum Zitat Rosenbaum PR. Design of Observational Studies. New York: Springer; 2010.CrossRef Rosenbaum PR. Design of Observational Studies. New York: Springer; 2010.CrossRef
33.
Zurück zum Zitat Lanza ST, Moore JE, Butera NM. Drawing causal inferences using propensity scores: a practical guide for community psychologists. Am J Community Psychol. 2013;52:380–92.CrossRefPubMedPubMedCentral Lanza ST, Moore JE, Butera NM. Drawing causal inferences using propensity scores: a practical guide for community psychologists. Am J Community Psychol. 2013;52:380–92.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Schweizer ML, Furuno JP, Harris AD, Johnson JK, Shardell MD, McGregor JC, et al. Empiric antibiotic therapy for Staphylococcus aureus bacteremia may not reduce in-hospital mortality: a retrospective cohort study. PLoS One. 2010;5:e11432.CrossRefPubMedPubMedCentral Schweizer ML, Furuno JP, Harris AD, Johnson JK, Shardell MD, McGregor JC, et al. Empiric antibiotic therapy for Staphylococcus aureus bacteremia may not reduce in-hospital mortality: a retrospective cohort study. PLoS One. 2010;5:e11432.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Lewis T, Chaudhry R, Nightingale P, Lambert P, Das I. Methicillin-resistant Staphylococcus aureus bacteremia: epidemiology, outcome, and laboratory characteristics in a tertiary referral center in the UK. Int J Infect Dis. 2011;15:e131–5.CrossRefPubMed Lewis T, Chaudhry R, Nightingale P, Lambert P, Das I. Methicillin-resistant Staphylococcus aureus bacteremia: epidemiology, outcome, and laboratory characteristics in a tertiary referral center in the UK. Int J Infect Dis. 2011;15:e131–5.CrossRefPubMed
36.
Zurück zum Zitat Lodise TP, McKinnon PS, Swiderski L, Rybak MJ. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis. 2003;36:1418–23.CrossRefPubMed Lodise TP, McKinnon PS, Swiderski L, Rybak MJ. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis. 2003;36:1418–23.CrossRefPubMed
37.
Zurück zum Zitat Kim JS, Kim HS, Song W, Cho HC, Lee KM, Kim EC. Antimicrobial resistance profiles of Staphylococcus aureus isolated in 13 Korean hospitals. Korean J Lab Med. 2004;24:223–9. Kim JS, Kim HS, Song W, Cho HC, Lee KM, Kim EC. Antimicrobial resistance profiles of Staphylococcus aureus isolated in 13 Korean hospitals. Korean J Lab Med. 2004;24:223–9.
38.
Zurück zum Zitat Voss A, Doebbeling BN. The worldwide prevalence of methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 1995;5:101–6.CrossRefPubMed Voss A, Doebbeling BN. The worldwide prevalence of methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 1995;5:101–6.CrossRefPubMed
39.
Zurück zum Zitat Takesue Y, Nakajima K, Takahashi Y, Ichiki K, Ishihara M, Wada Y, et al. Clinical characteristics of vancomycin minimum inhibitory concentration of 2 μg/ml methicillin-resistant Staphylococcus aureus strains isolated from patients with bacteremia. J Infect Chemother. 2011;17:52–7.CrossRefPubMed Takesue Y, Nakajima K, Takahashi Y, Ichiki K, Ishihara M, Wada Y, et al. Clinical characteristics of vancomycin minimum inhibitory concentration of 2 μg/ml methicillin-resistant Staphylococcus aureus strains isolated from patients with bacteremia. J Infect Chemother. 2011;17:52–7.CrossRefPubMed
40.
Zurück zum Zitat Feld R. Vancomycin as part of initial empirical antibiotic therapy for febrile neutropenia in patients with cancer: pros and cons. Clin Infect Dis. 1999;29:503–7.CrossRefPubMed Feld R. Vancomycin as part of initial empirical antibiotic therapy for febrile neutropenia in patients with cancer: pros and cons. Clin Infect Dis. 1999;29:503–7.CrossRefPubMed
41.
Zurück zum Zitat Yu VL, Chiou CC, Feldman C, Ortqvist A, Rello J, Morris AJ, et al. An international prospective study of pneumococcal bacteremia: correlation with in vitro resistance, antibiotics administered, and clinical outcome. Clin Infect Dis. 2003;37:230–7.CrossRefPubMed Yu VL, Chiou CC, Feldman C, Ortqvist A, Rello J, Morris AJ, et al. An international prospective study of pneumococcal bacteremia: correlation with in vitro resistance, antibiotics administered, and clinical outcome. Clin Infect Dis. 2003;37:230–7.CrossRefPubMed
42.
Zurück zum Zitat Vardakas KZ, Samonis G, Chrysanthopoulou SA, Bliziotis IA, Falagas ME. Role of glycopeptides as part of initial empirical treatment of febrile neutropenic patients: a meta-analysis of randomised controlled trials. Lancet Infect Dis. 2005;5:431–9.CrossRefPubMed Vardakas KZ, Samonis G, Chrysanthopoulou SA, Bliziotis IA, Falagas ME. Role of glycopeptides as part of initial empirical treatment of febrile neutropenic patients: a meta-analysis of randomised controlled trials. Lancet Infect Dis. 2005;5:431–9.CrossRefPubMed
43.
Zurück zum Zitat Paul M, Borok S, Fraser A, Vidal L, Leibovici L. Empirical antibiotics against Gram-positive infections for febrile neutropenia: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2005;55:436–44.CrossRefPubMed Paul M, Borok S, Fraser A, Vidal L, Leibovici L. Empirical antibiotics against Gram-positive infections for febrile neutropenia: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother. 2005;55:436–44.CrossRefPubMed
44.
Zurück zum Zitat Pizzo PA, Hathorn JW, Hiemenz J, Browne M, Commers J, Cotton D, et al. A randomized trial comparing ceftazidime alone with combination antibiotic therapy in cancer patients with fever and neutropenia. N Engl J Med. 1986;315:552–8.CrossRefPubMed Pizzo PA, Hathorn JW, Hiemenz J, Browne M, Commers J, Cotton D, et al. A randomized trial comparing ceftazidime alone with combination antibiotic therapy in cancer patients with fever and neutropenia. N Engl J Med. 1986;315:552–8.CrossRefPubMed
45.
Zurück zum Zitat Rubin M, Hathorn JW, Marshall D, Gress J, Steinberg SM, Pizzo PA. Gram-positive infections and the use of vancomycin in 550 episodes of fever and neutropenia. Ann Intern Med. 1988;108:30–5.CrossRefPubMed Rubin M, Hathorn JW, Marshall D, Gress J, Steinberg SM, Pizzo PA. Gram-positive infections and the use of vancomycin in 550 episodes of fever and neutropenia. Ann Intern Med. 1988;108:30–5.CrossRefPubMed
46.
Zurück zum Zitat Jacob JT, DiazGranados CA. High vancomycin minimum inhibitory concentration and clinical outcomes in adults with methicillin-resistant Staphylococcus aureus infections: a meta-analysis. Int J Infect Dis. 2013;17:e93–e100.CrossRefPubMed Jacob JT, DiazGranados CA. High vancomycin minimum inhibitory concentration and clinical outcomes in adults with methicillin-resistant Staphylococcus aureus infections: a meta-analysis. Int J Infect Dis. 2013;17:e93–e100.CrossRefPubMed
47.
Zurück zum Zitat Mavros MN, Tansarli GS, Vardakas KZ, Rafailidis PI, Karageorgopoulos DE, Falagas ME. Impact of vancomycin minimum inhibitory concentration on clinical outcomes of patients with vancomycin-susceptible Staphylococcus aureus infections: a meta-analysis and meta-regression. Int J Antimicrob Agents. 2012;40:496–509.CrossRefPubMed Mavros MN, Tansarli GS, Vardakas KZ, Rafailidis PI, Karageorgopoulos DE, Falagas ME. Impact of vancomycin minimum inhibitory concentration on clinical outcomes of patients with vancomycin-susceptible Staphylococcus aureus infections: a meta-analysis and meta-regression. Int J Antimicrob Agents. 2012;40:496–509.CrossRefPubMed
48.
Zurück zum Zitat Lubin AS, Snydman DR, Ruthazer R, Bide P, Golan Y. Predicting high vancomycin minimum inhibitory concentration in methicillin-resistant Staphylococcus aureus bloodstream infections. Clin Infect Dis. 2011;52:997–1002.CrossRefPubMedPubMedCentral Lubin AS, Snydman DR, Ruthazer R, Bide P, Golan Y. Predicting high vancomycin minimum inhibitory concentration in methicillin-resistant Staphylococcus aureus bloodstream infections. Clin Infect Dis. 2011;52:997–1002.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Ludwig F, Edwards B, Lawes T, Gould IM. Effects of storage on vancomycin and daptomycin MIC in susceptible blood isolates of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2012;50:3383–7.CrossRefPubMedPubMedCentral Ludwig F, Edwards B, Lawes T, Gould IM. Effects of storage on vancomycin and daptomycin MIC in susceptible blood isolates of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2012;50:3383–7.CrossRefPubMedPubMedCentral
Metadaten
Titel
Effects of inappropriate empirical antibiotic therapy on mortality in patients with healthcare-associated methicillin-resistant Staphylococcus aureus bacteremia: a propensity-matched analysis
verfasst von
Young Kyung Yoon
Dae Won Park
Jang Wook Sohn
Hyo Youl Kim
Yeon-Sook Kim
Chang-Seop Lee
Mi Suk Lee
Seong-Yeol Ryu
Hee-Chang Jang
Young Ju Choi
Cheol-In Kang
Hee Jung Choi
Seung Soon Lee
Shin Woo Kim
Sang Il Kim
Eu Suk Kim
Jeong Yeon Kim
Kyung Sook Yang
Kyong Ran Peck
Min Ja Kim
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2016
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-016-1650-8

Weitere Artikel der Ausgabe 1/2016

BMC Infectious Diseases 1/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.