Skip to main content
Erschienen in: BMC Infectious Diseases 1/2017

Open Access 01.12.2017 | Research article

Identification of pathogens for differential diagnosis of fever with jaundice in the Central African Republic: a retrospective assessment, 2008–2010

verfasst von: Christelle Luce Bobossi Gadia, Alexandre Manirakiza, Gaspard Tekpa, Xavier Konamna, Ulrich Vickos, Emmanuel Nakoune

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2017

Abstract

Background

Febrile jaundice results clinically in generalized yellow coloration of the teguments and mucous membranes due to excess plasma bilirubin, accompanied by fever. Two types are found: conjugated and unconjugated bilirubin jaundice. Jaundice is a sign in several diseases due to viruses (viral hepatitis and arbovirus), parasites (malaria) and bacteria (leptospirosis). In the Central African Republic (CAR), only yellow fever is included on the list of diseases for surveillance. The aim of this study was to identify the other pathogens that can cause febrile jaundice, for better management of patients.

Methods

Between 2008 and 2010, 198 sera negative for yellow fever IgM were randomly selected from 2177 samples collected during yellow fever surveillance. Laboratory analyses targeted four groups of pathogens: hepatitis B, C, delta and E viruses; dengue, chikungunya, Zika, Crimean–Congo haemorrhagic fever, West Nile and Rift Valley arboviruses; malaria parasites; and bacteria (leptospirosis).

Results

Overall, 30.9% sera were positive for hepatitis B, 20.2% for hepatitis E, 12.3% for hepatitis C and 8.2% for malaria. The majority of positive sera (40.4%) were from people aged 16–30 years. Co-infection with at least two of these pathogens was also found.

Conclusion

These findings suggest that a systematic investigation should be undertaken of infectious agents that cause febrile jaundice in the CAR.
Abkürzungen
CAR
Central African Republic
CCHFV
Crimean-Congo haemorrhagic fever virus
CHIK
Chikungunya
DEN
Dengue
DENT
Dengue total
DENV
Dengue virus
ELISA
Enzyme-linked immunosorbent assay
HBsAg
Hepatitis B surface antigen
HCV
Hepatitis C virus
HDV
Hepatitis delta virus
HEV
Hepatitis E virus
IgM
Immunoglobulin M
qPCR
Quantitative polymerase chain reaction
RVFV
Rift Valley fever virus
WHO
World Health Organization
WNV
West Nile virus
ZIKV
Zika virus

Background

Febrile jaundice, a frequent symptom of certain infectious diseases, appears clinically as a generalized yellow coloration of the integuments and mucous membranes, due to excess plasma bilirubin, and is accompanied by fever >37.5 °C in the morning and 38 °C in the evening. It may be due secondarily to the release of a pyrogenic substance or of haemoglobin into the blood due to haemolysis or to cholestasis, with a decrease or halt in biliary secretion of intra- or extra-hepatic origin [14]. In low- and middle-income countries, predominantly in sub-Saharan Africa, febrile jaundice usually occurs in the presence of parasitic infections (malaria, toxoplasmosis, schistosomiasis), bacterial infections (typhoid, typhus, borreliosis, leptospirosis) or viral infections (hepatitis and Lassa, Marburg, Ebola, Crimean–Congo and Hantaan viral haemorrhagic fevers, cytomegalovirus, mumps, measles, rubella and Coxackievirus) and is sometimes present in sickle-cell disease [311]. These infections are major public health problems in the region, and understanding of their local epidemiology could indicate differential diagnoses [12].
For over a decade, the World Health Organization (WHO) has conducted epidemiological surveillance for yellow fever in countries such as the Central African Republic (CAR). Operationally, any case of febrile jaundice is considered a suspected case of yellow fever and must be tested for yellow fever antigen (immunoglobulin M, IgM) in a qualified national laboratory. Samples that are negative for IgM suggest the involvement of other pathogens. In the CAR, 3220 suspected cases of yellow fever were reported to the reference laboratory for haemorrhagic fever at the Institut Pasteur of Bangui between 2007 and 2012; of these, 55 were positive [13]. We designed an exploratory study to identify the pathogens in the samples that were negative for yellow fever.

Methods

Database and target population

Data from nationwide serosurveillance for yellow fever between 1 January 2008 and 31 December 2010 were analysed retrospectively. The data are in the Epi Info database (Centers for Diseases Control and Prevention, Atlanta (GA), United States of America), which also contains information on the samples and sociodemographic data on the donors. The patients who gave samples met the WHO standard definition of suspected cases of yellow fever, i.e. any person with acute onset of fever and jaundice appearing within 14 days of onset of the first symptoms [14]. The samples consisted of 1–5 mL of venous blood drawn into dry tubes and transported in refrigerated sample carriers at 4–8 °C to the national reference laboratory at the Institut Pasteur of Bangui. The transport was ensured by trained focal points at CAR regional health facilities. The data obtained for each patient were: age, sex, location, symptoms (fever and jaundice or any sign of bleeding), history of vaccination against yellow fever, date of onset of symptoms and dates of blood sampling and transport to the laboratory. Serum was separated from each patient’s blood sample within 24 h and tested for yellow fever virus-specific fever IgM by enzyme-linked immunosorbent assay (ELISA). Positive results with ELISA were confirmed by quantitative polymerase chain reaction (qPCR). The remaining serum samples were stored at −20 °C at the Institut Pasteur of Bangui.

Selection of samples and identification of pathogens

As the purpose of this study was to differentiate yellow fever from other infections that present with similar features (acute fever and jaundice), only samples that were negative for yellow fever were selected. The codes of 2177 samples negative for yellow fever IgM were entered on an Excel spreadsheet from laboratory registers, and 198 samples were randomly selected for this study on the basis of the availability of testing reagents. The corresponding serum samples were identified in the storage freezer. Four groups of pathogens were targeted: hepatitis B, C, delta and E viruses; dengue, chikungunya, Zika, Crimean–Congo haemorrhagic fever, West Nile and Rift Valley arboviruses; malaria parasites; and bacteria (leptospirosis). The appropriate laboratory technique was used to identify each pathogen.
ELISA was used to screen for hepatitis, with a Murex™ Diasorin kit for hepatitis B virus (to detect hepatitis B surface antigen), antigen detection of hepatitis delta (HD) virus and a Monolisa™ HCV Ag-Ab ULTRA kit (Bio-Rad) for hepatitis C virus (HCV). Leptospira infection was diagnosed with the Panbio Leptospira IgM ELISA (Standard Diagnostics, Republic of Korea). The results were interpreted according to the manufacturers’ recommendations. Hepatitis E (HEV), dengue (DENV), chikungunya (CHIKV), Zika virus (ZIKV), Crimean–Congo haemorrhagic fever (CCHFV), West Nile virus (WNV) and Rift Valley (RVFV) infections were detected by qPCR [1522]. The sequences of primers and probes used to identify these viruses are presented in Table 1.
Table 1
Primers and probes used to detect arbovirus and hepatitis E virus
Primers and probes
Nucleic acid sequences of primers and probes
qPCR Zika virus (ZIKV)
 ZIKV forward
5-nt9271AARTACACATACCARAACAAAgTggT9297–3’
 ZIKV reverse
5′ nt9352-TCCRCTCCCYCTYTggTCTTg-9373 -3’
 ZIKV probe
nt 9304-FAM-CTYAgACCAgCTgAAR-BBQ-9320
qPCR Dengue total (DENV 1–4 system)
 DENT forward
5′- AGGACYAGAGGTTAGAGGAGA - 3’
 DENT reverse
5′- CGYTCTGTGCCTGGAWTGAT −3’
 DENT probe
FAM-ACAGCATATTGACGCTGGGARAGACC-TAMRA
qPCR Dengue subtypes (DENV1, DENV2, DENV3)
 DEN1 forward
5′ ATACCYCCAACAGCAGGAATT - 3’
 DEN1 reverse
5′ AGCATRAGGAGCATGGTCAC −3’
 DEN1 probe
FAM-TTGGCTAGATGGRGCTCATTCAAGAAGAAT-TAMRA
 DEN2 forward
5′ TGGACCGACAAAGACAGATTCTT 3’
 DEN2 reverse
5′ CGYCCYTGCAGCATTCCAA 3’
 DEN2 probe
FAM-CGCGAGAGAAACCGCGTGTCRACTGT-TAMRA
 DEN3 forward
5′ AAGACGGGAAAACCGTCTATCAA 3’
 DEN3 reverse
5′ TTGAGAATCTCTTCGCCAACTG 3’
 DEN3 probe
FAM-ATGCTGAAACGCGTGAGAAACCGTGT-TAMRA
qPCR Chikungunya (CHIK)
 CHIK forward
5′- AAGCTYCGCGTCCTTTACCAAG - 3’
 CHIK reverse
5′- CCAAATTGTCCYGGTCTTCCT −3’
 CHIK probe
FAM-CCAATGTCYTCMGCCTGGACACCTTT-TAMRA
qPCR Rift Valley fever virus (RVFV)
 RVFV forward
5′- AAA ggA ACA ATg gAC TCT ggT CA - 3’
 RVFV reverse
5′- CAC TTC TTA CTA CCA TTC CTC CAA T − 3’
 RVFV probe
FAM-AAA gCT TTg ATA TCT CTC AgT gCC CCA A -TAMRA
qPCR West Nile virus (WNV)
 WNV3p forward
5′ Agg TTA gWg gAg ACC CCg T - 3’
 WNV3p reverse
5′ ggT TgT gCA gAg CAg AAg ATC −3’
 WNV3p probe
FAM-CGGTTCCGGCGGTGGTTTCT-TAMRA
Conventional PCR Crimean-Congo haemorrhagic fever virus (CCHFV)
 CCHFV forward
5′ – TGGACACCTTCACAAACTC - 3’
 CCHFV reverse
5′ – GACAAATTCCCTGCACCA - 3’
qPCR Hepatitis E virus (HEV)
 HEV forward
5′ GCCCGGTCAGCCGTCTGG −3’
 HEV reverse
5′-CTGAGAATCAACCCGGTCAC −3’
 HEV probe
FAM-CGGTTCCGGCGGTGGTTTCT-TAMRA
Malaria was diagnosed with Standard Diagnostics Bioline Ag-Pf and Ag-pan (Standard Diagnostics, Ref 05FK60, Republic of Korea), which contains antibodies targeting both PfHRP2 and lactate dehydrogenase specific to P. falciparum and other Plasmodium species (P. vivax, P. ovale and P. malariae).

Data analysis

Stata 11.0 software was used to calculate proportions of test results. The results were compared according to sociodemographic characteristics with the chi-2 test. Statistical significance was assessed at P < 0.05.

Results

Evidence of infection with at least one pathogen was found in 49.0% of samples (n = 97). Males under 35 years of age were the most commonly infected, but the difference was not statistically significant (P = 0.567 and 0.118, respectively). Of the 131 samples, 66.2% were from Bangui, the capital of the CAR, and its surrounding area, Ombella M’Poko (Table 2).
Table 2
Distribution of positive results for pathogens in differential diagnosis of yellow fever according to sociodemographic characteristics in the CAR (2008–2010)
Characteristic
Any positive result
Negative result
P
No.
%
No.
%
Age (years)
< 15
35
52.2
32
47.8
0.567
 
16–24
24
52.2
22
47.8
 
 
25–34
21
50.0
21
50.0
 
 
≥ 35
17
39.5
26
60.5
 
Sex
Male
43
43.4
56
56.6
0.118
 
Female
54
54.5
45
45.5
 
Province of residence
Bangui
41
51.9
38
48.1
0.446
 
Bambari
1
50.0
1
50.0
 
 
Basse Kotto
6
40.0
9
60.0
 
 
Haute Kotto
3
60.0
2
40.0
 
 
Kembe
2
33.3
4
66.7
 
 
Lobaye
0
0.0
7
100.0
 
 
Mbomou
3
75.0
1
25.0
 
 
Nana Mambere
1
25.0
3
75.0
 
 
Ombela-M’poko
27
51.9
25
48.1
 
 
Ouaka
1
100.0
0
0.0
 
 
Ouham
5
55.7
4
44.3
 
 
Ouham Pende
5
50.0
5
50.0
 
 
Sangha Mbaere
0
0.0
1
100.0
 
 
Vakaga
2
66.7
1
33.3
 
The predominant pathogens were hepatitis B (51.5%; 50/97), E (33.0%; 32/97) and C viruses (20.6%; 20/97). Co-infections were frequent, at a rate of 25.8% (25/97). Analyses for other pathogens (leptospira, DENV, CHIK and Zika, CCHV, WNV and RVFV) yielded negative results. The results for 16 patients showed co-infection with hepatitis B, E and C viruses (Table 3).
Table 3
Pathogens identified in samples negative for yellow fever IgM, CAR, 2008–2010
Infectious agent
No. of samples testeda
No. positive (%)
HBsAg
162
32 (19.8)
HEVb
198
27 (13.6)
HCVAg
162
9 (5.6)
P. falciparum
198
4 (2.0)
Anti-HDc
50
17 (34.0)
HEV + HBsAg
162
6 (3.7)
HBsAg + HCVAg
162
4 (2.5)
HBsAg + P. falciparum
162
4 (2.5)
P. falciparum + HCVAg
162
3 (1.9)
HCVAg + HEV
162
2 (1.2)
HEV + P. falciparum
198
2 (1.0)
HBsAg + HEV + P. falciparum
162
2 (1.2)
HBsAg + HEV + HCVAg
162
1 (0.6)
HBSAg + P. falciparum + HCVAg
162
1 (0.6)
Other pathogensd
198
0 (0,0)
aAfter testing sera for leptospirosis; dengue arbovirus; chikungunya, Zika, Crimean–Congo haemorrhagic fever, West Nile and Rift Valley viruses; and P. falciparum, sufficient quantities of serum remained for testing only a further 162 samples
bHepatitis E virus, tested with qPCR
cHepatitis delta virus
dLeptospirosis; DENV; CHIK, ZIKV, CCHFV, WNV and RVFV

Discussion

Almost half the samples from patients presenting with fever and jaundice contained at least one infectious agent. Hepatitis B, C and E viruses were the most common pathogens identified in our samples; these infections are endemic in the CAR [23, 24]. The prevalence of hepatitis B virus infection was higher than that found previously in the CAR by Komas et al., at 10.6% [25]; however, those authors collected samples from apparently healthy individuals, while we studied patients presenting with clinical symptoms.
HDV is a satellite of hepatitis B virus, and infection with this virus aggravates acute and chronic liver disease. A review of the literature shows strong variations in the prevalence of this virus among Africans seropositive for HbsAg, and the presence of this marker may constitute support for the argument that it plays a role in the development of HBsAg-associated liver diseases [26]. A study conducted in the CAR in 1989 showed that delta virus was the cause of fulminating hepatitis with severe jaundice in 124 cases [27]. In another study, however, it was much more common in patients with chronic liver disease [28].
Hepatitis E virus is endemic in central Africa, due mainly to poor environmental hygiene, a deteriorating health network and very poor epidemiological surveillance. Hepatitis E virus outbreaks were reported, for example, in 2002, 2004 and 2005 in Bangui [29, 30], and imported hepatitis E virus was documented in 2011, prompting implementation of the International Health Regulations (2005) in the CAR [31].
Severe malaria caused exclusively by P. falciparum in the CAR is also considered in people presenting with febrile jaundice, as this disease is endemic in the area. In severe malaria, jaundice is related to severe haemolysis, hepatocellular damage, drug toxicity or a combination [3234]. Co-infections with these pathogens are alarming because of their potential synergy in hepatitis dysfunction. The co-existence of malaria and viral hepatitis in developing countries like the CAR may thus present a diagnostic dilemma and severe complications and delay treatment [35].
We did not identify most of the less prevalent infections, such as leptospirosis, dengue, chikungunya, Zika, Crimean–Congo haemorrhagic fever, West Nile or Rift Valley fever, despite the fact that Africa has become a hotspot for leptospirosis research by microbiologists working to differentiate the causal agents of yellow fever [36].
More than half (51.0%) the cases of febrile jaundice had none of the studied pathogens. This was to be expected, as other differential diagnoses of fever with jaundice include community-acquired sepsis, amoebic fever, acute cholecystitis and choledocholithiasis [37].
The main limitation of this study is the relatively small number of samples selected for testing, which may therefore not adequately represent the target population. Specifically, the proportion of people with HCV infection in this sample would not be representative of the overall proportion in the CAR, as febrile jaundice is present in only a subset of people with newly acquired infection. Another limitation is that only samples that were negative for yellow fever were tested. Some of the samples positive for yellow fever virus might also yield positive results for other infectious pathogens [38] that have life-threatening synergistic effects.

Conclusions

This study shows that acute hepatitis virus infections are still an important problem in the CAR. It is therefore essential to scale up hepatitis B vaccination and improve sanitation and environmental hygiene. Moreover, clinicians should be sensitized to the diagnostic dilemma of patients presenting with febrile jaundice. This study provides data on the prevalence of these diseases and the possibility of epidemics. Nationwide surveillance for yellow fever should be complemented by a survey of hepatitis viruses and other emerging haemorrhagic infections.

Acknowledgements

We thank the Ministry of Health, health professionals in the various health facilities, the WHO Representative and nongovernmental organizations in the CAR for transporting samples to the laboratory and for diagnostic reagents. We also thank all the patients who participated in this study. We are also grateful to Professeur Elisabeth Heseltine for her support in editing this manuscript.

Funding

The Institut Pasteur de Bangui and the Ministry of Health in the CAR supported the study financially. National surveillance of yellow fever and the pathogens targeted in this analysis was funded by WHO.

Availability of data and materials

The datasets generated and analysed during the current study is not publicly available because it contains potentially identifiable information but is available from the corresponding author on reasonable request.
This surveillance programme was approved by the expert committee for the yellow fever control programme of the Ministry of Health in CAR. As national surveillance is performed for transmissible diseases subject to mandatory declaration in the country (yellow fever and other haemorrhagic fevers), patient consent was not necessary.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Chung JP, Kim KW, Chi HS, Lee SI, Shin ET, Cho JH, et al. Obstructive jaundice due to compression of the common hepatic duct by right hepatic artery--a case associated with the absence of the lateral segment of the left hepatic lobe. Yonsei Med J. 1994;35(2):231–8.CrossRefPubMed Chung JP, Kim KW, Chi HS, Lee SI, Shin ET, Cho JH, et al. Obstructive jaundice due to compression of the common hepatic duct by right hepatic artery--a case associated with the absence of the lateral segment of the left hepatic lobe. Yonsei Med J. 1994;35(2):231–8.CrossRefPubMed
2.
Zurück zum Zitat Chang K, Yan JJ, Lee HC, Liu KH, Lee NY, Ko WC, Acute h. With or without jaundice: a predominant presentation of acute Q fever in southern Taiwan. J Microbiol Immunol Infect. 2004;37(2):103–8.PubMed Chang K, Yan JJ, Lee HC, Liu KH, Lee NY, Ko WC, Acute h. With or without jaundice: a predominant presentation of acute Q fever in southern Taiwan. J Microbiol Immunol Infect. 2004;37(2):103–8.PubMed
3.
Zurück zum Zitat Shah S, Ali L, Sattar RA, Aziz T, Ansari T, Ara J. Malarial hepatopathy in falciparum malaria. J Coll Physicians Surg Pak. 2009;19(6):367–70.PubMed Shah S, Ali L, Sattar RA, Aziz T, Ansari T, Ara J. Malarial hepatopathy in falciparum malaria. J Coll Physicians Surg Pak. 2009;19(6):367–70.PubMed
4.
Zurück zum Zitat L'Azou M, Succo T, Kamagate M, Ouattara A, Gilbernair E, Adjogoua E, et al. Dengue: etiology of acute febrile illness in Abidjan, cote d'Ivoire, in 2011–2012. Trans R Soc Trop Med Hyg. 2015;109(11):717–22.CrossRefPubMedPubMedCentral L'Azou M, Succo T, Kamagate M, Ouattara A, Gilbernair E, Adjogoua E, et al. Dengue: etiology of acute febrile illness in Abidjan, cote d'Ivoire, in 2011–2012. Trans R Soc Trop Med Hyg. 2015;109(11):717–22.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Schindler M, Kreplak N, Acevedo L, Damis H, Marquez G, Ardaiz MC. Febrile cholestatic jaundice as an initial manifestation of Hodgkin's disease. Medicina (Buenos Aires). 2014;74(1):60–1. Schindler M, Kreplak N, Acevedo L, Damis H, Marquez G, Ardaiz MC. Febrile cholestatic jaundice as an initial manifestation of Hodgkin's disease. Medicina (Buenos Aires). 2014;74(1):60–1.
6.
Zurück zum Zitat Yesilyurt M, Kilic S, Gursoy B, Celebi B, Yerer M. Two cases of acute hepatitis associated with Q fever. Mikrobiyol Bul. 2012;46(3):480–7.PubMed Yesilyurt M, Kilic S, Gursoy B, Celebi B, Yerer M. Two cases of acute hepatitis associated with Q fever. Mikrobiyol Bul. 2012;46(3):480–7.PubMed
7.
Zurück zum Zitat Taddio A, Pellegrin MC, Centenari C, Filippeschi IP, Ventura A, Maggiore G. Acute febrile cholestatic jaundice in children: keep in mind Kawasaki disease. J Pediatr Gastroenterol Nutr. 2012;55(4):380–3.CrossRefPubMed Taddio A, Pellegrin MC, Centenari C, Filippeschi IP, Ventura A, Maggiore G. Acute febrile cholestatic jaundice in children: keep in mind Kawasaki disease. J Pediatr Gastroenterol Nutr. 2012;55(4):380–3.CrossRefPubMed
8.
Zurück zum Zitat Juwah AI, Nlemadim A, Kaine W. Clinical presentation of severe anemia in pediatric patients with sickle cell anemia seen in Enugu, Nigeria. Am J Hematol. 2003;72(3):185–91.CrossRefPubMed Juwah AI, Nlemadim A, Kaine W. Clinical presentation of severe anemia in pediatric patients with sickle cell anemia seen in Enugu, Nigeria. Am J Hematol. 2003;72(3):185–91.CrossRefPubMed
9.
Zurück zum Zitat Wolfsen HC, Bolen JW, Bowen JL, Fenster LF. Fulminant herpes hepatitis mimicking hepatic abscesses. J Clin Gastroenterol. 1993;16(1):61–4.CrossRefPubMed Wolfsen HC, Bolen JW, Bowen JL, Fenster LF. Fulminant herpes hepatitis mimicking hepatic abscesses. J Clin Gastroenterol. 1993;16(1):61–4.CrossRefPubMed
10.
Zurück zum Zitat Rose HD, Lentino JR, Mavrelis PG, Rytel MW. Jaundice associated with nonhepatic Staphylococcus aureus infection. Does teichoic acid have a role in pathogenesis? Dig Dis Sci. 1982;27(11):1046–50.CrossRefPubMed Rose HD, Lentino JR, Mavrelis PG, Rytel MW. Jaundice associated with nonhepatic Staphylococcus aureus infection. Does teichoic acid have a role in pathogenesis? Dig Dis Sci. 1982;27(11):1046–50.CrossRefPubMed
12.
Zurück zum Zitat Isa SE, Onyedibe KI, Okolo MO, Abiba AE, Mafuka JS, Simji GS, et al. A 21-year-old student with fever and profound jaundice. PLoS Negl Trop Dis. 2014;8(1):e2534.CrossRefPubMedPubMedCentral Isa SE, Onyedibe KI, Okolo MO, Abiba AE, Mafuka JS, Simji GS, et al. A 21-year-old student with fever and profound jaundice. PLoS Negl Trop Dis. 2014;8(1):e2534.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Rachas A, Nakoune E, Bouscaillou J, Paireau J, Selekon B, Senekian D, et al. Timeliness of yellow fever surveillance, Central African Republic. Emerg Infect Dis. 2014;20(6):1004–8.CrossRefPubMedPubMedCentral Rachas A, Nakoune E, Bouscaillou J, Paireau J, Selekon B, Senekian D, et al. Timeliness of yellow fever surveillance, Central African Republic. Emerg Infect Dis. 2014;20(6):1004–8.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat World Health Organization. Yellow fever surveillance and outbreak response: revision of case definitions, October 2010. Wkly Epidemiol Rec. 2010;85:461–72. World Health Organization. Yellow fever surveillance and outbreak response: revision of case definitions, October 2010. Wkly Epidemiol Rec. 2010;85:461–72.
15.
16.
Zurück zum Zitat Saluzzo JF, Anderson GW Jr, Hodgson LA, Digoutte JP, Smith JF. Antigenic and biological properties of Rift Valley fever virus isolated during the 1987 Mauritanian epidemic. Res Virol. 1989;140(2):155–64.CrossRefPubMed Saluzzo JF, Anderson GW Jr, Hodgson LA, Digoutte JP, Smith JF. Antigenic and biological properties of Rift Valley fever virus isolated during the 1987 Mauritanian epidemic. Res Virol. 1989;140(2):155–64.CrossRefPubMed
17.
Zurück zum Zitat SJ W, Pal S, Ekanayake S, Greenwald D, Lara S, Raviprakash K, et al. A dry-format field-deployable quantitative reverse transcriptase-polymerase chain reaction assay for diagnosis of dengue infections. Am J Trop Med Hyg. 2008;79(4):505–10. SJ W, Pal S, Ekanayake S, Greenwald D, Lara S, Raviprakash K, et al. A dry-format field-deployable quantitative reverse transcriptase-polymerase chain reaction assay for diagnosis of dengue infections. Am J Trop Med Hyg. 2008;79(4):505–10.
18.
Zurück zum Zitat Vasickova P, Kralik P, Slana I, Pavlik I. Optimisation of a triplex real time RT-PCR for detection of hepatitis E virus RNA and validation on biological samples. J Virol Meth. 2012;180(1–2):38–42.CrossRef Vasickova P, Kralik P, Slana I, Pavlik I. Optimisation of a triplex real time RT-PCR for detection of hepatitis E virus RNA and validation on biological samples. J Virol Meth. 2012;180(1–2):38–42.CrossRef
19.
Zurück zum Zitat Faye O, Diallo D, Diallo M, Weidmann M, Sall AA. Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes. Virol J. 2013;10:311.CrossRefPubMedPubMedCentral Faye O, Diallo D, Diallo M, Weidmann M, Sall AA. Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes. Virol J. 2013;10:311.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Yap G, Pok KY, Lai YL, Hapuarachchi HC, Chow A, Leo YS, et al. Evaluation of chikungunya diagnostic assays: differences in sensitivity of serology assays in two independent outbreaks. PLoS Negl Trop Dis. 2010;4(7):e753.CrossRefPubMedPubMedCentral Yap G, Pok KY, Lai YL, Hapuarachchi HC, Chow A, Leo YS, et al. Evaluation of chikungunya diagnostic assays: differences in sensitivity of serology assays in two independent outbreaks. PLoS Negl Trop Dis. 2010;4(7):e753.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, et al. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol. 2000;38(11):4066–71.PubMedPubMedCentral Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, et al. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol. 2000;38(11):4066–71.PubMedPubMedCentral
22.
Zurück zum Zitat Drosten C, Gottig S, Schilling S, Asper M, Panning M, Schmitz H, et al. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol. 2002;40(7):2323–30.CrossRefPubMedPubMedCentral Drosten C, Gottig S, Schilling S, Asper M, Panning M, Schmitz H, et al. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol. 2002;40(7):2323–30.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Pawlotsky JM, Belec L, Gresenguet G, Deforges L, Bouvier M, Duval J, et al. High prevalence of hepatitis B, C, and E markers in young sexually active adults from the Central African Republic. J Med Virol. 1995;46(3):269–72.CrossRefPubMed Pawlotsky JM, Belec L, Gresenguet G, Deforges L, Bouvier M, Duval J, et al. High prevalence of hepatitis B, C, and E markers in young sexually active adults from the Central African Republic. J Med Virol. 1995;46(3):269–72.CrossRefPubMed
24.
Zurück zum Zitat Bekondi C, Olinger CM, Boua N, Talarmin A, Venard V, Muller CP, et al. Characterization of hepatitis B virus strains from the Central African Republic: preliminary results. Pathol Biol (Paris). 2008;56(5):310–3.CrossRef Bekondi C, Olinger CM, Boua N, Talarmin A, Venard V, Muller CP, et al. Characterization of hepatitis B virus strains from the Central African Republic: preliminary results. Pathol Biol (Paris). 2008;56(5):310–3.CrossRef
25.
Zurück zum Zitat Komas NP, Vickos U, Hubschen JM, Bere A, Manirakiza A, Muller CP, et al. Cross-sectional study of hepatitis B virus infection in rural communities, Central African Republic. BMC Infect Dis. 2013;13:286.CrossRefPubMedPubMedCentral Komas NP, Vickos U, Hubschen JM, Bere A, Manirakiza A, Muller CP, et al. Cross-sectional study of hepatitis B virus infection in rural communities, Central African Republic. BMC Infect Dis. 2013;13:286.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Roingeard P, Sankale JL, Dubois F, Diouf A, Bacha A, Mboup S, et al. Infection due to hepatitis delta virus in Africa: report from Senegal and review. Clin Infect Dis. 1992;14(2):510–4.CrossRefPubMed Roingeard P, Sankale JL, Dubois F, Diouf A, Bacha A, Mboup S, et al. Infection due to hepatitis delta virus in Africa: report from Senegal and review. Clin Infect Dis. 1992;14(2):510–4.CrossRefPubMed
27.
Zurück zum Zitat Lesbordes JL, Ravisse P, Georges AJ, Beuzit Y, Ave P, Enamra D, et al. Role of delta viruses in fulminating hepatitis in Central Africa. Ann Med Interne (Paris). 1987;138(3):199–201. Lesbordes JL, Ravisse P, Georges AJ, Beuzit Y, Ave P, Enamra D, et al. Role of delta viruses in fulminating hepatitis in Central Africa. Ann Med Interne (Paris). 1987;138(3):199–201.
28.
Zurück zum Zitat Andernach IE, Leiss LV, Tarnagda ZS, Tahita MC, Otegbayo JA, Forbi JC, et al. Characterization of hepatitis delta virus in sub-Saharan Africa. J Clin Microbiol. 2014;52(5):1629–36.CrossRefPubMedPubMedCentral Andernach IE, Leiss LV, Tarnagda ZS, Tahita MC, Otegbayo JA, Forbi JC, et al. Characterization of hepatitis delta virus in sub-Saharan Africa. J Clin Microbiol. 2014;52(5):1629–36.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Goumba AI, Konamna X, Komas NP. Clinical and epidemiological aspects of a hepatitis E outbreak in Bangui, Central African Republic. BMC Infect Dis. 2011;11:93.CrossRefPubMedPubMedCentral Goumba AI, Konamna X, Komas NP. Clinical and epidemiological aspects of a hepatitis E outbreak in Bangui, Central African Republic. BMC Infect Dis. 2011;11:93.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Escriba JM, Nakoune E, Recio C, Massamba PM, Matsika-Claquin MD, Goumba C, et al. Hepatitis E, Central African Republic. Emerg Infect Dis. 2008;14(4):681–3.CrossRefPubMedPubMedCentral Escriba JM, Nakoune E, Recio C, Massamba PM, Matsika-Claquin MD, Goumba C, et al. Hepatitis E, Central African Republic. Emerg Infect Dis. 2008;14(4):681–3.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat World Health Organization: International Health Regulations (2005). Geneva; 2005. World Health Organization: International Health Regulations (2005). Geneva; 2005.
32.
Zurück zum Zitat Abro AH, Ustadi AM, Abro HA, Abdou AS, Younis NJ, Akaila SI. Jaundice with hepatic dysfunction in P. falciparum malaria. J Coll Physicians Surg Pak. 2009;19(6):363–6.PubMed Abro AH, Ustadi AM, Abro HA, Abdou AS, Younis NJ, Akaila SI. Jaundice with hepatic dysfunction in P. falciparum malaria. J Coll Physicians Surg Pak. 2009;19(6):363–6.PubMed
33.
Zurück zum Zitat Mazumder R, Mishra RK, Mazumder H, Mukherjee P. Jaundice in falciparum malaria--some prospective observations. J Indian Med Assoc. 2002;100(5):312–4.PubMed Mazumder R, Mishra RK, Mazumder H, Mukherjee P. Jaundice in falciparum malaria--some prospective observations. J Indian Med Assoc. 2002;100(5):312–4.PubMed
34.
Zurück zum Zitat Mishra D, Chaturvedi D, Mantan M. Typhoid fever and viral hepatitis. Indian J Pediatr. 2008;75:509–10.CrossRefPubMed Mishra D, Chaturvedi D, Mantan M. Typhoid fever and viral hepatitis. Indian J Pediatr. 2008;75:509–10.CrossRefPubMed
35.
Zurück zum Zitat Zaki S, Asif S, Dadge D, Shanbag P. Co-existence of viral hepatitis with malaria. J Postgrad Med. 2009;55(3):233.CrossRefPubMed Zaki S, Asif S, Dadge D, Shanbag P. Co-existence of viral hepatitis with malaria. J Postgrad Med. 2009;55(3):233.CrossRefPubMed
37.
Zurück zum Zitat Gordon MA, Walsh AL, Chaponda M, Soko D, Mbvwinji M, Molyneux ME, et al. Bacteraemia and mortality among adult medical admissions in Malawi – predominance of non-typhi salmonellae and Streptococcus pneumoniae. J Inf Secur. 2001;42(1):44–9. Gordon MA, Walsh AL, Chaponda M, Soko D, Mbvwinji M, Molyneux ME, et al. Bacteraemia and mortality among adult medical admissions in Malawi – predominance of non-typhi salmonellae and Streptococcus pneumoniae. J Inf Secur. 2001;42(1):44–9.
38.
Zurück zum Zitat Baba M, Logue CH, Oderinde B, Abdulmaleek H, Williams J, Lewis J, et al. Evidence of arbovirus co-infection in suspected febrile malaria and typhoid patients in Nigeria. J Infect Dev Countries. 2013;7(1):51–9. Baba M, Logue CH, Oderinde B, Abdulmaleek H, Williams J, Lewis J, et al. Evidence of arbovirus co-infection in suspected febrile malaria and typhoid patients in Nigeria. J Infect Dev Countries. 2013;7(1):51–9.
Metadaten
Titel
Identification of pathogens for differential diagnosis of fever with jaundice in the Central African Republic: a retrospective assessment, 2008–2010
verfasst von
Christelle Luce Bobossi Gadia
Alexandre Manirakiza
Gaspard Tekpa
Xavier Konamna
Ulrich Vickos
Emmanuel Nakoune
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2017
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2840-8

Weitere Artikel der Ausgabe 1/2017

BMC Infectious Diseases 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.