Skip to main content
Erschienen in: BMC Cancer 1/2018

Open Access 01.12.2018 | Research article

The changing landscape of phase II/III metastatic sarcoma clinical trials—analysis of ClinicalTrials.gov

verfasst von: Y Que, W Xiao, BS Xu, XZ Wen, DS Weng, X Zhang

Erschienen in: BMC Cancer | Ausgabe 1/2018

Abstract

Background

Well-designed clinical trials are of great importance in validating novel treatments and ensuring an evidence-based approach for sarcoma. This study aimed to provide a comprehensive landscape of the characteristics of metastatic or advanced sarcoma clinical trials using the substantial resource of the ClincialTrials.gov database.

Methods

We identified 260,755 trials registered with ClinicalTrials.gov in the last 20 years, and 277 of them were eligible for inclusion. The baseline characteristics were ascertained for each trial. The trials were systematically reviewed to validate their classification into 96 trials registered before 2008 and 181 trials registered between 2008 and 2017.

Results

We found that in the last decade, metastatic and advanced sarcoma trials were predominantly phase II-III studies (p = 0.048), were more likely to be ≥2 arms (17.7% vs 35.3%, respectively; p = 0.007), and were more likely to use randomized (13.5% vs 30.4%; p = 0.002) and double-blinded (2.1% vs 9.4%; p = 0.024) assignment than trials registered before 2008. Furthermore, in the last 10-year period, metastatic sarcoma trials were more likely to be conducted in Asia. Treatment involving target therapy and immunotherapy were more common (71.8% vs 37.5%; p < 0.001) than in previous years.

Conclusions

Our data showed provocative changes in the sarcoma landscape and demonstrated that the incidence of clinical trials with target therapy and immunotherapy is increasing. These findings emphasize the desperate need for novel strategies, including target therapy and immunotherapy, to improve the outcomes for patients with advanced sarcoma.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12885-018-5163-2) contains supplementary material, which is available to authorized users.
Yi Que, Wei Xiao and Bushu Xu contributed equally to this work.
Abkürzungen
CDK
cyclin-dependent kinases
CTLA-4
cytotoxic T-lymphocyte-associated protein 4
EMA
European Medicines Agency
FDA
Food and Drug Administration
GIST
gastrointestinal stromal tumours
HDAC
histone deacetylase
IGF1R
insulin-like growth factor 1 receptor
LAG-3
Lymphocyte-activation protein 3
NIH
National Institutes of Health
PD1
programmed cell death protein1
PDGFR
platelet-derived growth factor receptor
PD-L1
programmed death-ligand 1
RTKs
receptor tyrosine kinase
STS
soft tissue sarcoma
Tim-3
T cell immunoglobulin mucin-3
VEGFR
vascular endothelial growth factor receptor
WHO
World Health Organization

Background

Bone and soft-tissue sarcoma is a heterogeneous group of many rare tumours that comprises more than 50 subtypes [1, 2]. The incidence of soft-tissue sarcomas in the US is approximately 11,280 cases every year, and in Europe, the estimated incidence rate of sarcomas taken as a whole is 5 cases per 100,000 people per year [3]. Doxorubicin and ifosfamide remain the most effective chemotherapy drugs available for the first-line treatment of advanced or metastatic sarcoma patients [4, 5]. However, the prognosis and the long-term outcome remain unsatisfactory. Therefore, improvements in patient outcome and the development of new therapies for bone and soft-tissue sarcomas through clinical trials are urgently needed. In the last decade, we have witnessed the rapid development and success of precision medicine based on individual characteristics in sarcoma. Efforts have been made to develop targeted therapeutic agents that reflect specific molecular biology, from pazopanib, which has significantly increased progression-free survival by a median of 3 months compared with placebo [6], to a great improvement in overall survival and acceptable toxicity in patients treated with olaratumab with doxorubicin. Additionally, immunotherapeutic approaches in sarcoma hold substantial potential, from Coley’s toxin to adoptive cell therapy [7, 8]. Thus, the advances of promising approaches have ushered in an era of innovative therapies. In the present study, we aimed to explore the landscape of clinical trials of sarcoma over time to better understand what changes in clinical trial design have been made and the trends of new therapies for sarcoma over the last 2 decades.
We reviewed all the metastatic phase II/III bone and soft-tissue sarcoma clinical trials present on ClinicalTrials.gov. The ClinicalTrials.gov website is the largest clinical trial registry, with over 200,000 trials, and is a publicly available database that was developed and is maintained by the National Library of Medicine [9]. In 2007, Congress expanded ClinicalTrials.gov by requiring additional trial information [10]. Because phase I trials have focused on the safety of systemic treatments and not as much on potential innovations in the medical treatment process, we restricted the present analysis to phase II and III clinical trials for sarcoma registered on ClinicalTrials.gov. We sought to describe the emerging landscape and characteristics of such metastatic or locally advanced sarcoma phase II and III trials conducted within the last 2 decades.

Methods

Creation of the ClinicalTrials.gov dataset

On December 7, 2017, a dataset of 260,755 studies registered on ClinicalTrials.gov was downloaded. We queried ClinicalTrials.gov for the term “sarcoma” in the short titles, scientific titles, conditions, short summaries and detailed descriptions. Using this search strategy, 1494 trials were identified. We restricted our search to interventional trials and trials in phases II and III with a “known” status. We excluded trials with multiple tumour entities or that were non-sarcoma specific as well as those in a terminated/suspended or withdrawn status. Kaposi’s sarcoma, paediatric sarcoma, gastrointestinal stromal tumor (GIST) and sarcomas that were not advanced or metastatic were also excluded. After examination for manual categorization, 277 trials were selected for analysis. The trial selection process is shown in Fig. 1.
The extracted data elements included the following: phase (II-III), sponsor, study site locations, conditions (disease type), interventions, enrolment, study design, trial start date, and number of participating centres. The sponsor type (NIH, industry or other) for each trial was determined using a previously published algorithm [11].
All the registered trials were classified according to their specific treatment and were divided into four groups: those using a targeted drug, those using immunotherapy, those using chemotherapy and others. The treatments were categorized based on the resources available in the following databases: www.​drugbank.​com [12], pubchem.ncbi.clm.nih.gov, the National Cancer Institute Dictionary of Cancer Terms (www.​cancer.​gov), the Scopus database, the PubMed Database, and Google Scholar. Because of data unavailability, we manually classified the drugs according to the WHO guidelines. In addition, the specific target receptors were also investigated and noted.

Statistical analysis

A descriptive analysis was performed to provide an overview of the emerging landscape of metastatic and advanced phase II and III sarcoma clinical trials registered on ClinicalTrials.Gov. The characteristics of the trials conducted between 2008 and 2017 were compared with those conducted before 2007 using Chi-squared or Fisher’s exact tests. All the data were analysed using SPSS 18.0. All p-values were 2-tailed with significance defined as p < 0.05.

Results

Clinical trial characteristics

Of the initial 260,755 trials identified, 277 were eligible for inclusion in the analysis. The reasons for exclusion are shown in Fig. 1. Trial names with ClinicalTrials.gov identification numbers are listed in the supplemental data for eligible trials in this study (Additional file 1). The trial design characteristics are presented in Table 1. Of the metastatic or advanced sarcoma trials with a sponsor, 11.9% were sponsored by NIH, 21.7% were sponsored by industry and 66.4% were sponsored by others, including academic groups. The most common study region explored in the eligible trials was the US (67.1%), followed by Europe (23.5%) and Asia (9.4%).
Table 1
Trials characteristics
 
Number
Percent
Trial phase
Phase I/II
48
17.3
Phase II
200
72.2
Phase II/III
4
1.4
Phase III
25
9.0
Sponsor
NIH
33
11.9
Industry
60
21.7
Other
184
66.4
Enrollment size
0–50
136
49.1
51–100
65
23.5
101–200
40
14.4
201–300
6
2.2
301-more
16
5.8
NR
14
5.1
Number of centers
1
97
35.0
2
6
2.2
multicenter
174
62.8
Number of arms
1
196
70.8
2
67
24.2
≥3
14
5.1
Treatment allocation
Non-randomized
209
75.5
Randomized
68
24.5
Masking
Open-label
257
6.9
Single-blind
1
0.4
Double-blind
19
92.8
Region
United states
186
67.1
Europe
65
23.5
Asia
26
9.4
Trial characteristics are based on the clinical trials which are advanced or metastatic sarcoma specific. Abbreviations: NIH National Institutes of Health, NR null value
The characteristics of the trials conducted in the last decade versus those conducted before 2008 are shown in Table 2. Compared with trials registered before 2008, those registered in the last 10 years were significantly more likely to be phase III (p = 0.048). In addition, in the last decade, sarcoma studies were more likely to contain more than 2 arms (17.7% vs 35.3%; p = 0.007) and to be randomized (13.5% vs 30.4%; p = 0.002) and double-blinded (2.1% vs 9.4%; p = 0.024). We also sought to identify trends in clinical trial treatments over this period. In the past 10 years, metastatic or advanced sarcoma clinical trials were more likely to involve target therapy and immunotherapy (71.8% vs 37.5%; p < 0.001) (Table 2). The percentage of trials involving immunotherapy increased from 12.5% in 2007 to 43.6% in 2017. The proportion of adult clinical sarcoma trials initiated in Asia increased from 0% in 2007 to 28.2% in 2017 (Fig. 2).
Table 2
Baseline characteristics of clinical trials associated with the changing year (n = 277)
Characteristics
Number of trials (%)
P value
Before to 2007 year
2008–2017 year
Trial phase
0.048
Phase I/II
10 (10.4)
38 (21.0)
 
Phase II
78 (81.3)
122 (67.4)
 
Phase II/III
0 (0)
4 (2.2)
 
Phase III
8 (8.3)
17 (9.4)
 
Sponsor
0.215
NIH
16 (16.7)
17 (9.4)
 
Industry
20 (20.8)
40 (22.1)
 
Other
60 (62.5)
124 (68.5)
 
Number of centers
0.560
1
32 (33.3)
65 (35.9)
 
2
1 (1.0)
5 (2.8)
 
multicenter
63 (65.6)
111 (61.3)
 
Number of arms
0.007
1
79 (82.3)
117 (64.6)
 
2
13 (13.5)
54 (29.8)
 
≥3
4 (4.2)
10 (5.5)
 
Treatment allocation
0.002
Non-randomized
83 (86.5)
126 (69.6)
 
Randomized
13 (13.5)
55 (30.4)
 
Masking
0.024
Open-label
94 (97.9)
164 (90.6)
 
Double-blind
2 (2.1)
17 (9.4)
 
Region
< 0.001
United states
77 (80.2)
109 (60.2)
 
Europe
18 (18.8)
47 (26.0)
 
Asia
1 (1.0)
25 (13.8)
 
Therapy
Chemotherapy
55 (57.3)
40 (22.1)
< 0.001
Target therapy /immunology therapy
36 (37.5)
130 (71.8)
 
other
5 (5.2)
11 (6.1)
 
Percentage of trial characteristics with each inclusion criteria group. Chi-squared test was used for class variables NIH, National Institutes of Health

Multi-RTK and VEGFR are prime targets in phase II/III clinical trials of advanced soft tissue sarcoma

Among the 277 eligible clinical trials, 128 trials were identified to involve target therapy among the metastatic or advanced sarcoma trials. An overview of all the targeted therapy receptors is presented in Table 3.
Table 3
Target therapy clinical trials related to phase II & III advanced or metastatic sarcoma
Targets
Trials (n)
%
Multi-RTK
40
31.3
VEGFR
17
13.3
mTOR
12
9.4
HDAC
9
7.0
Combination targets
8
6.3
CDK
6
4.7
IGF-1R
5
3.9
PDGFR
5
3.9
Hedgehog
3
2.3
AKT
2
1.6
CD105
2
1.6
EGFR
2
1.6
HER2
2
1.6
Hypoxic region
2
1.6
MET
2
1.6
26S proteasome
1
<1
Aurora A
1
<1
CRM1
1
<1
DR5
1
<1
Endoglin
1
<1
Endosialin/TEM1
1
<1
G6PD
1
<1
PPAR-γ
1
<1
SRC
1
<1
Tie2
1
<1
β-receptor
1
<1
The different targets of 128 registered clinical trials. RTK, receptor tyrosine kinase; VEGFR, vascular endothelial growth factor receptor; HDAC, histone deacetylase; CDK, cyclin-dependent kinase; IGF-1R, insulin-like growth factor 1 receptor; PDGFR, platelet-derived growth factor receptor; AKT, protein kinase B; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; MET, a receptor tyrosine kinase that is produced as a single-chain precursor; CRM1, chromosomal maintenance 1; DR5, death receptor-5; G6PD, glucose-6-phosphate dehydrogenase; PPAR-γ, peroxisome proliferator-activated receptors; SRC, proto-oncogene tyrosine-protein kinase; Tie2, tyrosine kinase with immunoglobulin-like and EGF-like domains 1
In the present study, we found that a growing number of multiple-RTK inhibitors are being tested for sarcoma treatment (40, 31.3%). This type of target agent included imatinib, sunitinib, sorafenib, pazopanib, regorafenib, anlotinib, etc. Particularly, pazopanib acts as a novel TKI and plays a key role in a broad spectrum of tumour types (13/40, 32.5%) during these trials. We also found that some clinical trials focused on the target VEGFR, which plays a central role in tumour angiogenesis and metastasis (17, 13.3%). The other studied targeted receptors or pathways were mTOR (12, 9.4%), HDAC (9, 7.0%), CDK (4, 7%) IGF-1R (5, 3.9%) and PDGFR (5, 3.9%).
Furthermore, the proportion of clinical trials focused on target therapy that were initiated in Asia increased in the past 10 years compared with clinical trials initiated before 2008 (0 vs 12). In particular, anlotinib (NCT02449343, NCT01878448) and apatinib (NCT0312846, NC03064243, NCT03104335, NCT02711007, NCT03163381) are two typical representatives of multi-RTK inhibitors and VEGFR inhibitors that were developed in China.
The trials involving two target drugs are presented in Table 4. These trials were all conducted in the past 10 years, with seven conducted in the US and one conducted in Europe.
Table 4
Combination of two targeted drug Trials
NCT No.
Drug1
Drug2
Targets
Year
Phase
Region
Results
NCT03114527
Ribociclib
Everolimus
CDK, mTOR
2017
Phase II
US
No
NCT02343172
HDM201
LEE011
MDM2, CDK
2015
Phase I| Phase II
US
No
NCT02008877
ganetespib
Sirolimus
HSP90, CD105
2013
Phase I|Phase II
US
No
NCT01804374
Sorafenib
Everolimus
Multi-RTK, mTOR
2011
Phase II
Europe
No
NCT01281865
everolimus
imatinib
Multi-RTK, mTOR
2011
Phase I|Phase II
US
Yes
NCT01206140
Selumetinib
Temsirolimus
MEK, mTOR
2010
Phase II
US
Yes
NCT01016015
Cixutumumab
Temsirolimus
mTOR, IGF-1R
2009
Phase II
US
Yes
NCT00937495
vorinostat
bortezomib
HDAC,26S proteasome
2009
Phase II
US
Yes
Abbreviations: CDK cyclin-dependent kinase, mTOR mammalian target of rapamycin, MDM2 Mouse double minute 2 homolog, HSP90 heat shock protein 90, RTK receptor tyrosine kinase, MEK Mitogen-activated protein kinase kinase, IGF-1R Insulin-like growth factor 1 receptor, HDAC Histone deacetylase

Immune checkpoint inhibition therapies contributed greatly in all clinical trials that evaluated immunotherapy

Thirty-three trials evaluated immunotherapy in metastatic or advanced sarcoma. Seventeen trials explored the role of immune checkpoint receptors (51.5%). Among them, 11 trials focused on the PD1 antibody (NCT0321745, NCT0312376, NCT3013127, NCT03056001, NCT3138061, NCT3069378, NCT02888665, NCT02691026, NCT02406781, NCT2301039, NCT03282344). Four trials evaluated anti-PD-L1 therapy (NCT03141684, NCT03074318, NCT03233698, NCT02609984), and two trials used the PD1 antibody combined with the CTLA-4 antibody as treatment (NCT02982486, NCT02428192). Seven (21.2%) trials evaluated vaccines as interventions in sarcoma. Five (15.2%) trials evaluated adoptive cell transfer as a treatment in advanced sarcoma patients. Only two (6.1%) of the eligible trials explored immunomodulators and oncolytic viruses (Table 5). The number of clinical trials focused on immunotherapy is not large compared with the number of clinical trials focused on target therapies, but the number of trials focusing on immunotherapy grew significantly since 2014 (Fig. 2). These results indicated that immunotherapy, especially the anti-PD1/PDL1 pathway, could be a trend in STS treatment. in STS.
Table 5
Immunotherapy Trials
Immunotherapy
Trials (n)
%
Immune checkpoint inhibitors
17
51.5
Vaccine
7
21.2
Adoptive cell transfer
5
15.2
Immunomodulatora
2
6.1
Oncolytic virus
2
6.1
aImmunomodulators are the active agents of immunotherapy. They are a diverse array of recombinant, synthetic, and natural preparations including interleukins, cytokines, chemokines

The combination of immunotherapy and target therapy has increased in recent years

Because target therapy and immunotherapy are trends in sarcoma research, we evaluated the treatment combining immunotherapy with target therapy in advanced sarcoma patients. All five trials evaluated the PD1 antibody combined with targeted drugs, and one trial evaluated nivolumab combined with pazopanib in soft-tissue sarcoma (NCT03149120); one trial evaluated nivolumab combined with the mTOR inhibitor rapamycin in undifferentiated pleomorphic sarcoma, liposarcoma, chondrosarcoma, osteosarcoma and Ewing’s sarcoma (NCT03190174); one trial explored the role of the combination of pembrolizumab with axitinib in mostly alveolar soft-tissue sarcoma (NCT02636725); one trial evaluated nivolumab combined with sunitinib in soft-tissue sarcoma (NCT03277924); and the last trial, which is an open-label, phase II trial located in China, studied anti-PD1 therapy (camrelizumab) plus apatinib mesylate in locally advanced, unresectable or metastatic osteosarcoma (Table 6).
Table 6
Combination of target therapy and immunotherapy
NCT No.
Drug 1
Drug2
Conditions
Phase
region
Start year
results
NCT03149120
Nivolumab
Pazopanib
Soft Tissue Sarcomas
Phase II
US
2017
No
NCT03190174
Nivolumab
Rapamycin
Undifferentiated Pleomorphic Sarcoma|Liposarcoma|Chondrosarcoma|Osteosarcoma|Ewing Sarcoma
Phase I| Phase II
US
2017
No
NCT02636725
Pembrolizumab
Axitinib
Alveolar Soft Part Sarcoma|Soft Tissue Sarcomas
Phase II
US
2016
No
NCT03359018
Camrelizumab
Apatinib
osteosarcoma
Phase II
Asia
2018
No
NCT03277924
Nivolumab
Sunitinib
Soft Tissue Sarcoma|Bone Sarcoma
Phase I| Phase II
Europe
2017
No
Note: Nivolumab and pembrolizumab are PD-1 antibodies while camrelizumab is PD-L1 antibody

Discussion

The development of new systemic treatments for soft-tissue sarcomas has progressed little in the past few decades, except for treatments for gastrointestinal stromal tumours. Patients with metastatic soft-tissue sarcomas have a median overall survival of approximately 12 months [6, 13]. Primarily, chemotherapy with doxorubicin and/or ifosfamide is a common approach, but some subtypes are resistant to chemotherapy [14]. The combination of gemcitabine and docetaxel is mainly used in leiomyosarcomas, and some retrospective analyses have confirmed the activity of this regimen in undifferentiated pleomorphic sarcomas of metastatic patients [15, 16]. In addition, trabectedin has been demonstrated to achieve a dimensional response or disease stability in more than 40% of patients, as evidenced by the longer OS in so-called L-sarcoma (liposarcoma and leiomyosarcoma) [17]. From these results, different cytotoxic drugs have shown specific activity in selective histotypes. However, many patients ultimately die because of limited alternate chemotherapeutic regimens for recurrent and metastatic diseases [18]. Thus, novel agents with new therapies and rigorous prospective clinical trials are desperately needed to validate the role of innovative strategies.
Our study demonstrated that sarcoma trials in the last 10 years were predominantly late-phase studies with a generally high proportion of multi-arm, randomized and double-blind studies. The most likely cause for this trend is the development of new monitoring processes to improve randomized trial performance, data collection and good clinical practice (GCP) compliance, such as PRIME—Peer Review Intervention for Monitoring and Evaluating sites [19]. Our analysis confirms the critical role for science in the establishment and performance of clinical trials. These findings likely reflect the trend and necessity for developing more randomized and double-blinded studies under GCP management.
We also found the growing role of target therapy and immunotherapy in bone and soft-tissue sarcoma trials by evaluating a comprehensive landscape. This may be the result of an increasing number of RTKs and other small molecular inhibitors that have been developed, and evidence is emerging that targeting RTKs and other small molecular inhibitors could be an effective approach. In the past few years, research on sarcoma has mostly focused on the molecular aspects of tumourigenesis [20, 21]. Imatinib was the first target TKI developed and approved by the Food and Drugs Administration (FDA) and European Medicines Agency (EMA). Adjuvant imatinib significantly improved recurrence-free survival compared with placebo (98% [95%CI 96–100] vs 83% [78–88] at 1 year after the resection of primary GIST [22]. After the production of imatinib, other promising TKIs have been utilized in clinical trials and released to the market, including sunitinib (NCT00400569, NCT00474994), sorafenib (NCT00238121, NCT00245102, NCT00217620) and pazopanib (NCT00753688). Pazopanib showed promising potential in the treatment of patients with STS. In the randomized, double-blind clinical trial (PALETTE-EORTC 62072), patients with metastatic STS of various histologies were randomly assigned to receive pazopanib or placebo. The results showed that the median progression-free survival was 4.6 months for the pazopanib group compared with 1.6 months for the placebo group, which indicated that pazopanib is a promising treatment option for patients with STS [6]. Thus, the US FDA and EMA approved pazopanib for use in the second or further line of treatment of patients with nonadipogenic STS [23]. Moreover, sarcoma trials are a new trend in Asia. Anlotinib is a novel multi-TKI that has been initiated in clinical trials in China and has shown some antitumour activity in several STS entities, including leiomyosarcoma (LMS), synovial sarcoma (SS) and alveolar soft tissue sarcoma (ASPS) [24]. Recently, a growing number of phase II/III clinical trials of apatinib, which is a new type of VEGFR inhibitor for sarcomas, have also been initiated in China (NCT0312846, NC03064243, NCT03104335, NCT02711007, NCT03163381). In addition, clinical trials focusing on other promising VEGFR inhibitors, such as cabozantinib (NCT01755195, NCT01979393), and tivozanib (NCT01782313), are ongoing and recruiting patients. It is notable that doxorubicin combined with olaratumab, the monoclonal antibody that specifically binds PDGFR, showed promising improvement in overall survival in patients with advanced STS compared with doxorubicin alone (NCT01185964). The rising trend of target therapy in sarcoma indicates a step forward in the concept of new developments in molecular targeted agents that significantly change the medical approach towards STS.
Additionally, a growing number of clinical trials investigating immunotherapy, particularly immune checkpoint inhibitors, are currently ongoing thanks to the success of anti-PD1 therapy in other tumours, including melanoma and NSCLC. Sarcomas are among the first tumours to be considered for immunotherapy [25]. From Coley’s toxin to adoptive cell therapy to immune checkpoint inhibitors, immunologic treatments hold substantial potential in sarcoma. In a randomized, double-blind phase study (SARC028), pembrolizumab suggested a potential benefit for undifferentiated pleomorphic sarcoma with a response rate of 40% while having little clinical effect in synovial sarcoma and myxoid/round cell liposarcoma due to many factors, including PD-L1 expression, tumour mutation burden, T-cell infiltration, etc. CTLA-4 is a key protein during the priming phase of the immune system, and its inhibition is thought to increase T cells in circulation and deplete Tregs. A blockade of the PD-1/PD-L1 axis results in a profound tumour response that could occur as early as 8–12 weeks. Thus, the combination of an anti-PD-1 and anti-CTLA-4 strategy indicates longer-lasting activity. Currently, the combination of two checkpoint inhibitors has already resulted in improved outcomes with melanoma [26]. Given its mechanism and clinical benefit in melanoma, trials involving dual blockade with PD-1/PD-L1 and cytotoxic T-lymphocyte-associated protein 4 inhibitors in sarcoma are ongoing (NCT02428192, NCT02982486). Talimogene laherparepvec (T-VEC) combined with pembrolizumab demonstrated acceptable safety and promising anti-tumor activity across a range of sarcoma histologies with 4 patients maintain PR (NCT03069378). In addition to immune checkpoint inhibitors, dendritic cell (DC)-based therapies have yet to show clinical efficacy in bony or soft-tissue sarcomas [27, 28]. An open label, phase I/II study evaluated the PFS of patients receiving autologous dendritic cell vaccine loaded with allogeneic tumor lysate expression of cancer-testis antigens in patients with STS (NCT01883518). Adoptive cellular therapy targeting NY-ESO-1-expressing synovial and myxoid/round cell liposarcoma has shown some efficacy [29, 30]. Thus, future clinical studies related to immunotherapy will hopefully further need to identify the appropriate population that will benefit from this therapy.
Importantly, novel combinations of immune-target therapies are emerging to explore whether the targeted drugs may assist in inducing consistent and durable immune responses. For example, blockade of mTOR combined with nivolumab is being tested for antitumour activity in sarcoma (NCT03190174). Axitinib, an RTK inhibitor reported to induce T-cell trafficking, is applied with pembrolizumab in sarcoma (NCT02636725). Sunitinib plus nivolumab induced objective responses in several sarcoma types with 10 patients achieved disease control (71.4%), including clear cell sarcoma (2 PR), angiosarcoma (1 PR), differentiated chondrosarcoma (1 PR), synovial sarcoma (1 PR), alveolar soft part sarcoma (1 PR) (NCT03277924).
Although our study is unique, there are some limitations in this analysis that are worth noting. First, phase I studies were excluded because of the heterogeneity of phase I trials and their typical focus on the use of safety end points. Second, ClinicalTrials.gov does not include all trials performed worldwide. Clinical trials not registered in clinical trial.gov could be found in Pubmed or through conference meetings. However, many of these trials are pilot studies and the impact is small. Additionally, trials may not have been included in our database if essential keywords were not included upon registration, and misclassification may lead to an inappropriate conclusion. However, our screening process attempted to minimize the potential biases. All the studies were reviewed by 2 physicians independently.

Conclusions

To our knowledge, this is the first analysis to comprehensively define the landscape of metastatic sarcoma trials over the last 2 decades. A concerted effort among the NIH, industry and academia is required to increase the quality and quantity of clinical trials of sarcoma with a significant goal of improving the identification and delivery of effective therapies for patients with sarcoma.

Acknowledgements

We wish to thank all the contributors for their help with the conception and revision of the manuscript.

Funding

This work was supported by National Scientific Foundation of China (No. 81572403 and No. 81772863) and the National Basic Research Program of China (Grant No. 2013CB910500).

Availability of data and materials

The datasets analysed in the current study are available from the corresponding author on reasonable request. Anyone who is interested in the information should contact zhangxing@sysucc.org.cn.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Clark MA, Fisher C, Judson I, Thomas JM. Soft-tissue sarcomas in adults. N Engl J Med. 2005;353(7):701–11.CrossRef Clark MA, Fisher C, Judson I, Thomas JM. Soft-tissue sarcomas in adults. N Engl J Med. 2005;353(7):701–11.CrossRef
2.
Zurück zum Zitat Casali PG, Blay JY, Experts ECECPo. Soft tissue sarcomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(Suppl 5):v198–203.CrossRef Casali PG, Blay JY, Experts ECECPo. Soft tissue sarcomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21(Suppl 5):v198–203.CrossRef
3.
Zurück zum Zitat Ducimetiere F, Lurkin A, Ranchere-Vince D, Decouvelaere AV, Peoc'h M, Istier L, Chalabreysse P, Muller C, Alberti L, Bringuier PP, et al. Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. PLoS One. 2011;6(8):e20294.CrossRef Ducimetiere F, Lurkin A, Ranchere-Vince D, Decouvelaere AV, Peoc'h M, Istier L, Chalabreysse P, Muller C, Alberti L, Bringuier PP, et al. Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. PLoS One. 2011;6(8):e20294.CrossRef
4.
Zurück zum Zitat Sleijfer S, Ouali M, van Glabbeke M, Krarup-Hansen A, Rodenhuis S, Le Cesne A, Hogendoorn PC, Verweij J, Blay JY. Prognostic and predictive factors for outcome to first-line ifosfamide-containing chemotherapy for adult patients with advanced soft tissue sarcomas: an exploratory, retrospective analysis on large series from the European Organization for Research and Treatment of Cancer-soft tissue and bone sarcoma group (EORTC-STBSG). Eur J Cancer. 2010;46(1):72–83.CrossRef Sleijfer S, Ouali M, van Glabbeke M, Krarup-Hansen A, Rodenhuis S, Le Cesne A, Hogendoorn PC, Verweij J, Blay JY. Prognostic and predictive factors for outcome to first-line ifosfamide-containing chemotherapy for adult patients with advanced soft tissue sarcomas: an exploratory, retrospective analysis on large series from the European Organization for Research and Treatment of Cancer-soft tissue and bone sarcoma group (EORTC-STBSG). Eur J Cancer. 2010;46(1):72–83.CrossRef
5.
Zurück zum Zitat Chinese Journal of C, editor. The 150 most important questions in cancer research and clinical oncology series: questions 31-39: Edited by Chinese Journal of Cancer. Chin J Cancer. 2017;36(1):48. Chinese Journal of C, editor. The 150 most important questions in cancer research and clinical oncology series: questions 31-39: Edited by Chinese Journal of Cancer. Chin J Cancer. 2017;36(1):48.
6.
Zurück zum Zitat van der Graaf WT, Blay JY, Chawla SP, Kim DW, Bui-Nguyen B, Casali PG, Schoffski P, Aglietta M, Staddon AP, Beppu Y, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012;379(9829):1879–86.CrossRef van der Graaf WT, Blay JY, Chawla SP, Kim DW, Bui-Nguyen B, Casali PG, Schoffski P, Aglietta M, Staddon AP, Beppu Y, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012;379(9829):1879–86.CrossRef
7.
Zurück zum Zitat D'Angelo SP, Tap WD, Schwartz GK, Carvajal RD. Sarcoma immunotherapy: past approaches and future directions. Sarcoma. 2014;2014:391967.CrossRef D'Angelo SP, Tap WD, Schwartz GK, Carvajal RD. Sarcoma immunotherapy: past approaches and future directions. Sarcoma. 2014;2014:391967.CrossRef
8.
Zurück zum Zitat Lim J, Poulin NM, Nielsen TO. New strategies in sarcoma: linking genomic and immunotherapy approaches to molecular subtype. Clin Cancer Res. 2015;21(21):4753–9.CrossRef Lim J, Poulin NM, Nielsen TO. New strategies in sarcoma: linking genomic and immunotherapy approaches to molecular subtype. Clin Cancer Res. 2015;21(21):4753–9.CrossRef
9.
Zurück zum Zitat Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011;12(2):175–80.CrossRef Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011;12(2):175–80.CrossRef
10.
Zurück zum Zitat Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–63.CrossRef Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–63.CrossRef
11.
Zurück zum Zitat Califf RM, Zarin DA, Kramer JM, Sherman RE, Aberle LH, Tasneem A. Characteristics of clinical trials registered in ClinicalTrials.gov, 2007-2010. JAMA. 2012;307(17):1838–47.CrossRef Califf RM, Zarin DA, Kramer JM, Sherman RE, Aberle LH, Tasneem A. Characteristics of clinical trials registered in ClinicalTrials.gov, 2007-2010. JAMA. 2012;307(17):1838–47.CrossRef
12.
Zurück zum Zitat Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668–72.CrossRef Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(Database issue):D668–72.CrossRef
13.
Zurück zum Zitat Tap WD, Jones RL, Van Tine BA, Chmielowski B, Elias AD, Adkins D, Agulnik M, Cooney MM, Livingston MB, Pennock G, et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet. 2016;388(10043):488–97.CrossRef Tap WD, Jones RL, Van Tine BA, Chmielowski B, Elias AD, Adkins D, Agulnik M, Cooney MM, Livingston MB, Pennock G, et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet. 2016;388(10043):488–97.CrossRef
14.
Zurück zum Zitat Judson I, Verweij J, Gelderblom H, Hartmann JT, Schoffski P, Blay JY, Kerst JM, Sufliarsky J, Whelan J, Hohenberger P, et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol. 2014;15(4):415–23.CrossRef Judson I, Verweij J, Gelderblom H, Hartmann JT, Schoffski P, Blay JY, Kerst JM, Sufliarsky J, Whelan J, Hohenberger P, et al. Doxorubicin alone versus intensified doxorubicin plus ifosfamide for first-line treatment of advanced or metastatic soft-tissue sarcoma: a randomised controlled phase 3 trial. Lancet Oncol. 2014;15(4):415–23.CrossRef
15.
Zurück zum Zitat Bay JO, Ray-Coquard I, Fayette J, Leyvraz S, Cherix S, Piperno-Neumann S, Chevreau C, Isambert N, Brain E, Emile G, et al. Docetaxel and gemcitabine combination in 133 advanced soft-tissue sarcomas: a retrospective analysis. Int J Cancer. 2006;119(3):706–11.CrossRef Bay JO, Ray-Coquard I, Fayette J, Leyvraz S, Cherix S, Piperno-Neumann S, Chevreau C, Isambert N, Brain E, Emile G, et al. Docetaxel and gemcitabine combination in 133 advanced soft-tissue sarcomas: a retrospective analysis. Int J Cancer. 2006;119(3):706–11.CrossRef
16.
Zurück zum Zitat Schmitt T, Kosely F, Wuchter P, Schmier JW, Ho AD, Egerer G. Gemcitabine and docetaxel for metastatic soft tissue sarcoma - a single center experience. Onkologie. 2013;36(7–8):415–20.PubMed Schmitt T, Kosely F, Wuchter P, Schmier JW, Ho AD, Egerer G. Gemcitabine and docetaxel for metastatic soft tissue sarcoma - a single center experience. Onkologie. 2013;36(7–8):415–20.PubMed
17.
Zurück zum Zitat Samuels BL, Chawla S, Patel S, von Mehren M, Hamm J, Kaiser PE, Schuetze S, Li J, Aymes A, Demetri GD. Clinical outcomes and safety with trabectedin therapy in patients with advanced soft tissue sarcomas following failure of prior chemotherapy: results of a worldwide expanded access program study. Ann Oncol. 2013;24(6):1703–9.CrossRef Samuels BL, Chawla S, Patel S, von Mehren M, Hamm J, Kaiser PE, Schuetze S, Li J, Aymes A, Demetri GD. Clinical outcomes and safety with trabectedin therapy in patients with advanced soft tissue sarcomas following failure of prior chemotherapy: results of a worldwide expanded access program study. Ann Oncol. 2013;24(6):1703–9.CrossRef
18.
Zurück zum Zitat Maki RG. Gemcitabine and docetaxel in metastatic sarcoma: past, present, and future. Oncologist. 2007;12(8):999–1006.CrossRef Maki RG. Gemcitabine and docetaxel in metastatic sarcoma: past, present, and future. Oncologist. 2007;12(8):999–1006.CrossRef
19.
Zurück zum Zitat Lane JA, Wade J, Down L, Bonnington S, Holding PN, Lennon T, Jones AJ, Salter CE, Neal DE, Hamdy FC, et al. A peer review intervention for monitoring and evaluating sites (PRIME) that improved randomized controlled trial conduct and performance. J Clin Epidemiol. 2011;64(6):628–36.CrossRef Lane JA, Wade J, Down L, Bonnington S, Holding PN, Lennon T, Jones AJ, Salter CE, Neal DE, Hamdy FC, et al. A peer review intervention for monitoring and evaluating sites (PRIME) that improved randomized controlled trial conduct and performance. J Clin Epidemiol. 2011;64(6):628–36.CrossRef
20.
Zurück zum Zitat Casali PG. Histology- and non-histology-driven therapy for treatment of soft tissue sarcomas. Ann Oncol. 2012;23(Suppl 10):×167–9.CrossRef Casali PG. Histology- and non-histology-driven therapy for treatment of soft tissue sarcomas. Ann Oncol. 2012;23(Suppl 10):×167–9.CrossRef
21.
Zurück zum Zitat Husain N, Verma N. Curent concepts in pathology of soft tissue sarcoma. Indian J Surg Oncol. 2011;2(4):302–8.CrossRef Husain N, Verma N. Curent concepts in pathology of soft tissue sarcoma. Indian J Surg Oncol. 2011;2(4):302–8.CrossRef
22.
Zurück zum Zitat Dematteo RP, Ballman KV, Antonescu CR, Maki RG, Pisters PW, Demetri GD, Blackstein ME, Blanke CD, von Mehren M, Brennan MF, et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;373(9669):1097–104.CrossRef Dematteo RP, Ballman KV, Antonescu CR, Maki RG, Pisters PW, Demetri GD, Blackstein ME, Blanke CD, von Mehren M, Brennan MF, et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;373(9669):1097–104.CrossRef
23.
Zurück zum Zitat Ranieri G, Mammi M, Donato Di Paola E, Russo E, Gallelli L, Citraro R, Gadaleta CD, Marech I, Ammendola M, De Sarro G. Pazopanib a tyrosine kinase inhibitor with strong anti-angiogenetic activity: a new treatment for metastatic soft tissue sarcoma. Crit Rev Oncol Hematol. 2014;89(2):322–9.CrossRef Ranieri G, Mammi M, Donato Di Paola E, Russo E, Gallelli L, Citraro R, Gadaleta CD, Marech I, Ammendola M, De Sarro G. Pazopanib a tyrosine kinase inhibitor with strong anti-angiogenetic activity: a new treatment for metastatic soft tissue sarcoma. Crit Rev Oncol Hematol. 2014;89(2):322–9.CrossRef
24.
Zurück zum Zitat Chi Y, Fang Z, Hong X, Yao Y, Sun P, Wang G, Du F, Sun Y, Wu Q, Qu G, et al. Safety and efficacy of Anlotinib, a multikinase angiogenesis inhibitor, in patients with refractory metastatic soft-tissue sarcoma. Clin Cancer Res. 2018;24(21):5233–8.PubMed Chi Y, Fang Z, Hong X, Yao Y, Sun P, Wang G, Du F, Sun Y, Wu Q, Qu G, et al. Safety and efficacy of Anlotinib, a multikinase angiogenesis inhibitor, in patients with refractory metastatic soft-tissue sarcoma. Clin Cancer Res. 2018;24(21):5233–8.PubMed
25.
Zurück zum Zitat Coley WB. II. Contribution to the knowledge of sarcoma. Ann Surg. 1891;14(3):199–220.CrossRef Coley WB. II. Contribution to the knowledge of sarcoma. Ann Surg. 1891;14(3):199–220.CrossRef
26.
Zurück zum Zitat Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.CrossRef Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.CrossRef
27.
Zurück zum Zitat Miwa S, Nishida H, Tanzawa Y, Takeuchi A, Hayashi K, Yamamoto N, Mizukoshi E, Nakamoto Y, Kaneko S, Tsuchiya H. Phase 1/2 study of immunotherapy with dendritic cells pulsed with autologous tumor lysate in patients with refractory bone and soft tissue sarcoma. Cancer. 2017;123(9):1576–84.CrossRef Miwa S, Nishida H, Tanzawa Y, Takeuchi A, Hayashi K, Yamamoto N, Mizukoshi E, Nakamoto Y, Kaneko S, Tsuchiya H. Phase 1/2 study of immunotherapy with dendritic cells pulsed with autologous tumor lysate in patients with refractory bone and soft tissue sarcoma. Cancer. 2017;123(9):1576–84.CrossRef
28.
Zurück zum Zitat Krishnadas DK, Shusterman S, Bai F, Diller L, Sullivan JE, Cheerva AC, George RE, Lucas KG. A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma. Cancer Immunol Immunother. 2015;64(10):1251–60.CrossRef Krishnadas DK, Shusterman S, Bai F, Diller L, Sullivan JE, Cheerva AC, George RE, Lucas KG. A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma. Cancer Immunol Immunother. 2015;64(10):1251–60.CrossRef
29.
Zurück zum Zitat Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917–24.CrossRef Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917–24.CrossRef
30.
Zurück zum Zitat Robbins PF, Kassim SH, Tran TL, Crystal JS, Morgan RA, Feldman SA, Yang JC, Dudley ME, Wunderlich JR, Sherry RM, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res. 2015;21(5):1019–27.CrossRef Robbins PF, Kassim SH, Tran TL, Crystal JS, Morgan RA, Feldman SA, Yang JC, Dudley ME, Wunderlich JR, Sherry RM, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res. 2015;21(5):1019–27.CrossRef
Metadaten
Titel
The changing landscape of phase II/III metastatic sarcoma clinical trials—analysis of ClinicalTrials.gov
verfasst von
Y Que
W Xiao
BS Xu
XZ Wen
DS Weng
X Zhang
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2018
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-5163-2

Weitere Artikel der Ausgabe 1/2018

BMC Cancer 1/2018 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.