Skip to main content
Erschienen in: Malaria Journal 1/2019

Open Access 01.12.2019 | Review

Effectiveness of plant-based repellents against different Anopheles species: a systematic review

verfasst von: Amin Asadollahi, Mehdi Khoobdel, Alireza Zahraei-Ramazani, Sahar Azarmi, Sayed Hussain Mosawi

Erschienen in: Malaria Journal | Ausgabe 1/2019

Abstract

Plant-based repellents have been applied for generations in traditional practice as a personal protection approach against different species of Anopheles. Knowledge of traditional repellent plants is a significant resource for the development of new natural products as an alternative to chemical repellents. Many studies have reported evidence of repellant activities of plant extracts or essential oils against malaria vectors worldwide. This systematic review aimed to assess the effectiveness of plant-based repellents against Anopheles mosquitoes. All eligible studies on the repellency effects of plants against Anopheles mosquitoes published up to July 2018 were systematically searched through PubMed/Medline, Scopus and Google scholar databases. Outcomes measures were percentage repellency and protection time. A total of 62 trials met the inclusion criteria. The highest repellency effect was identified from Ligusticum sinense extract, followed by citronella, pine, Dalbergia sissoo, peppermint and Rhizophora mucronata oils with complete protection time ranging from 9.1 to 11.5 h. Furthermore, essential oils from plants such as lavender, camphor, catnip, geranium, jasmine, broad-leaved eucalyptus, lemongrass, lemon-scented eucalyptus, amyris, narrow-leaved eucalyptus, carotin, cedarwood, chamomile, cinnamon oil, juniper, cajeput, soya bean, rosemary, niaouli, olive, tagetes, violet, sandalwood, litsea, galbanum, and Curcuma longa also showed good repellency with 8 h complete repellency against different species of Anopheles. Essential oils and extracts of some plants could be formulated for the development of eco-friendly repellents against Anopheles species. Plant oils may serve as suitable alternatives to synthetic repellents in the future as they are relatively safe, inexpensive, and are readily available in many parts of the world.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
DEET
N, N-diethyl-meta-toluamide

Background

Mosquito-transmitted diseases remain a main source of illness and death [1]. Despite decades of malaria control efforts, malaria continues to be a major worldwide public health issue with 3.3 billion persons at risk in 106 countries and territories in the tropical and subtropical areas [2]. It is one of the significant reasons for maternal and childhood morbidity and mortality, including low birth weight, stillbirths, and early infant death in sub-Saharan Africa [3]. Among 500 species of Anopheles mosquitoes known globally, more than 50 species can transmit malaria from the bite of the infected female Anopheles spp. [4]. Presently, there is no effective prophylactic anti-malarial vaccine and no suitable preventive measure other than vector control is available [5]. Thus, protection from mosquito bites is one of the best approaches to reduce the disease incidence.
The use of repellents to protect people from bites of mosquitoes previously has been acknowledged as part of an overall integrated insect-borne disease control programme [6]. Most commercial repellents are produced by using chemical components such as N, N-diethyl-meta-toluamide (DEET), Allethrin, N, N-diethyl mendelic acid amide, and Dimethyl phthalate [1]. It has been identified that chemical repellents are not safe for public health and should be used with caution because of their detrimental impacts on synthetic fabric and plastic as well as toxic reactions, such as allergy, dermatitis, and cardiovascular and neurological side effects, which have been reported generally after misapplication [4]. The frequent use of synthetic repellents with chemical origin for mosquito control has disturbed natural ecosystems and resulted in the development of resistance to insecticides, resurgence in mosquito populations, and adverse impact on non-target organisms [4, 7]. Accordingly, the idea of using natural mosquito repellent products as an alternative to develop new eco-friendly repellents could be an amicable solution to scale back the undesirable effects on environment and human health.
In recent years, interest in plant-based repellents has been revived, as they contain a rich source of bioactive phytochemicals that are safe and biodegradable into non-toxic by-products, which could be screened for insecticidal activities and mosquito repellent. Many studies have reported evidence of repellant activities of plant extracts or essential oils against malaria vectors around the world. The present systematic review was performed to reveal which plant-based repellent can be relied on to provide a prolonged and predictable protection from species of Anopheles mosquitoes without causing side effects on human health.
For this systematic review, all eligible studies on the repellency effects of plant-based repellants against Anopheles spp. published up to July 2018 were systematically searched through electronic databases PubMed, MEDLINE, Web of Science, Literature retrieval System of the Armed Forces Pest Management Board, Scopus and Google Scholar using the following Medical Subject Headings (Mesh) and keywords: (((Plant [Title/Abstract]) OR Plants [Title/Abstract]) OR herbal [Title/Abstract]) AND (botanical [Title/Abstract]) AND ((extract [Title/Abstract]) OR extracts [Title/Abstract]) AND ((“essential oil” [Title/Abstract]) OR “essential oils” [Title/Abstract]) AND (((((“Insect repellent” [Mesh]) OR repellents) OR repellent) OR repellence) OR repellency) AND ((“Anopheles” [Mesh]) OR “Anopheles” [Title/Abstract]). The search was limited to English publications. In addition, a manual search was conducted to identify further pertinent articles using references from retrieved studies.

Eligibility criteria

Studies were included in the present systematic review if they met these criteria: (i) full-text publication was written in English, (ii) inspected the repellency effects of plant extracts and essential oils against malaria vectors, Anopheles spp. mosquitoes, and, (iii) reported the percentage of repellency or complete protection time. Following studies were excluded: studies exploring the repellency effect of chemical-based products, studies examining the repellency effect of animal extracts, animal studies (studies not on human subjects), articles without full texts, reviews, duplicate articles, abstracts, republished data, comments, conference papers, editorials, and studies with insufficient data. In addition, studies were excluded if the information could not be extracted. A screening of titles and abstracts followed by a full-text review was performed by two investigators. All titles and abstracts were screened by two independent investigators for eligibility. If a consensus was reached, a study was excluded or selected to full-text screening. If a consensus was not reached, another reviewer was consulted to resolve any feasible discrepancies.

Data extraction

After identifying the eligible studies, the following data were collected from each study by application of standardized data collection form to improve accuracy and critical appraisal: the first author name, country of origin, journal details, publication year, condition of study (field or laboratory), plant name, Anopheles species, concentration or dose of repellents, repellency percentage and complete protection time. All data were independently extracted by two reviewers and disagreements were solved by discussion, and if necessary, a third author was involved.
A total of 383 studies were found by the initial literature search of the databases. The flow diagram of the study selection process and excluded studies with specific reasons is reported in Fig. 1. Of the 324 excluded citations, 102 were duplicated studies; 149 were not relevant to the repellency effect of plants on Anopheles spp. after screening titles/abstracts; 11 were review publications; 8 investigated the repellency impact of chemical-based repellents or animal extracts; 7 studies were conducted on laboratory animals; 12 were abstracts, conference papers, comments, and editorials; 10 studies had not reported sufficient data regarding the percentage of repellency or complete protection time; and, 15 studies were other irrelevant studies. The primary eligibility process yielded 59 documents and crosscheck of the references of reviews and other databases search provided 3 further articles [810]. A total of 62 studies conducted in different countries, including India [740], Thailand [4, 5, 4148], Ethiopia [4952], Kenya [5357], Germany [6], Nigeria [1], USA [58], Tanzania [59], Brazil [60], Sudan [61], Iran [62], Cameron [63] and Ivory Coast [64] were eventually included in the systematic review based on the inclusion criteria for the effect of plant-based repellents on species of Anopheles mosquitoes. The included studies were published between 1999 and 2018. Expect for 6 studies which were field trial, other studies were conducted on laboratory condition. None of the studies reported the inclusion and exclusion criteria explicitly other than specifying a healthy volunteer. Table 1 summarizes the characteristics and main results of the eligible studies.
Table 1
Characteristics of studies. Characteristics of studies included in the systematic review, up to July 2018
Study
Year
Country
Study type
Plant extract/(essential oil)
Concentration dose
Anopheles species
Repellency %
Protection time (hours)
Ansari et al.
2005
India
Field
Pine oil (Pinus)
1 ml without dilution
An. culicifacies
100
11
    
Citronella (lemongrass oil)
1 ml without dilution
An. culicifacies
100
11
Ansari et al.
2000
India
Field
D. sissoo oil
1 ml without dilution
An. culicifacies
96.1
10.3
    
D. sissoo oil
1 ml without dilution
An. annularis
100
11
    
D. sissoo oil
1 ml without dilution
An. subpictus
89.7
8
Ansari et al.
2000
India
Field
Peppermint oil
1 ml without dilution
An. culicifacies
92.3
9.6
    
Peppermint oil
1 ml without dilution
An. annularis
100
11
    
Peppermint oil
1 ml without dilution
An. subpictus
83.1
7.3
Amer et al.
2006
Germany
Laboratory
Citronella (Cymbopogon winterianus) essential oils
20% oil solutions
An. stephensi
52.4
8
    
Rosewood (Aniba rosaeodora) essential oils
20% oil solutions
An. stephensi
4.8
6.5
    
Lavender (Lavandula angustifolia) essential oils
20% oil solutions
An. stephensi
80.9
8
    
Camphor (C. camphora) essential oils
20% oil solutions
An. stephensi
42.8
8
    
Catnip (N. cataria) essential oils
20% oil solutions
An. stephensi
100
8
    
Geranium (Pelargonium graveolens) essential oils
20% oil solutions
An. stephensi
61.9
8
    
Thyme (T. serpyllum) essential oils
20% oil solutions
An. stephensi
33.3
7.5
    
Eucalyptus (E. globulus) essential oils
20% oil solutions
An. stephensi
28.6
5.5
    
Jasmine (Jasminum grandiflorum) essential oils
20% oil solutions
An. stephensi
100
8
    
Broad-leaved eucalyptus (Eucalyptus dives) essential oils
20% oil solutions
An. stephensi
38.1
8
    
Lemongrass (Cymbopogon citratus) essential oil
20% oil solutions
An. stephensi
100
8
    
Lemon-scented eucalyptus (E. citriodora) essential oil
20% oil solutions
An. stephensi
52.4
8
    
Fichtennadel (Picea excelsa) essential oil
20% oil solutions
An. stephensi
19
3
    
Amyris (Amyris balsamifera) essential oil
20% oil solutions
An. stephensi
100
8
    
Lemon (Citrus limon) essential oil
20% oil solutions
An. stephensi
9.5
7
    
Narrow-leaved eucalyptus (Eucalyptus radiata) essential oil
20% oil solutions
An. stephensi
42.8
8
    
Carotin oil (Glycina soja) essential oil
20% oil solutions
An. stephensi
9.5
8
    
Cedarwood (Juniperus virginiana) essential oil
20% oil solutions
An. stephensi
38.1
8
    
frankincense (Boswellia carteri) essential oil
20% oil solutions
An. stephensi
19
5
    
Dill (Anethum graveolens) essential oil
20% oil solutions
An. stephensi
71.4
3.5
    
Myrtle (M. communis) essential oil
20% oil solutions
An. stephensi
42.8
6.5
    
Chamomile (Anthemis nobilis) essential oil
20% oil solutions
An. stephensi
76.2
8
    
Cinnamon (C. zeylanicum) essential oil
20% oil solutions
An. stephensi
100
8
    
Juniper (Juniperus communis) essential oil
20% oil solutions
An. stephensi
76.2
8
    
Sage (Salvia sclarea) essential oil
20% oil solutions
An. stephensi
19
5
    
Peppermint (Mentha piperita) essential oil
20% oil solutions
An. stephensi
57.1
6.5
    
Basil (Ocimum basilicum) essential oil
20% oil solutions
An. stephensi
66.7
3.5
    
Cajeput (Melaleuca leucadendron) essential oil
20% oil solutions
An. stephensi
100
8
    
Soya bean (Glycina max) essential oil
20% oil solutions
An. stephensi
76.2
8
    
Rosemary (R. officinalis) essential oil
20% oil solutions
An. stephensi
100
8
    
Niaouli (Melaleuca quinquenervia) essential oil
20% oil solutions
An. stephensi
100
8
    
Olive (O. europaea) essential oil
20% oil solutions
An. stephensi
71.4
8
    
Black pepper (Piper nigrum) essential oil
20% oil solutions
An. stephensi
61.9
3
    
Verbena (Lippia citriodora) essential oil
20% oil solutions
An. stephensi
38.1
5.5
    
tagetes (T. minuta) essential oil
20% oil solutions
An. stephensi
100
8
    
Violet (Viola odorata) essential oil
20% oil solutions
An. stephensi
100
8
    
Sandalwood (Santalum album) essential oil
20% oil solutions
An. stephensi
100
8
    
Litsea (Litsea cubeba) Essential oil
20% oil solutions
An. stephensi
100
8
    
Helichrysum (Helichrysum italicum) essential oil
20% oil solutions
An. stephensi
47.6
6
    
Galbanum (Ferula galbaniflua) essential oil
20% oil solutions
An. stephensi
100
8
    
Chamomile (Chamaemelum nobile) essential oil
20% oil solutions
An. stephensi
47.6
5.5
Amerasan et al.
2012
India
Laboratory
Cassia tora Linn methanol extract
1 mg/cm2
2.5 mg/cm2
5.0 mg/cm2
An. stephensi
100
100
100
2
2
2.5
Abiy et al.
2015
Ethiopia
Field
20% neem oil
Neem and chinaberry oils were diluted to 20% using Niger seed (noog abyssinia) oil
An. arabiensis
71
3
    
20% chinaberry oil
Neem and chinaberry oils were diluted to 20% using Niger seed (noog abyssinia) oil
An. arabiensis
70
1
Alayo et al.
2015
Nigeria
Laboratory
Cassia mimosoides petroleum ether extract
Cream 0.5% w/w
An. gambiae
48
    
Cream 1% w/w
 
88
    
Cream 2% w/w
 
100
0.08
    
Cream 4% w/w
 
100
0.08
    
Cream 6% w/w
 
100
0.08
Alwala et al.
2010
Kenya
Laboratory
Mangifera indica essential Oil
10% solution
An. gambiae
100
Baskar et al.
2018
India
Laboratory
Atalantia monophylla essential oil
50 ppm
An. stephensi
6.85
Govindarajan et al.
2010
India
Laboratory
Sida acuta Burm. F. extract
2.5 mg/cm2
An. stephensi
100
2.5
   
5 mg/cm2
An. stephensi
100
3
Govindarajan et al.
2011
India
Laboratory
Ervatamia coronaria extract
1 mg/cm2
2.5 mg/cm2
5 mg/cm2
An. stephensi
An. stephensi
An. stephensi
100
100
100
2.5
3
3.5
  
Caesalpinia pulcherrima extract
1 mg/cm2
An. stephensi
100
2
   
2.5 mg/cm2
An. stephensi
100
2.5
Govindarajan et al.
2011
India
Laboratory
 
5 mg/cm2
An. stephensi
100
3
 
2.5 mg/cm2
5 mg/cm2
An. subpictus
An. subpictus
100
100
2
2.5
   
R. officinalis L. essential oil
1 mg/cm2
An. subpictus
100
1
    
2.5 mg/cm2
An. subpictus
100
1
    
5 mg/cm2
An. subpictus
100
1.5
    
C. citrates Stapf. essential oil
1 mg/cm2
An. subpictus
100
1
    
2.5 mg/cm2
An. subpictus
100
1.5
     
5 mg/cm2
An. subpictus
100
2
    
C. zeylanicum L. essential oil
1 mg/cm2
An. subpictus
100
1
    
2.5 mg/cm2
An. subpictus
100
1
    
5 mg/cm2
An. subpictus
100
1.5
Govindarajan et al.
2016
India
Laboratory
Zingiber nimmonii essential oil
1 mg/cm2
An. stephensi
100
2
   
2 mg/cm2
An. stephensi
100
2.5
   
5 mg/cm2
An. stephensi
100
3
Jeyabalan et al.
2003
India
Laboratory
P. citrosa leaf extract
0.5%
An. stephensi
36
   
1%
An. stephensi
51
    
2%
An. stephensi
78
     
4%
An. stephensi
100
Karunamoorthi et al.
2008
Ethiopia
Laboratory
Woira (O. europaea) smoke
Burning of 25 g of dried plant materials
An. arabiensis
79.7
    
Tinjut (Ostostegia integrifolia) smoke
Burning of 25 g of dried plant materials
An. arabiensis
90.1
    
Wogert (Silene macroserene) smoke
Burning of 25 g of dried plant materials
An. arabiensis
93.6
    
Kebercho (Echinops sp.) extract
Burning of 25 g of dried plant materials
An. arabiensis
92.4
Karunamoorthi et al.
2010
Ethiopia
Laboratory
C. citratus extract
1 mg/cm2
An. arabiensis
100
3.2
    
1.5 mg/cm2
An. arabiensis
100
4.4
   
2 mg/cm2
An. arabiensis
100
5.3
     
2.5 mg/cm2
An. arabiensis
100
6.3
Govindarajan et al.
2016
India
Laboratory
Origanum scabrum essential oil
1 mg/cm2
An. stephensi
100
2.5
   
2 mg/cm2
An. stephensi
100
3
   
5 mg/cm2
An. stephensi
100
3.5
Haldar et al.
2014
India
Laboratory
Ficus krishnae smoke
30 mg/l smoked
An. stephensi
18
0.16
     
60 mg/l smoked
An. stephensi
100
0.5
     
90 mg/l smoked
An. stephensi
100
1
Auysawasdi et al.
2015
Thailand
Laboratory
Curcuma longa essential oil
5%
An. dirus
100
4
   
10%
An. dirus
100
5
    
15%
An. dirus
100
5.5
     
20%
An. dirus
100
5.5
     
25%
An. dirus
100
8
    
E. globulus essential oil
5%
An. dirus
100
1.7
    
10%
An. dirus
100
2.3
     
15%
An. dirus
100
3
     
20%
An. dirus
100
3
     
25%
An. dirus
100
3.4
    
Citrus aurantium essential oil
5%
An. dirus
100
1.8
    
10%
An. dirus
100
2.9
     
15%
An. dirus
100
2.9
     
20%
An. dirus
100
3
     
25%
An. dirus
100
3.5
Barnard et al.
1999
USA
Laboratory
Clove essential oil
25%
An. albimanus
100
1.25
    
50%
An. albimanus
100
1.5
     
75%
An. albimanus
100
2.26
     
100%
An. albimanus
100
3.55
    
Thyme essential oil
25%
An. albimanus
100
0.75
    
50%
An. albimanus
100
0.5
     
75%
An. albimanus
100
1
     
100%
An. albimanus
100
1.75
Kweka et al.
2008
Tanzania
Laboratory
Citronella
500 mg/m2
An. gambiae
81
   
Ocimum suave extract
500 mg/m2
An. gambiae
81
    
Ocimum kilimandscharicum extract
500 mg/m2
An. gambiae
73
    
Citronella
500 mg/m2
An. arabiensis
85
    
O. suave extract
500 mg/m2
An. arabiensis
89
    
O. kilimandscharicum extract
500 mg/m2
An. arabiensis
75
Kovendan et al.
2012
India
Laboratory
A. alnifolia extract
1 mg/cm2
An. stephensi
100
2
   
3 mg/cm2
An. stephensi
100
2
    
5 mg/cm2
An. stephensi
100
2.5
Krishnappa et al.
2012
India
Laboratory
A. digitata crude extract
2 mg/cm2
An. stephensi
100
3
   
4 mg/cm2
An. stephensi
100
3.5
    
6 mg/cm2
An. stephensi
100
3.5
Naine et al.
2014
India
Laboratory
Streptomyces sp. VITJS4 extract
1 mg/cm2
An. stephensi
100
2
   
3 mg/cm2
An. stephensi
100
2
     
6 mg/cm2
An. stephensi
100
2
Murugan et al.
2012
India
Laboratory
Orange peel extract
50 ppm
An. stephensi
99
   
150 ppm
An. stephensi
100
0.5
    
250 ppm
An. stephensi
100
0.05
     
350 ppm
An. stephensi
100
1.5
     
450 ppm
An. stephensi
100
2
Padilha et al.
2003
Brazil
Field
Ocimum selloi oil
10% v/v
An. braziliensis
89
0.5
Konan et al.
2003
Ivory Coast
Laboratory
Karite nut butter oil
75%
An. gambiae
100
2
    
Palm oil
75%
An. gambiae
100
1.38
    
Coconut oil
75%
An. gambiae
100
0.76
Maheswaran et al.
2013
India
Laboratory
Confertifolin essential oil
0.62 ppm
An. stephensi
100
1
   
1.25 ppm
An. stephensi
100
2.5
   
2.5 ppm
An. stephensi
100
3
     
5 ppm
An. stephensi
100
5
     
10 ppm
An. stephensi
100
5.2
Panneerselvam et al.
2013
India
Laboratory
Andrographis paniculata methanol leaf extract
1 mg/cm2
An. stephensi
100
2
   
3 mg/cm2
An. stephensi
100
2.5
   
6 mg/cm2
An. stephensi
100
3
   
Cassia occidentalis methanol leaf extract
1 mg/cm2
An. stephensi
100
2
    
3 mg/cm2
An. stephensi
100
2.5
    
6 mg/cm2
An. stephensi
100
2.5
    
Euphorbia hirta methanol leaf extract
1 mg/cm2
An. stephensi
100
2
    
3 mg/cm2
An. stephensi
100
2
    
6 mg/cm2
An. stephensi
100
2.5
Panneerselvam et al.
2012
India
Laboratory
Artemisia nilagirica extract
50 ppm
An. stephensi
95
0.5
   
150 ppm
An. stephensi
98
0.5
   
250 ppm
An. stephensi
100
0.5
    
350 ppm
An. stephensi
100
1
     
450 ppm
An. stephensi
100
2
Phasomkusolsil et al.
2011
Thailand
Laboratory
Cananga odorata oil
0.02 mg/cm2
An. dirus
94
   
0.10 mg/cm2
An. dirus
92
   
0.21 mg/cm2
An. dirus
92
   
C. sinensis oil
0.02 mg/cm2
An. dirus
40
     
0.10 mg/cm2
An. dirus
54
     
0.21 mg/cm2
An. dirus
84
    
C. citratus oil
0.02 mg/cm2
An. dirus
76
     
0.10 mg/cm2
An. dirus
82
     
0.21 mg/cm2
An. dirus
98
    
Cymbopogon nardus oil
0.02 mg/cm2
An. dirus
92
    
0.10 mg/cm2
An. dirus
92
     
0.21 mg/cm2
An. dirus
98
    
E. citriodora oil
0.02 mg/cm2
An. dirus
52
     
0.10 mg/cm2
An. dirus
74
     
0.21 mg/cm2
An. dirus
86
    
O. basilicum oil
0.02 mg/cm2
An. dirus
66
     
0.10 mg/cm2
An. dirus
74
     
0.21 mg/cm2
An. dirus
96
    
S. aromaticum oil
0.02 mg/cm2
An. dirus
82
     
0.10 mg/cm2
An. dirus
92
     
0.21 mg/cm2
An. dirus
98
Prabhu et al.
2011
India
Laboratory
Moringa oleifera extract
20%
An. stephensi
23
   
40%
An. stephensi
43
     
60%
An. stephensi
58
     
80%
An. stephensi
76
     
100%
An. stephensi
90
Rajkumar et al.
2007
India
Laboratory
Centella asiatica essential oil
2%
An. stephensi
1
   
4%
An. stephensi
1.78
   
6%
An. stephensi
2.33
    
Ipomoea cairica essential oil
2%
An. stephensi
2.63
    
4%
An. stephensi
4.13
     
6%
An. stephensi
5.53
    
Momordica charantia essential oil
2%
An. stephensi
2.38
    
4%
An. stephensi
3.93
    
6%
An. stephensi
5.38
    
Psidium guajava essential oil
2%
An. stephensi
0.93
    
4%
An. stephensi
1.48
     
6%
An. stephensi
1.98
    
Tridax procumbens essential oil
2%
An. stephensi
2.33
    
4%
An. stephensi
3.78
    
6%
An. stephensi
5.28
Rajkumar et al.
2005
India
Laboratory
Solanum trilobatum extract
0.001%
An. stephensi
100
1.15
   
0.005%
An. stephensi
100
1.3
   
0.01%
An. stephensi
100
1.51
     
0.015%
An. stephensi
100
1.7
     
0.02%
An. stephensi
100
2.03
Rawani et al.
2012
India
Laboratory
P. tuberosa extract
1%
An. stephensi
65
2.3
   
1.50%
An. stephensi
80
4
   
2%
An. stephensi
90
5
Reegan et al.
2015
India
Laboratory
Cliona celata extract
1 mg/cm2
An. stephensi
100
1.08
   
2.5 mg/cm2
An. stephensi
100
1.71
     
5 mg/cm2
An. stephensi
100
1.21
Swathi et al.
2012
India
Laboratory
Datura stramonium extract
0.1%
An. stephensi
0.35
   
0.5%
An. stephensi
0.72
    
1%
An. stephensi
1.9
Seyoum et al.
2002
Kenya
Semi-field
Neem (A. indica)
Periodic thermal expulsion
An. gambiae
24.5
    
Lemon eucalyptus (Corymbia citriodora)
Periodic thermal expulsion
An. gambiae
74.5
    
Wild spikenard (Hyptis suaveolens)
Periodic thermal expulsion
An. gambiae
-13.3
    
Lantana (Lantana camara)
Periodic thermal expulsion
An. gambiae
42.4
    
Fever tea (Lippia uckambensis)
Periodic thermal expulsion
An. gambiae
45.9
    
Lime basil (Ocimum americanum)
Periodic thermal expulsion
An. gambiae
43.1
    
Rican blue basil (O. kilimandscharicum)
Periodic thermal expulsion
An. gambiae
52.0
    
Tree basil (O. suave)
Periodic thermal expulsion
An. gambiae
53.1
    
Khaki weed (T. minuta)
Placing branches or whole plants inside houses
An. gambiae
54.8
Sanghong et al.
2015
Thailand
Laboratory
L. sinense ethanolic preparations
25%
An. minimus
11.5
Das et al.
2003
India
Laboratory
Cymbopogan martinii martinii var sofia oil
1 ml without dilution
An. sundaicus
98
6
Nour et al.
2009
Sudan
Laboratory
Basil (O. basilicum L.) essential oil
0.1 ml
 
100
1.5
Trongtokit et al.
2005
Thailand
Laboratory
C. nardus essential oil
10%
An. dirus
0.66
   
50%
 
0.5
   
100%
 
1.16
   
P. cablin essential oil
10%
An. dirus
1.33
    
50%
 
2
     
100%
 
2.83
    
Mullilam (Zanthoxylum limonella) essential oil
10%
An. dirus
1
    
50%
 
2.16
    
100%
 
3.16
    
Clove (Syzygium aromaticum) essential oil
10%
An. dirus
1.33
    
50%
 
2.66
    
100%
 
3.5
Yogananth et al.
2015
India
Laboratory
R. mucronata oil
1 mg/cm2
An. stephensi
73
7.2
    
2 mg/cm2
An. stephensi
86
7.8
    
3 mg/cm2
An. stephensi
92
8.5
     
4 mg/cm2
An. stephensi
97
9.1
Tawatsin et al.
2000
Thailand
Laboratory
Turmeric (C. longa) volatile oil
3 ml
An. dirus
100
6
   
Citronella
3 ml
An. dirus
100
6
    
Hairy basil oil
3 ml
An. dirus
100
6
Singh et al.
2005
India
Laboratory
Cyperus rotundus Linn hexane extract
2.50%
An. stephensi
95
   
5%
An. stephensi
99
    
10%
An. stephensi
100
6
Mayeku et al.
2013
Kenya
laboratory
Conyza newii essential oil
0.01 g/ml
An. gambiae
38
   
0.1 g/ml
An. gambiae
68
     
1 g/ml
An. gambiae
100
Phasomkusolsil et al.
2009
Thailand
Laboratory
Phlai (Z. cassumunar) oil
100 μl
An. minimus
2
   
Turmeric (C. longa) oil
100 μl
An. minimus
1
    
Mah-Khwuaen (Z. limonella) oil
100 μl
An. minimus
0.66
    
Citronella grass (C. nardus) oil
100 μl
An. minimus
2.16
    
Orange oil (Citrus sinensis) oil
100 μl
An. minimus
0.83
    
Eucalyptus (E. citriodora) oil
100 μl
An. minimus
0.5
    
Clove (S. aromaticum) oil
100 μl
An. minimus
2
Trongtokit et al.
2004
Thailand
Laboratory
Clove oil
20% gel
An. dirus
4.5
    
cream 20%
An. dirus
4.8
Birkett et al.
2011
Kenya
Laboratory
N. cataria
0.01 mg
An. gambiae
17
    
0.1 mg
An. gambiae
97
     
1 mg
An. gambiae
100
Kamaraj et al.
2011
India
Laboratory
A. concinna extract
500 ppm
An. stephensi
21
Solomon et al.
2012
Ethiopia
Laboratory
Citronella extract
20%
An. Arabiensis
73
Soonwera et al.
2015
Thailand
Laboratory
C. odorata oil
1%
An. dirus
92
    
5%
An. dirus
92
    
10%
An. dirus
94
Sritabutra et al.
2011
Thailand
Laboratory
Eucalyptus (E. globules) essencial oil
0.1 ml
An. dirus
1.58
    
Peppermint (M. piperita) essencial oil
0.1 ml
An. dirus
1.08
    
Garlic (A. sativum) essencial oil
0.1 ml
An. dirus
0.68
    
Orange (C. sinensis) essencial oil
0.1 ml
An. dirus
0.83
    
Citronella grass (C. nardus) essencial oil
0.1 ml
An. dirus
0.8
    
Lemongrass (C. citratus) essencial oil
0.1 ml
An. dirus
1.63
    
Clove (S. aromaticum) essencial oil
0.1 ml
An. dirus
1
    
Sweet basil (O. basilicum) essencial oil
0.1 ml
An. dirus
0.75
Tavassoli et al.
2001
iran
Laboratory
Marigold (Calendula officinalis) essential oil
50%
An. stephensi
2.15
    
Myrtle essential oil
50%
An. stephensi
4.36
Younoussa et al.
2016
Cameroon
Laboratory
Annona senegalensis leaf extract
4.0 mg/cm2
An. gambiae
0.5
 
8.0 mg/cm2
An. gambiae
1
 
12.0 mg/cm2
An. gambiae
1.5
   
Boswellia dalzielii leaf extract
4.0 mg/cm2
An. gambiae
46
 
    
8.0 mg/cm2
An. gambiae
0.5
     
12.0 mg/cm2
An. gambiae
1
Govindarajan et al.
2011
India
Laboratory
Coccinia indica extract
1 mg/cm2
An. stephensi
100
3
   
2.5 mg/cm2
An. stephensi
100
3
   
5 mg/cm2
An. stephensi
100
3.5
Govindarajan et al.
2012
India
Laboratory
Cardiospermum halicacabum oil
1 mg/cm2
An. stephensi
100
2
   
2.5 mg/cm2
An. stephensi
100
2.5
   
5 mg/cm2
An. stephensi
100
3
Govindarajan et al.
2014
India
Laboratory
Asparagus racemosus crude extract
1 mg/cm2
An. stephensi
100
2.5
   
2 mg/cm2
An. stephensi
100
2.5
   
5 mg/cm2
An. stephensi
100
3
Govindarajan et al.
2015
India
Laboratory
Delonix elata crude extract
1 mg/cm2
An. stephensi
100
2.5
   
2.5 mg/cm2
An. stephensi
100
3
    
5 mg/cm2
An. stephensi
100
3.5
Innocent et al.
2014
Kenya
Laboratory
Uvariodendron gorgonis essential oil
0.01 w/v
An. gambiae
29
   
0.1 w/v
An. gambiae
48
   
1 w/v
An. gambiae
57
     
10 w/v
An. gambiae
64
    
Clausena anisata essential oil
0.01 w/v
An. gambiae
13
    
0.1 w/v
An. gambiae
21
     
1 w/v
An. gambiae
42
     
10 w/v
An. gambiae
56
    
Lantana vibunoides essential oil
0.01 w/v
An. gambiae
26
    
0.1 w/v
An. gambiae
46
    
1 w/v
An. gambiae
54
     
10 w/v
An. gambiae
62
Kumar et al.
2012
India
Laboratory
Sargassum wightii Greville methanolic extract
2 mg/l
An. sundaicus
26
   
4 mg/l
An. sundaicus
40
    
6 mg/l
An. sundaicus
57
    
8 mg/l
An. sundaicus
71
     
10 mg/l
An. sundaicus
89
Madhiyazhagan et al.
2014
India
Laboratory
O. canum extract
0.49 mg/l
An. stephensi
63
    
0.99 mg/l
An. stephensi
77
    
1.99 mg/l
An. stephensi
86

Effectiveness of plant-based products against Anopheles spp.

Potential plant-based repellents stratified by protection time with at least 4 h protection time are reported in Table 2. The highest repellency effect was identified from Ligusticum sinense extract, followed by citronella, pine, Dalbergia sissoo, peppermint and Rhizophora mucronata oils with complete protection time ranging from 9.1 to 11.5 h. Ethanolic 25% extract of L. sinense was able to completely repel Anopheles minimus for 11.5 h. Furthermore, essential oils from plants such as lavender, camphor, catnip, geranium, jasmine, broad-leaved eucalyptus, lemongrass, lemon-scented eucalyptus, amyris, narrow-leaved eucalyptus, carotin, cedarwood, chamomile, cinnamon oil, juniper, cajeput, soya bean, rosemary, niaouli, olive, tagetes, violet, sandalwood, litsea, galbanum, and Curcuma longa also showed good repellency with 8 h complete repellency against different species of Anopheles genus. Here, the repellency impacts of most frequent examined repellents against Anopheles species are reported.
Table 2
Stratification of potential of plant based repellents
Protection time (hours)
Plant name
Concentration/dose
Anopheles species
11.5
L. sinense ethanolic extract
25%
An. minimus
11
Pine oil (Pinus)
Citronella (lemongrass oil)
D. sissoo oil
Peppermint oil
1 ml without dilution
1 ml without dilution
1 ml without dilution
1 ml without dilution
An. culicifacies
An. culicifacies
An. annularis
An. annularis
8 < to < 10
D. sissoo oil
Peppermint oil
R. mucronata oil
R. mucronata oil
1 ml without dilution
1 ml without dilution
4 mg/cm2
3 mg/cm2
An. culicifacies
An. culicifacies
An. stephensi
An. stephensi
8
D. sissoo oil
1 ml without dilution
An. subpictus
Citronella (C. winterianus) essential oils
20% oil solution
An. stephensi
Lavender (L. angustifolia) essential oils
20% oil solution
An. stephensi
Camphor (C. camphora) essential oils
20% oil solution
An. stephensi
Catnip (N. cataria) essential oils
20% oil solution
An. stephensi
Geranium (P. graveolens) essential oils
20% oil solution
An. stephensi
Jasmine (J. grandiflorum) essential oils
20% oil solution
An. stephensi
 
Broad-leaved eucalyptus (E. dives) essential oils
20% oil solution
An. stephensi
Lemongrass (C. citratus) essential oil
20% oil solution
An. stephensi
Lemon-scented eucalyptus (E. citriodora)
20% oil solution
An. stephensi
Amyris (A. balsamifera) essential oil
20% oil solution
An. stephensi
Narrow-leaved eucalyptus (E. radiata) essential oil
20% oil solution
An. stephensi
Carotin oil (G. soja) essential oil
20% oil solution
An. stephensi
Cedarwood (J. virginiana) essential oil
20% oil solution
An. stephensi
Chamomile (A. nobilis) essential oil
20% oil solution
An. stephensi
Cinnamon (C. zeylanicum) essential oil
20% oil solution
An. stephensi
Juniper (J. communis) essential oil
20% oil solution
An. stephensi
Cajeput (M. leucadendron) essential oil
20% oil solution
An. stephensi
Soya bean (G. max) essential oil
20% oil solution
An. stephensi
Rosemary (R. officinalis) essential oil
20% oil solution
An. stephensi
Niaouli (M. quinquenervia) essential oil
20% oil solution
An. stephensi
Olive (O. europaea) essential oil
20% oil solution
An. stephensi
Tagetes (T. minuta) essential oil
20% oil solution
An. stephensi
Violet (V. odorata) essential oil
20% oil solution
An. stephensi
Sandalwood (S. album) essential oil
20% oil solution
An. stephensi
Litsea (L. cubeba) essential oil
20% oil solution
An. stephensi
Galbanum (F. galbaniflua) essential oil
20% oil solution
An. stephensi
C. longa essential oil
25%
An. dirus
7 < to < 8
R. mucronata oil
2 mg/cm2
An. stephensi
Thyme (T. serpyllum) essential oils
20% oil solutions
An. stephensi
Peppermint oil
1 ml without dilution
An. subpictus
R. mucronata oil
1 mg/cm2
An. stephensi
7
Lemon (C. limon) essential oil
20% oil solution
An. stephensi
6 < to < 7
A. monophylla essential oil
50 ppm
An. stephensi
rosewood (A. rosaeodora) essential oils
20% oil solution
An. stephensi
myrtle (M. communis) essential oil
20% oil solution
An. stephensi
peppermint (M. piperita) essential oil
20% oil solution
An. stephensi
6
Helichrysum (H. italicum) essential oil
20% oil solution
An. stephensi
C. martinii martinii var sofia oil
1 ml without dilution
An. sundaicus
Turmeric (C. longa) volatile oil
3 ml
An. dirus
Citronella
3 ml
An. dirus
Hairy basil oil
3 ml
An. dirus
C. rotundus Linn hexane extract
10%
An. stephensi
5 < to < 6
I. cairica essential oil
6%
An. stephensi
Eucalyptus (E. globulus) essential oils
20% oil solution
An. stephensi
Verbena (L. citriodora) essential oil
20% oil solution
An. stephensi
Chamomile (C. nobile) essential oil
20% oil solution
An. stephensi
C. longa essential oil
15%
An. dirus
C. longa essential oil
20%
An. dirus
M. charantia essential oil
6%
An. stephensi
C. citratus extract
2 mg/cm2
An. arabiensis
T. procumbens essential oil
6%
An. stephensI
Confertifolin essential oil
10 ppm
An. stephensi
5
Frankincense (B. carteri) essential oil
20% oil solution
An. stephensi
Sage (S. sclarea) essential oil
20% oil solution
An. stephensi
C. longa essential oil
10%
An. dirus
Confertifolin essential oil
P. tuberosa extract
5 ppm
2%
An. stephensi
An. stephensi
4 < to < 5
Clove oil
Clove oil
C. citratus extract
Myrtle essential oil
I. cairica essential oil
Cream 20%
20% gel
1/5 mg/cm2
50%
4%
An. dirus
An. dirus
An. arabiensis
An. stephensi
An. stephensi
4
C. longa essential oil
5%
An. dirus
P. tuberosa extract
1.5%
An. stephensi
Stratification of potential of plant based repellents by complete protection times, up to July 2018

Citronella

The repellency effect of citronella was investigated in several studies. Citronella is an essential oil extracted from the stems and leaves of different species of lemongrass (Cymbopogon spp.) [65]. Ansari et al. [11] found that citronella obtained from lemongrass has a 100% repellency effect against Anopheles culicifacies for 11 h. Amer et al. [6] and Tawatsin et al. [44] also reported that citronella could repel Anopheles stephensi and Anopheles dirus for 8 and 6 h, respectively. Moreover, 100 μl and 0.1 ml of citronella grass essential oil showed 2.16 and 0.8 h complete protection time against An. minimus [45] and An. dirus [47], respectively. The percentage repellency of citronella in other studies. [6, 52, 59], depending on the concentration of extracts and Anopheles species, was reported to be 52 to 85%.

Peppermint

Peppermint is a hybrid mint from cross-breeding spearmint (Mentha spicata) and water mint (Mentha aquatica), which contains biologically active constituents and has high menthone, menthol and methyl esters. The plant, indigenous to Europe, is now widespread in cultivation worldwide [66]. The effect of peppermint on Anopheles was explored in 3 studies. Ansari et al. [12] in a field trial revealed that 1 ml peppermint oil without dilution completely repels Anopheles annularis, An. culicifacies and Anopheles subpictus for 11, 9.6 and 7.3 h, respectively and the corresponding percentage repellency were 100%, 92.3% and 83.1%. In another study [6], 20% oil solutions of peppermint had 57% repellency and complete protection time for 6.5 h against An. stephensi. The study by Sritabutra et al. [47] also found that 0.1 ml of peppermint essential oil protect against An. dirus for 1.08 h.

Cinnamomum

Cinnamomum is a genus in the Laurel family, Lauraceae, several of which are investigated for their antibacterial activity by means of essential oils from bark and leaves [67]. Amer et al. [6] reported that 20% oil solutions of both camphor (Cinnamomum camphora) and cinnamon (Cinnamomum zeylanicum) had 100% repellency affect against An. stephensi. While, in the study conducted by Govindarajan et al. [22], C. zeylanicum at 1 mg/cm2 showed 1 h protection against An. subpictus.

Catnip (Nepeta cataria)

Catnip is a perennial plant that belongs to the mint family, Labiatae. This herb is spread from central Europe to central Asia and the Iranian plateaus [68]. The 20% oil solution of catnip in the study carried out by Amer et al. [6], with 100% protection against An. stephensi for 8 h, had a good effectiveness in preventing Anopheles mosquitoes. Nevertheless, Birkett et al. [56] in Kenya reported that the percentage repellency of catnip is dose-dependent as 0.01 mg, 0.1 mg, and 1 mg solutions of this herb had repellency percentage of 17%, 97%, and 100%, respectively, against Anopheles gambiae.

Thyme (Thymus serpyllum)

Thyme is one of nine species belonging to T. serpyllum, a perennial aromatic plant of the Mediterranean flora [69]. Thymus species have been reported to possess various beneficial effects, such as antiseptic, carminative, antimicrobial, and antioxidant properties [70]. The 20% oil solution of thyme in the study conducted by Amer et al. [6], with 100% protection against An. stephensi for 7.5 h, had a good effectiveness in preventing Anopheles mosquitoes. Nevertheless, another study [58] reported that the complete protection time of thyme at its maximum concentration (100%) is 1.7 h against Anopheles albimanus.

Olive (Olea europaea)

Olive (O. europaea) is one of the most ancient cultivated fruit tree species in the Mediterranean basin which is a source of several phenolic compounds with important properties [71]. The 20% oil solution of olive in the study conducted by Amer et al. [6], with a mean percentage of repellency (71.4%) and complete protection time against An. stephensi for 8 h, had a good effectiveness in preventing An. stephensi mosquitoes. Karunamoorthi et al. [50] also supported that burning of 25 g of dried O. europaea, comparable to Amer et al. [6], has a percentage repellency of 79.7 against Anopheles arabiensis.

Eucalyptus

Eucalyptus is a significant short rotation pulpy woody plant, grown generally in tropical regions [72]. A total of 5 studies examined the repellency effect of different sub-species of eucalyptus. In the laboratory trial by Amer et al. [6], narrow-leaved eucalyptus, lemon-scented eucalyptus, and broad-leaved eucalyptus protected against An. stephensi for 8 h, while Eucalyptus globulus complete protection time was reported to be 5.5 h. Auysawasdi et al. [41] used E. globulus essential oil at 5%, 10%, 15%, 20% and 25% concentrations against An. dirus. All concentrations of E. globulus provided complete repellency ranging from 1.7 to 3.4 h, depending on the concentration applied. Eucalyptus globulus at 0.1 ml dose in a study [47] repelled An. dirus for 1.58 h. Besides, 100 μl Eucalyptus citriodora repelled An. minimus for 0.5 h [45]. In contrast, Seyoum et al. found that lemon eucalyptus extract is not affective against An. gambiae [54].

Myrtle (Myrtus communis)

Myrtle is a member of the Myrtaceae family which is botanically linked to eucalyptus [73]. In 2 studies, repellency effectiveness of myrtle was investigated. The 20% oil solution of myrtle in the study conducted by Amer et al. [6], with mean percentage repellency of 42.8% and complete protection time against An. stephensi for 6.5 h, had a good effectiveness in preventing Anopheles mosquitoes. Tavassoli et al. [62] also supported that myrtle at 50% concentration repels An. stephensi for 4.36 h.

Basil

Basil is an annual plant of the Ocimum genus, which belongs to the Lamiaceae family and is used in traditional medicine in many parts of the world [74]. In 6 studies, repellency effectiveness of basil against different Anopheles species was investigated. In the laboratory trial by Amer et al. [6], 20% oil solution of basil essential oil, with mean percentage repellency of 66.7%, had 100% protective impact against An. stephensi for 3.5 h. Phasomkusolsil et al. [42] used basil essential oil at 0.02, 0.10, and 0.21 mg/cm2 concentrations against An. dirus. The percentage repellency was dose–response and was reported to be 66%, 74% and 96%, respectively. Basil at 0.1 ml dose in other studies [47, 61] repelled Anopheles for 1.5 h and 0.75 h, whereas, Tawatsin et al. [44] found that hairy basil oil provides 100% protection against An. dirus for 6 h. In contrast, in the study by Seyoum et al. [54], no remarkable repellency effect against An. gambiae was identified.

Tagetes (Tagetes minuta)

Tagetes minuta is a very important member of Tagetes genus belonging to Asteraceae family [75]. In 2 studies, repellency effectiveness of tagetes was explored. The 20% oil solution of T. minuta in the study conducted by Amer et al. [6], with complete protection time for 8 h, had a good effectiveness in preventing against An. stephensi. In contrast, Seyoum et al. found that tagetes extract is not affective against An. gambiae [54].

Neem (Azadirachta indica)

Neem is a versatile tree broadly grown in tropical areas of India [76]. The repellency effect of Neem against different species of Anopheles was investigated in 2 studies. The 20% Neem oil in a field trial conducted by Amer et al. [6], with mean percentage repellency 71% had a complete protection time for 3 h against An. arabiensis. Nevertheless, Seyoum et al. found that Neem extract is not affective against An. gambiae [54].

Rosemary (Rosmarinus officinalis)

Rosemary is an evergreen aromatic shrub with a Mediterranean origin, which belongs to Lamiaceae (Labiatae) family [77]. In 2 studies, repellency effectiveness of rosemary was reported. The 20% oil solution of rosemary in the study conducted by Amer et al. [6], with 100% protection against An. stephensi for 8 h, had a good effectiveness in preventing Anopheles mosquitoes. Govindarajan et al. [22] also supported that rosemary at 1, 2.5 and 5 mg/cm2 concentrations completely repels An. subpictus for 1, 1, and 1.5 h, respectively.

Clove (Syzygium aromaticum)

Clove is a naturally occurring spice which has been shown to possess anti-bacterial, anti-oxidant, anti-pyretic, anti-candidal, and aphrodisiac activities [78]. The repellency effect of clove against different species of Anopheles was investigated in 6 studies. In the study by Phasomkusolsil et al. [42], clove at 0.02, 0.10 and 0.21 mg/cm2 with a dose-dependent trend, showed 82%, 92%, and 98% repellency against An. dirus. Barnard et al. [58] used clove essential oil at 25%, 50%, 75%, and 100% concentrations against An. albimanus and found that all concentrations of clove provided complete repellency ranging from 1.25 to 3.55 h, depending on the concentration applied. Consistently, clove at 10%, 50%, and 100% concentrations, with a dose-dependent trend, showed 1.33, 2.66, and 3.5 h complete repellency against An. dirus [43]. Anopheles dirus was repelled by clove for 1 h in laboratory conditions in Thailand [47]. Another study [45] reported that clove repels An. minimus for 2 h. Moreover, 20% gel of clove protected against An. dirus for 4.5 h [46]. All these findings support that clove can be a considered as moderate repellent.

Orange oil (Citrus sinensis)

Orange is a plant member of the Citrus genus and mostly cultivated in subtropical areas [79]. The repellency effect of orange against different species of Anopheles was investigated in 4 studies. In the study by Murugan et al. [27], orange extract at 50, 150 and 250, 350, and 450 ppm showed 0, 0.5, 0.5, 1.5 and 2 h complete protection time repellency (100%) against An. stephensi, respectively. While, in another study [45], it repelled An. minimus for 0.83 h. Similarly, Sritabutra et al. [47] showed that orange repels An. dirus for 0.83 h. Phasomkusolsi et al. [42] also found that orange at 0.02, 0.10, and 0.21 mg/cm2, with a dose-dependent trend, has 44%, 54%, and 84% repellency against An. dirus, respectively.

Turmeric (C. longa)

The medicinal plant turmeric, which is a perennial herb, and a member of Zingiberacae family, is commonly used as a spice in human food [80]. In 3 studies, repellency effectiveness of turmeric was examined. Auysawasdi et al. [41] used turmeric essential oil at 5%, 10%, 15%, 20%, and 25% concentrations against An. dirus. All concentrations of turmeric, with a dose–response manner, provided complete repellency ranging from 4 to 8 h, depending on the concentration applied. Other studies also found that turmeric oil repels An. dirus for 6 h [44] and An. minimus [45] for 1 h.

Discussion

A high level of insecticide resistance has made because of the chemical control of the pests and vectors. To overcome this problem, it is essential to research for alternative approaches to vector control. The field of herbal repellents is extremely fertile as people demand mosquitoes’ repellents that are safe, pleasant to usage and ecologically maintainable. As cost is a significant factor, examination of the use of local florae as repellents is highly suggested. Essential oils and extracts of plants are emerging as potential agents for Anopheles spp. control, with easy-to-administer, low-cost, and risk-free properties. In the present systematic review the highest repellency effect against Anopheles mosquitoes was found from L. sinense extract, followed by citronella, pine, D. sissoo, peppermint and R. mucronata oils with complete protection time ranging from 9.1 to 11.5 h. Essential oils from plants such as lavender, camphor, catnip, geranium, jasmine, broad-leaved eucalyptus, lemongrass, lemon-scented eucalyptus, amyris, narrow-leaved eucalyptus, carotin, cedarwood, chamomile, cinnamon oil, juniper, cajeput, soya bean, rosemary, niaouli, olive, tagetes, violet, sandalwood, litsea, galbanum, and C. longa also showed good repellency with 8 h complete repellency against different species of Anopheles genus.
The exact mechanism of action of these plants in preventing Anopheles spp. bites has not yet been completely clarified. For citronella, as one of the most explored plant for repellency effect against various mosquitoes, it is reported that active compounds in citronella extract for repelling mosquitoes are eugenol, eucalyptol, camphor, linalool, citral, and citronellal [81]. Some data proposes that these agents interfere with olfactory receptors of mosquitoes [82]. A recent study revealed that An. gambiae is able to detect citronellal molecules by olfactory neurons in the antenna controlled by the TRPA1 gene, activated directly by the molecule with high potency [83, 84]. Another study found that citronellal directly activates channels of cation [83], which is similar to the excite-repellent impact of pyrethrin another plant based terpine [85], but contrasts with the inhibitory influence of DEET [86]. Although the protection time of citronella oil is shorter than that of DEET. Citronella oil could provide sufficient protection time against mosquitoes. For other plants, the underlying mechanism remains to be elucidated. Possibly, the most important aspect in increasing the permanence of such repellents that are effective but volatile is improving formulations of plant extracts to elevate their longevity through the development of nanoemulsions, improved formulations, and fixatives. While alternative uses such as excite-repellency and spatial activity have also been examined [87].
Some caution is important when interpreting the findings. First, a poorly inspected confounding aspect is the effect of sweating on the effectiveness and protection time of repellents, which are approximately all water-soluble, and this might limits the comparability of repellents. Second, in field trial studies, the number of human volunteers as well as the season during which the trial had been performed differed among the included studies. Climate could also affect mosquito behaviour and the variance is controlled by standardizing humidity temperature in ‘arm-in-cage’ trials; however, these parameters are not always similar in different trials or conform to the mosquito environment standards. Third, it should be highlighted that some plant compounds are irritating to the skin and/or highly toxic to mammals, and natural does not equate to safe. Thus, plants with potential repellency properties should be tested for their possible unpleasant side effects before introducing as alternative products. Fourth, some studies have shown that formulation play a significant role in the effectiveness of a repellents [88]. However, studies have focused more on the search for active compounds than on optimal formulations [8, 29]. Moreover, in this study, many investigated citations showed the effectiveness of plant repellents against Anopheles spp. mosquitoes. However, when focusing on Anopheles subspecies, there were only a few publications indicating the efficacy of each plant, which resulted in a difficulty to reach a robust conclusion regarding the best herbal candidates to develop new commercial repellents.
This is another area for additional research. Finally, current studies are difficult to be compared and the repellency effectiveness may also differ among subspecies. Unfortunately, a few studies aimed to compare repellency efficacy of a special plant on subspecies of Anopheles. The heterogeneity in the results of the previous studies might be stem from differences in compound concentrations, application dosages, mosquito species, formulations and the assessment method of repellency, as in some trials the protection time until mosquitoes landed was recorded, whereas in the majority of studies the time until mosquitoes bite was considered. Given to the sources of heterogeneity in the current systematic review, future research assessing the repellent impacts should provide clear definitions of repellents, characteristics of volunteers in field trials, mosquito species, and outcome measures.

Conclusion

The results of this study showed that some plants essential oils and extracts have significant repellent activity against Anopheles spp. mosquitoes. The studies in the last two decades have focused on the search for new natural repellents and some plants displayed good repellent activities, but few natural products have been developed so far [88, 89]. This review calls for the attention of entomologists and people in the field of mosquito-transmitted diseases for understanding the value and potential position of the plant-derived repellents and their role in disease control.

Acknowledgements

Not applicable.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Alayo M, Femi-Oyewo M, Bakre L, Fashina A. Larvicidal potential and mosquito repellent activity of Cassia mimosoides extracts. Southeast Asian J Trop Med Public Health. 2015;46:596–601.PubMed Alayo M, Femi-Oyewo M, Bakre L, Fashina A. Larvicidal potential and mosquito repellent activity of Cassia mimosoides extracts. Southeast Asian J Trop Med Public Health. 2015;46:596–601.PubMed
2.
Zurück zum Zitat Karunamoorthi K, Girmay A, Hayleeyesus SF. Mosquito repellent activity of essential oil of Ethiopian ethnomedicinal plant against Afro-tropical malarial vector Anopheles arabiensis. J King Saud Univ Sci. 2014;26:305–10.CrossRef Karunamoorthi K, Girmay A, Hayleeyesus SF. Mosquito repellent activity of essential oil of Ethiopian ethnomedicinal plant against Afro-tropical malarial vector Anopheles arabiensis. J King Saud Univ Sci. 2014;26:305–10.CrossRef
3.
Zurück zum Zitat Karunamoorthi K. The counterfeit anti-malarial is a crime against humanity: a systematic review of the scientific evidence. Malar J. 2014;13:209.PubMedPubMedCentralCrossRef Karunamoorthi K. The counterfeit anti-malarial is a crime against humanity: a systematic review of the scientific evidence. Malar J. 2014;13:209.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Sanghong R, Junkum A, Chaithong U, Jitpakdi A, Riyong D, Tuetun B, et al. Remarkable repellency of Ligusticum sinense (Umbelliferae), a herbal alternative against laboratory populations of Anopheles minimus and Aedes aegypti (Diptera: Culicidae). Malar J. 2015;14:307.PubMedPubMedCentralCrossRef Sanghong R, Junkum A, Chaithong U, Jitpakdi A, Riyong D, Tuetun B, et al. Remarkable repellency of Ligusticum sinense (Umbelliferae), a herbal alternative against laboratory populations of Anopheles minimus and Aedes aegypti (Diptera: Culicidae). Malar J. 2015;14:307.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Soonwera M. Efficacy of essential oil from Cananga odorata (Lamk.) Hook. f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say). Parasitol Res. 2015;114:4531–43.PubMedCrossRef Soonwera M. Efficacy of essential oil from Cananga odorata (Lamk.) Hook. f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say). Parasitol Res. 2015;114:4531–43.PubMedCrossRef
6.
Zurück zum Zitat Amer A, Mehlhorn H. Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res. 2006;99:478.PubMedCrossRef Amer A, Mehlhorn H. Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res. 2006;99:478.PubMedCrossRef
7.
Zurück zum Zitat Govindarajan M, Rajeswary M, Arivoli S, Tennyson S, Benelli G. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors? Parasitol Res. 2016;115:1807–16.PubMedCrossRef Govindarajan M, Rajeswary M, Arivoli S, Tennyson S, Benelli G. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors? Parasitol Res. 2016;115:1807–16.PubMedCrossRef
8.
Zurück zum Zitat Panneerselvam C, Murugan K. Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res. 2013;112:679–92.PubMedCrossRef Panneerselvam C, Murugan K. Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res. 2013;112:679–92.PubMedCrossRef
9.
Zurück zum Zitat Govindarajan M, Sivakumar R. Repellent properties of Cardiospermum halicacabum Linn (Family: Sapindaceae) plant leaf extracts against three important vector mosquitoes. Asian Pac J Trop Biomed. 2012;2:602–7.PubMedPubMedCentralCrossRef Govindarajan M, Sivakumar R. Repellent properties of Cardiospermum halicacabum Linn (Family: Sapindaceae) plant leaf extracts against three important vector mosquitoes. Asian Pac J Trop Biomed. 2012;2:602–7.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A. Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Asian Pac J Trop Biomed. 2011;1:43–8.PubMedPubMedCentralCrossRef Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A. Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Asian Pac J Trop Biomed. 2011;1:43–8.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Ansari M, Mittal P, Razdan R, Sreehari U. Larvicidal and mosquito repellent activities of pine (Pinus longifolia, Family: Pinaceae) oil. J Vector Borne Dis. 2005;42:95.PubMed Ansari M, Mittal P, Razdan R, Sreehari U. Larvicidal and mosquito repellent activities of pine (Pinus longifolia, Family: Pinaceae) oil. J Vector Borne Dis. 2005;42:95.PubMed
12.
Zurück zum Zitat Ansari M, Vasudevan P, Tandon M, Razdan R. Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Bioresource Technol. 2000;71:267–71.CrossRef Ansari M, Vasudevan P, Tandon M, Razdan R. Larvicidal and mosquito repellent action of peppermint (Mentha piperita) oil. Bioresource Technol. 2000;71:267–71.CrossRef
13.
Zurück zum Zitat Ansari M, Razdan R, Tandon M, Vasudevan P. Larvicidal and repellent actions of Dalbergia sissoo Roxb (F Leguminosae) oil against mosquitoes. Bioresource Technol. 2000;73:207–11.CrossRef Ansari M, Razdan R, Tandon M, Vasudevan P. Larvicidal and repellent actions of Dalbergia sissoo Roxb (F Leguminosae) oil against mosquitoes. Bioresource Technol. 2000;73:207–11.CrossRef
14.
Zurück zum Zitat Amerasan D, Murugan K, Kovendan K, Kumar PM, Panneerselvam C, Subramaniam J, et al. Adulticidal and repellent properties of Cassia tora Linn. (Family: Caesalpinaceae) against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Parasitol Res. 2012;111:1953–64.PubMedCrossRef Amerasan D, Murugan K, Kovendan K, Kumar PM, Panneerselvam C, Subramaniam J, et al. Adulticidal and repellent properties of Cassia tora Linn. (Family: Caesalpinaceae) against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Parasitol Res. 2012;111:1953–64.PubMedCrossRef
15.
Zurück zum Zitat Baskar K, Sudha V, Nattudurai G, Ignacimuthu S, Duraipandiyan V, Jayakumar M, et al. Larvicidal and repellent activity of the essential oil from Atalantia monophylla on three mosquito vectors of public health importance, with limited impact on non-target zebra fish. Phys Mol Plant Pathol. 2018;101:197–201.CrossRef Baskar K, Sudha V, Nattudurai G, Ignacimuthu S, Duraipandiyan V, Jayakumar M, et al. Larvicidal and repellent activity of the essential oil from Atalantia monophylla on three mosquito vectors of public health importance, with limited impact on non-target zebra fish. Phys Mol Plant Pathol. 2018;101:197–201.CrossRef
16.
Zurück zum Zitat Govindarajan M. Larvicidal and repellent activities of Sida acuta Burm. F. (Family: Malvaceae) against three important vector mosquitoes. Asian Pac J Trop Med. 2010;3:691–5.CrossRef Govindarajan M. Larvicidal and repellent activities of Sida acuta Burm. F. (Family: Malvaceae) against three important vector mosquitoes. Asian Pac J Trop Med. 2010;3:691–5.CrossRef
17.
Zurück zum Zitat Govindarajan M. Ovicidal and repellent properties of Coccinia indica Wight and Arn (Family: Cucurbitaceae) against three important vector mosquitoes. Eur Rev Med Pharmacol Sci. 2011;15:1010–9.PubMed Govindarajan M. Ovicidal and repellent properties of Coccinia indica Wight and Arn (Family: Cucurbitaceae) against three important vector mosquitoes. Eur Rev Med Pharmacol Sci. 2011;15:1010–9.PubMed
18.
Zurück zum Zitat Govindarajan M, Kadaikunnan S, Alharbi NS, Benelli G. Acute toxicity and repellent activity of the Origanum scabrum Boiss & Heldr (Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. Enviro Sci Pollut Res. 2016;23:23228–38.CrossRef Govindarajan M, Kadaikunnan S, Alharbi NS, Benelli G. Acute toxicity and repellent activity of the Origanum scabrum Boiss & Heldr (Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. Enviro Sci Pollut Res. 2016;23:23228–38.CrossRef
19.
Zurück zum Zitat Jeyabalan D, Arul N, Thangamathi P. Studies on effects of Pelargonium citrosa leaf extracts on malarial vector. Anopheles stephensi Liston. Bioresource Technol. 2003;89:185–9.CrossRef Jeyabalan D, Arul N, Thangamathi P. Studies on effects of Pelargonium citrosa leaf extracts on malarial vector. Anopheles stephensi Liston. Bioresource Technol. 2003;89:185–9.CrossRef
20.
Zurück zum Zitat Govindarajan M, Rajeswary M, Sivakumar R. Repellent properties of Delonix elata (L) Gamble (Family: Fabaceae) against malaria vector Anopheles stephensi (Liston)(Diptera: Culicidae). J Saudi Soc Agric Sci. 2015;14:128–33. Govindarajan M, Rajeswary M, Sivakumar R. Repellent properties of Delonix elata (L) Gamble (Family: Fabaceae) against malaria vector Anopheles stephensi (Liston)(Diptera: Culicidae). J Saudi Soc Agric Sci. 2015;14:128–33.
21.
Zurück zum Zitat Govindarajan M, Sivakumar R. Laboratory evaluation of Indian medicinal plants as repellents against malaria, dengue, and filariasis vector mosquitoes. Parasitol Res. 2015;114:601–12.PubMedCrossRef Govindarajan M, Sivakumar R. Laboratory evaluation of Indian medicinal plants as repellents against malaria, dengue, and filariasis vector mosquitoes. Parasitol Res. 2015;114:601–12.PubMedCrossRef
22.
Zurück zum Zitat Govindarajan M. Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med. 2011;4:106–11.PubMedCrossRef Govindarajan M. Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med. 2011;4:106–11.PubMedCrossRef
23.
Zurück zum Zitat Haldar KM, Ghosh P, Chandra G. Larvicidal, adulticidal, repellency and smoke toxic efficacy of Ficus krishnae against Anopheles stephensi Liston and Culex vishnui group mosquitoes. Asian Pac J Trop Dis. 2014;4:S214–20.CrossRef Haldar KM, Ghosh P, Chandra G. Larvicidal, adulticidal, repellency and smoke toxic efficacy of Ficus krishnae against Anopheles stephensi Liston and Culex vishnui group mosquitoes. Asian Pac J Trop Dis. 2014;4:S214–20.CrossRef
24.
Zurück zum Zitat Kovendan K, Murugan K, Kumar PM, Thiyagarajan P, William SJ. Ovicidal, repellent, adulticidal and field evaluations of plant extract against dengue, malaria and filarial vectors. Parasitol Res. 2013;112:1205–19.PubMedCrossRef Kovendan K, Murugan K, Kumar PM, Thiyagarajan P, William SJ. Ovicidal, repellent, adulticidal and field evaluations of plant extract against dengue, malaria and filarial vectors. Parasitol Res. 2013;112:1205–19.PubMedCrossRef
25.
Zurück zum Zitat Krishnappa K, Elumalai K, Dhanasekaran S, Gokulakrishnan J. Larvicidal and repellent properties of Adansonia digitata against medically important human malarial vector mosquito Anopheles stephensi (Diptera: Culicidae). J Vector Borne Dis. 2012;49:86.PubMed Krishnappa K, Elumalai K, Dhanasekaran S, Gokulakrishnan J. Larvicidal and repellent properties of Adansonia digitata against medically important human malarial vector mosquito Anopheles stephensi (Diptera: Culicidae). J Vector Borne Dis. 2012;49:86.PubMed
26.
Zurück zum Zitat Naine SJ, Devi S. Larvicidal and repellent properties of Streptomyces sp. VITJS4 crude extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Pol J Microbiol. 2014;63:341–8.PubMedCrossRef Naine SJ, Devi S. Larvicidal and repellent properties of Streptomyces sp. VITJS4 crude extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Pol J Microbiol. 2014;63:341–8.PubMedCrossRef
27.
Zurück zum Zitat Murugan K, Kumar PM, Kovendan K, Amerasan D, Subrmaniam J, Hwang J-S. Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2012;111:1757–69.PubMedCrossRef Murugan K, Kumar PM, Kovendan K, Amerasan D, Subrmaniam J, Hwang J-S. Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2012;111:1757–69.PubMedCrossRef
28.
Zurück zum Zitat Maheswaran R, Ignacimuthu S. Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus. Ecotoxicol Environ Saf. 2013;97:26–31.PubMedCrossRef Maheswaran R, Ignacimuthu S. Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus. Ecotoxicol Environ Saf. 2013;97:26–31.PubMedCrossRef
29.
Zurück zum Zitat Panneerselvam C, Murugan K, Kovendan K, Kumar PM. Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol Res. 2012;111:2241–51.PubMedCrossRef Panneerselvam C, Murugan K, Kovendan K, Kumar PM. Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (Family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol Res. 2012;111:2241–51.PubMedCrossRef
30.
Zurück zum Zitat Prabhu K, Murugan K, Nareshkumar A, Ramasubramanian N, Bragadeeswaran S. Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pac J Trop Biomed. 2011;1:124–9.PubMedPubMedCentralCrossRef Prabhu K, Murugan K, Nareshkumar A, Ramasubramanian N, Bragadeeswaran S. Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pac J Trop Biomed. 2011;1:124–9.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Almehmadi RM. Oviposition deterrent and skin repellent activities of Artemisia herba alba, Matricharia chamomella and Melia azedarach against Culex quinquefasciatus. Saudi J Biol Sci. 2008;15:1012. Almehmadi RM. Oviposition deterrent and skin repellent activities of Artemisia herba alba, Matricharia chamomella and Melia azedarach against Culex quinquefasciatus. Saudi J Biol Sci. 2008;15:1012.
32.
Zurück zum Zitat Rajkumar S, Jebanesan A. Repellent activity of selected plant essential oils against the malarial fever mosquito Anopheles stephensi. Trop Biomed. 2007;24:71–5.PubMed Rajkumar S, Jebanesan A. Repellent activity of selected plant essential oils against the malarial fever mosquito Anopheles stephensi. Trop Biomed. 2007;24:71–5.PubMed
33.
Zurück zum Zitat Rawani A, Banerjee A, Chandra G. Mosquito larvicidal and biting deterrency activity of bud of Polianthes tuberosa plants extract against Anopheles stephensi and Culex quinquefasciatus. J Commun Dis. 2012;44:79–89. Rawani A, Banerjee A, Chandra G. Mosquito larvicidal and biting deterrency activity of bud of Polianthes tuberosa plants extract against Anopheles stephensi and Culex quinquefasciatus. J Commun Dis. 2012;44:79–89.
34.
Zurück zum Zitat Reegan AD, Kinsalin AV, Paulraj MG, Ignacimuthu S. Larvicidal, ovicidal and repellent activities of marine sponge Cliona celata (Grant) extracts against Anopheles stephensi Liston (Diptera: Culicidae). Asian Pac J Trop Med. 2015;8:29–34.PubMedCrossRef Reegan AD, Kinsalin AV, Paulraj MG, Ignacimuthu S. Larvicidal, ovicidal and repellent activities of marine sponge Cliona celata (Grant) extracts against Anopheles stephensi Liston (Diptera: Culicidae). Asian Pac J Trop Med. 2015;8:29–34.PubMedCrossRef
35.
Zurück zum Zitat Swathi S, Murugananthan G, Ghosh S, Pradeep A. Larvicidal and repellent activities of ethanolic extract of Datura stramonium leaves against mosquitoes. Int J Pharm Phytochem Res. 2012;4:25–7. Swathi S, Murugananthan G, Ghosh S, Pradeep A. Larvicidal and repellent activities of ethanolic extract of Datura stramonium leaves against mosquitoes. Int J Pharm Phytochem Res. 2012;4:25–7.
36.
Zurück zum Zitat Das M, Ansari M. Evaluation of repellent action of Cymbopogan martinii martinii Stapf var sofia oil against Anopheles sundaicus in tribal villages of Car Nicobar Island, Andaman & Nicobar Islands, India. J Vector Borne Dis. 2003;40:100.PubMed Das M, Ansari M. Evaluation of repellent action of Cymbopogan martinii martinii Stapf var sofia oil against Anopheles sundaicus in tribal villages of Car Nicobar Island, Andaman & Nicobar Islands, India. J Vector Borne Dis. 2003;40:100.PubMed
37.
Zurück zum Zitat Singh S, Raghavendra K, Dash A. Evaluation of hexane extract of tuber of root of Cyperus rotundus Linn (Cyperaceae) for repellency against mosquito vectors. J Parasitol Res. 2009;2009:e908085.CrossRef Singh S, Raghavendra K, Dash A. Evaluation of hexane extract of tuber of root of Cyperus rotundus Linn (Cyperaceae) for repellency against mosquito vectors. J Parasitol Res. 2009;2009:e908085.CrossRef
38.
Zurück zum Zitat Kamaraj C, Rahuman AA, Bagavan A, Elango G, Zahir AA, Santhoshkumar T. Larvicidal and repellent activity of medicinal plant extracts from Eastern Ghats of South India against malaria and filariasis vectors. Asian Pac J Trop Med. 2011;4:698–705.PubMedCrossRef Kamaraj C, Rahuman AA, Bagavan A, Elango G, Zahir AA, Santhoshkumar T. Larvicidal and repellent activity of medicinal plant extracts from Eastern Ghats of South India against malaria and filariasis vectors. Asian Pac J Trop Med. 2011;4:698–705.PubMedCrossRef
39.
Zurück zum Zitat Kumar KP, Murugan K, Kovendan K, Kumar AN, Hwang J-S, Barnard DR. Combined effect of seaweed (Sargassum wightii) and Bacillus thuringiensis var israelensis on the coastal mosquito, Anopheles sundaicus. Tamil Nadu India Sci Asia. 2012;38:141–6. Kumar KP, Murugan K, Kovendan K, Kumar AN, Hwang J-S, Barnard DR. Combined effect of seaweed (Sargassum wightii) and Bacillus thuringiensis var israelensis on the coastal mosquito, Anopheles sundaicus. Tamil Nadu India Sci Asia. 2012;38:141–6.
40.
Zurück zum Zitat Madhiyazhagan P, Murugan K, Kumar AN, Nataraj T. Extraction of mosquitocidals from Ocimum canum leaves for the control of dengue and malarial vectors. Asian Pac J Trop Med. 2014;4:S549–55.CrossRef Madhiyazhagan P, Murugan K, Kumar AN, Nataraj T. Extraction of mosquitocidals from Ocimum canum leaves for the control of dengue and malarial vectors. Asian Pac J Trop Med. 2014;4:S549–55.CrossRef
41.
Zurück zum Zitat Auysawasdi N, Chuntranuluck S, Phasomkusolsil S, Keeratinijakal V. Improving the effectiveness of three essential oils against Aedes aegypti (Linn.) and Anopheles dirus (Peyton and Harrison). Parasitol Res. 2016;115:99–106.PubMedCrossRef Auysawasdi N, Chuntranuluck S, Phasomkusolsil S, Keeratinijakal V. Improving the effectiveness of three essential oils against Aedes aegypti (Linn.) and Anopheles dirus (Peyton and Harrison). Parasitol Res. 2016;115:99–106.PubMedCrossRef
42.
Zurück zum Zitat Phasomkusolsil S, Soonwera M. Comparative mosquito repellency of essential oils against Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). Asian Pac J Trop Biomed. 2011;1:S113–8.CrossRef Phasomkusolsil S, Soonwera M. Comparative mosquito repellency of essential oils against Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say). Asian Pac J Trop Biomed. 2011;1:S113–8.CrossRef
43.
Zurück zum Zitat Trongtokit Y, Rongsriyam Y, Komalamisra N, Apiwathnasorn C. Comparative repellency of 38 essential oils against mosquito bites. Phytother Res. 2005;19:303–9.PubMedCrossRef Trongtokit Y, Rongsriyam Y, Komalamisra N, Apiwathnasorn C. Comparative repellency of 38 essential oils against mosquito bites. Phytother Res. 2005;19:303–9.PubMedCrossRef
44.
Zurück zum Zitat Tawatsin A, Wratten SD, Scott RR, Thavara U, Techadamrongsin Y. Repellency of volatile oils from plants against three mosquito vectors. J Vector Ecol. 2001;26:76–82.PubMed Tawatsin A, Wratten SD, Scott RR, Thavara U, Techadamrongsin Y. Repellency of volatile oils from plants against three mosquito vectors. J Vector Ecol. 2001;26:76–82.PubMed
45.
Zurück zum Zitat Phasomkusolsil S, Soonwera M. Insect repellent activity of medicinal plant oils against Aedes aegypti (Linn.), Anopheles minimus (Theobald) and Culex quinquefasciatus Say based on protection time and biting rate. Southeast Asian J Trop Med Public Health. 2010;41:831.PubMed Phasomkusolsil S, Soonwera M. Insect repellent activity of medicinal plant oils against Aedes aegypti (Linn.), Anopheles minimus (Theobald) and Culex quinquefasciatus Say based on protection time and biting rate. Southeast Asian J Trop Med Public Health. 2010;41:831.PubMed
46.
Zurück zum Zitat Trongtokit Y, Curtis CF, Rongsriyam Y. Efficacy of repellent products against caged and free flying Anopheles stephensi mosquitoes. Southeast Asian J Trop Med Public Health. 2005;36:1423.PubMed Trongtokit Y, Curtis CF, Rongsriyam Y. Efficacy of repellent products against caged and free flying Anopheles stephensi mosquitoes. Southeast Asian J Trop Med Public Health. 2005;36:1423.PubMed
47.
Zurück zum Zitat Sritabutra D, Soonwera M, Waltanachanobon S, Poungjai S. Evaluation of herbal essential oil as repellents against Aedes aegypti (L.) and Anopheles dirus Peyton & Harrion. Asian Pac J Trop Biomed. 2011;1:S124–8.CrossRef Sritabutra D, Soonwera M, Waltanachanobon S, Poungjai S. Evaluation of herbal essential oil as repellents against Aedes aegypti (L.) and Anopheles dirus Peyton & Harrion. Asian Pac J Trop Biomed. 2011;1:S124–8.CrossRef
48.
Zurück zum Zitat Tuetun B, Choochote W, Kanjanapothi D, Rattanachanpichai E, Chaithong U, Chaiwong P, et al. Repellent properties of celery, Apium graveolens L, compared with commercial repellents, against mosquitoes under laboratory and field conditions. Trop Med Int Health. 2005;10:1190–8.PubMedCrossRef Tuetun B, Choochote W, Kanjanapothi D, Rattanachanpichai E, Chaithong U, Chaiwong P, et al. Repellent properties of celery, Apium graveolens L, compared with commercial repellents, against mosquitoes under laboratory and field conditions. Trop Med Int Health. 2005;10:1190–8.PubMedCrossRef
49.
Zurück zum Zitat Abiy E, Gebre-Michael T, Balkew M, Medhin G. Repellent efficacy of DEET, MyggA, neem (Azedirachta indica) oil and chinaberry (Melia azedarach) oil against Anopheles arabiensis, the principal malaria vector in Ethiopia. Malar J. 2015;14:187.PubMedPubMedCentralCrossRef Abiy E, Gebre-Michael T, Balkew M, Medhin G. Repellent efficacy of DEET, MyggA, neem (Azedirachta indica) oil and chinaberry (Melia azedarach) oil against Anopheles arabiensis, the principal malaria vector in Ethiopia. Malar J. 2015;14:187.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Karunamoorthi K, Mulelam A, Wassie F. Laboratory evaluation of traditional insect/mosquito repellent plants against Anopheles arabiensis, the predominant malaria vector in Ethiopia. Parasitol Res. 2008;103:529–34.PubMedCrossRef Karunamoorthi K, Mulelam A, Wassie F. Laboratory evaluation of traditional insect/mosquito repellent plants against Anopheles arabiensis, the predominant malaria vector in Ethiopia. Parasitol Res. 2008;103:529–34.PubMedCrossRef
51.
Zurück zum Zitat Karunamoorthi K, Ilango K, Murugan K. Laboratory evaluation of traditionally used plant-based insect repellent against the malaria vector Anopheles arabiensis Patton (Diptera: Culicidae). Parasitol Res. 2010;106:1217–23.PubMedCrossRef Karunamoorthi K, Ilango K, Murugan K. Laboratory evaluation of traditionally used plant-based insect repellent against the malaria vector Anopheles arabiensis Patton (Diptera: Culicidae). Parasitol Res. 2010;106:1217–23.PubMedCrossRef
52.
Zurück zum Zitat Solomon B, Gebre-Mariam T, Asres K. Mosquito repellent actions of the essential oils of Cymbopogon citratus, Cymbopogon nardus and Eucalyptus citriodora: evaluation and formulation studies. J Essent Oil Bearing Plants. 2012;15:766–73.CrossRef Solomon B, Gebre-Mariam T, Asres K. Mosquito repellent actions of the essential oils of Cymbopogon citratus, Cymbopogon nardus and Eucalyptus citriodora: evaluation and formulation studies. J Essent Oil Bearing Plants. 2012;15:766–73.CrossRef
53.
Zurück zum Zitat Alwala O, Wanzala W, Inyambukho R, Osundwa E, Ndiege I. Characterization and evaluation of repellent effect of essential oil of Mangifera indica L. from Kenya. J Essent Oil Bearing Plants. 2010;13:85–96.CrossRef Alwala O, Wanzala W, Inyambukho R, Osundwa E, Ndiege I. Characterization and evaluation of repellent effect of essential oil of Mangifera indica L. from Kenya. J Essent Oil Bearing Plants. 2010;13:85–96.CrossRef
54.
Zurück zum Zitat Seyoum A, Pålsson K, Kung’a S, Kabiru E, Lwande W, Killeen G, et al. Traditional use of mosquito-repellent plants in western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae: ethnobotanical studies and application by thermal expulsion and direct burning. Trans R Soc Trop Med Hyg. 2002;96:225–31.PubMedCrossRef Seyoum A, Pålsson K, Kung’a S, Kabiru E, Lwande W, Killeen G, et al. Traditional use of mosquito-repellent plants in western Kenya and their evaluation in semi-field experimental huts against Anopheles gambiae: ethnobotanical studies and application by thermal expulsion and direct burning. Trans R Soc Trop Med Hyg. 2002;96:225–31.PubMedCrossRef
55.
Zurück zum Zitat Mayeku W, Omollo N, Odalo O, Hassanali A. Chemical composition and mosquito repellency of essential oil of Conyza newii propagated in different geographical locations of Kenya. Med Vet Entomol. 2014;28:253–6.PubMedCrossRef Mayeku W, Omollo N, Odalo O, Hassanali A. Chemical composition and mosquito repellency of essential oil of Conyza newii propagated in different geographical locations of Kenya. Med Vet Entomol. 2014;28:253–6.PubMedCrossRef
56.
Zurück zum Zitat Birkett MA, Hassanali A, Hoglund S, Pettersson J, Pickett JA. Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochemistry. 2011;72:109–14.PubMedCrossRef Birkett MA, Hassanali A, Hoglund S, Pettersson J, Pickett JA. Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochemistry. 2011;72:109–14.PubMedCrossRef
57.
Zurück zum Zitat Innocent E, Hassanali A. Constituents of essential oils from three plant species used in traditional medicine and insect control in Tanzania. J Herb Spice Med Plants. 2014;21:219–29.CrossRef Innocent E, Hassanali A. Constituents of essential oils from three plant species used in traditional medicine and insect control in Tanzania. J Herb Spice Med Plants. 2014;21:219–29.CrossRef
58.
Zurück zum Zitat Barnard DR. Repellency of essential oils to mosquitoes (Diptera: Culicidae). J Med Entomol. 1999;36:625–9.PubMedCrossRef Barnard DR. Repellency of essential oils to mosquitoes (Diptera: Culicidae). J Med Entomol. 1999;36:625–9.PubMedCrossRef
59.
Zurück zum Zitat Kweka EJ, Mosha F, Lowassa A, Mahande AM, Kitau J, Matowo J, et al. Ethnobotanical study of some of mosquito repellent plants in north-eastern Tanzania. Malar J. 2008;7:152.PubMedPubMedCentralCrossRef Kweka EJ, Mosha F, Lowassa A, Mahande AM, Kitau J, Matowo J, et al. Ethnobotanical study of some of mosquito repellent plants in north-eastern Tanzania. Malar J. 2008;7:152.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat De Paula JP, Gomes-Carneiro MR, Paumgartten FJ. Chemical composition, toxicity and mosquito repellency of Ocimum selloi oil. J Ethnopharmacol. 2003;88:253–60.CrossRef De Paula JP, Gomes-Carneiro MR, Paumgartten FJ. Chemical composition, toxicity and mosquito repellency of Ocimum selloi oil. J Ethnopharmacol. 2003;88:253–60.CrossRef
61.
Zurück zum Zitat Nour AH, Elhussein SA, Osman NA, Nour AH. Repellent activities of the essential oils of four Sudanese accessions of basil (Ocimum basilicum L.) against Anopheles mosquito. J Appl Sci. 2009;9:2645–8.CrossRef Nour AH, Elhussein SA, Osman NA, Nour AH. Repellent activities of the essential oils of four Sudanese accessions of basil (Ocimum basilicum L.) against Anopheles mosquito. J Appl Sci. 2009;9:2645–8.CrossRef
62.
Zurück zum Zitat Tavassoli M, Shayeghi M, Abai MR, Vatandoost H, Khoobdel M, Salari M, et al. Repellency effects of essential oils of Myrtle (Myrtus communis), Marigold (Calendula officinalis) compared with DEET against Anopheles stephensi on human volunteers. Iranian J Arthropod Borne Dis. 2011;5:10–22. Tavassoli M, Shayeghi M, Abai MR, Vatandoost H, Khoobdel M, Salari M, et al. Repellency effects of essential oils of Myrtle (Myrtus communis), Marigold (Calendula officinalis) compared with DEET against Anopheles stephensi on human volunteers. Iranian J Arthropod Borne Dis. 2011;5:10–22.
63.
Zurück zum Zitat Younoussa L, Nukenine EN, Danga SPY, Esimone CO. Repellent activity of the creams formulated from Annona senegalensis and Boswellia dalzielii leaf fractions and essential oils against Anopheles gambiae (Diptera: Culicidae). Asian Pac J Trop Dis. 2016;6:973–8.CrossRef Younoussa L, Nukenine EN, Danga SPY, Esimone CO. Repellent activity of the creams formulated from Annona senegalensis and Boswellia dalzielii leaf fractions and essential oils against Anopheles gambiae (Diptera: Culicidae). Asian Pac J Trop Dis. 2016;6:973–8.CrossRef
64.
Zurück zum Zitat Konan Y, Sylla M, Doannio J, Traoré S. Comparison of the effect of two excipients (karite nut butter and vaseline) on the efficacy of Cocos nucifera, Elaeis guineensis and Carapa procera oil-based repellents formulations against mosquitoes biting in Ivory Coast. Parasite. 2003;10:181–4.PubMedCrossRef Konan Y, Sylla M, Doannio J, Traoré S. Comparison of the effect of two excipients (karite nut butter and vaseline) on the efficacy of Cocos nucifera, Elaeis guineensis and Carapa procera oil-based repellents formulations against mosquitoes biting in Ivory Coast. Parasite. 2003;10:181–4.PubMedCrossRef
65.
Zurück zum Zitat Freeman BC, Beattie GA. An overview of plant defenses against pathogens and herbivores. Plant Health Instructor. 2008;149:1–12. Freeman BC, Beattie GA. An overview of plant defenses against pathogens and herbivores. Plant Health Instructor. 2008;149:1–12.
67.
Zurück zum Zitat Yeh R-Y, Shiu Y-L, Shei S-C, Cheng S-C, Huang S-Y, Lin J-C, et al. Evaluation of the antibacterial activity of leaf and twig extracts of stout camphor tree, Cinnamomum kanehirae, and the effects on immunity and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2009;27:26–32.PubMedCrossRef Yeh R-Y, Shiu Y-L, Shei S-C, Cheng S-C, Huang S-Y, Lin J-C, et al. Evaluation of the antibacterial activity of leaf and twig extracts of stout camphor tree, Cinnamomum kanehirae, and the effects on immunity and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2009;27:26–32.PubMedCrossRef
68.
Zurück zum Zitat Grognet J. Catnip: its uses and effects, past and present. Canadian Vet J. 1990;31:455. Grognet J. Catnip: its uses and effects, past and present. Canadian Vet J. 1990;31:455.
69.
Zurück zum Zitat Abu-Darwish MS, Abu-Dieyeh ZH, Mufeed B, Al-Tawaha ARM, Al-Dalain SYA. Trace element contents and essential oil yields from wild thyme plant (Thymus serpyllum L.) grown at different natural variable environments, Jordan. J Food Agric Environ. 2009;7:920–4. Abu-Darwish MS, Abu-Dieyeh ZH, Mufeed B, Al-Tawaha ARM, Al-Dalain SYA. Trace element contents and essential oil yields from wild thyme plant (Thymus serpyllum L.) grown at different natural variable environments, Jordan. J Food Agric Environ. 2009;7:920–4.
70.
Zurück zum Zitat Prado JM, Leal PF, Meireles MAA, Eds. Comparison of manufacturing cost of thyme extract obtained by supercritical fluid extraction and steam distillation. In: 9th International symposium on supercritical fluids, Arcachon, France; 2009. P. 19. Prado JM, Leal PF, Meireles MAA, Eds. Comparison of manufacturing cost of thyme extract obtained by supercritical fluid extraction and steam distillation. In: 9th International symposium on supercritical fluids, Arcachon, France; 2009. P. 19.
71.
Zurück zum Zitat Fabbri A, Hormaza J, Polito V. Random amplified polymorphic DNA analysis of olive (Olea europaea L.) cultivars. J Amer Soc Hort Sci. 1995;120:538–42.CrossRef Fabbri A, Hormaza J, Polito V. Random amplified polymorphic DNA analysis of olive (Olea europaea L.) cultivars. J Amer Soc Hort Sci. 1995;120:538–42.CrossRef
72.
Zurück zum Zitat Yasodha R, Sumathi R, Chezhian P, Kavitha S, Ghosh M. Eucalyptus microsatellites mined in silico: survey and evaluation. J Genetic. 2008;87:21–5.CrossRef Yasodha R, Sumathi R, Chezhian P, Kavitha S, Ghosh M. Eucalyptus microsatellites mined in silico: survey and evaluation. J Genetic. 2008;87:21–5.CrossRef
73.
Zurück zum Zitat Walle M, Walle B, Zerihun L, Makonnen E. Sedative-hypnotic like effect of the essential oil from the leaves of Myrtus communis on mice. Am J Biomed Life Sci. 2014;2:70–7.CrossRef Walle M, Walle B, Zerihun L, Makonnen E. Sedative-hypnotic like effect of the essential oil from the leaves of Myrtus communis on mice. Am J Biomed Life Sci. 2014;2:70–7.CrossRef
74.
Zurück zum Zitat Miele M, Dondero R, Ciarallo G, Mazzei M. Methyleugenol in Ocimum basilicum L. Cv genovese gigante. J Agric Food Chem. 2001;49:517–21.PubMedCrossRef Miele M, Dondero R, Ciarallo G, Mazzei M. Methyleugenol in Ocimum basilicum L. Cv genovese gigante. J Agric Food Chem. 2001;49:517–21.PubMedCrossRef
75.
Zurück zum Zitat Sadia S, Khalid S, Qureshi R, Bajwa AA. Tagetes minuta L., a useful underutilized plant of family Asteraceae: a review. Pak J Weed Sci Res. 2013;19:179–89. Sadia S, Khalid S, Qureshi R, Bajwa AA. Tagetes minuta L., a useful underutilized plant of family Asteraceae: a review. Pak J Weed Sci Res. 2013;19:179–89.
76.
Zurück zum Zitat Bahuguna V. Silviculture and management practices for cultivation of Azadirachta indica (Neem). Indian Forester. 1997;123:379–86. Bahuguna V. Silviculture and management practices for cultivation of Azadirachta indica (Neem). Indian Forester. 1997;123:379–86.
77.
Zurück zum Zitat Lara M, Gutierrez J, Timon M, Andrés A. Evaluation of two natural extracts (Rosmarinus officinalis L. and Melissa officinalis L.) as antioxidants in cooked pork patties packed in MAP. Meat Sci. 2011;88:481–8.PubMedCrossRef Lara M, Gutierrez J, Timon M, Andrés A. Evaluation of two natural extracts (Rosmarinus officinalis L. and Melissa officinalis L.) as antioxidants in cooked pork patties packed in MAP. Meat Sci. 2011;88:481–8.PubMedCrossRef
78.
Zurück zum Zitat Singh AK, Dhamanigi SS, Asad M. Anti-stress activity of hydro-alcoholic extract of Eugenia caryophyllus buds (clove). Indian J Pharmacol. 2009;41:28.PubMedPubMedCentralCrossRef Singh AK, Dhamanigi SS, Asad M. Anti-stress activity of hydro-alcoholic extract of Eugenia caryophyllus buds (clove). Indian J Pharmacol. 2009;41:28.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Acar Ü, Kesbiç OS, Yılmaz S, Gültepe N, Türker A. Evaluation of the effects of essential oil extracted from sweet orange peel (Citrus sinensis) on growth rate of tilapia (Oreochromis mossambicus) and possible disease resistance against Streptococcus iniae. Aquaculture. 2015;437:282–6.CrossRef Acar Ü, Kesbiç OS, Yılmaz S, Gültepe N, Türker A. Evaluation of the effects of essential oil extracted from sweet orange peel (Citrus sinensis) on growth rate of tilapia (Oreochromis mossambicus) and possible disease resistance against Streptococcus iniae. Aquaculture. 2015;437:282–6.CrossRef
80.
Zurück zum Zitat Durrani F, Ismail M, Sultan A, Suhail S, Chand N, Durrani Z. Effect of different levels of feed added turmeric (Curcuma longa) on the performance of broiler chicks. J Agric Biol Sci. 2006;1:9–11. Durrani F, Ismail M, Sultan A, Suhail S, Chand N, Durrani Z. Effect of different levels of feed added turmeric (Curcuma longa) on the performance of broiler chicks. J Agric Biol Sci. 2006;1:9–11.
81.
Zurück zum Zitat Moore S, Lenglet A, Hill N. Plant-based insect repellents. In: Debboun M, Frances SP, Strickman D, editors. Insect repellents: principles, methods and uses. 1st ed. Boca Raton: CRC Press; 2006. p. 275–304.CrossRef Moore S, Lenglet A, Hill N. Plant-based insect repellents. In: Debboun M, Frances SP, Strickman D, editors. Insect repellents: principles, methods and uses. 1st ed. Boca Raton: CRC Press; 2006. p. 275–304.CrossRef
82.
Zurück zum Zitat Pappenberger B, Geier M, Boeckh J. Responses of antennal olfactory receptors in the yellow fever mosquito Aedes aegypti to human body odours. In: Foundation Ciba, editor. Olfaction in mosquito-host interactions. Chichester: Wiley; 1996. p. 254–66. Pappenberger B, Geier M, Boeckh J. Responses of antennal olfactory receptors in the yellow fever mosquito Aedes aegypti to human body odours. In: Foundation Ciba, editor. Olfaction in mosquito-host interactions. Chichester: Wiley; 1996. p. 254–66.
83.
Zurück zum Zitat Kwon Y, Kim SH, Ronderos DS, Lee Y, Akitake B, Woodward OM, et al. Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal. Curr Biol. 2010;20:1672–8.PubMedPubMedCentralCrossRef Kwon Y, Kim SH, Ronderos DS, Lee Y, Akitake B, Woodward OM, et al. Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal. Curr Biol. 2010;20:1672–8.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Kongkaew C, Sakunrag I, Chaiyakunapruk N, Tawatsin A. Effectiveness of citronella preparations in preventing mosquito bites: systematic review of controlled laboratory experimental studies. Trop Med Int Health. 2011;16:802–10.PubMedCrossRef Kongkaew C, Sakunrag I, Chaiyakunapruk N, Tawatsin A. Effectiveness of citronella preparations in preventing mosquito bites: systematic review of controlled laboratory experimental studies. Trop Med Int Health. 2011;16:802–10.PubMedCrossRef
85.
Zurück zum Zitat Soderlund DM, Bloomquist JR. Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol. 1989;34:77–96.PubMedCrossRef Soderlund DM, Bloomquist JR. Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol. 1989;34:77–96.PubMedCrossRef
86.
Zurück zum Zitat Ditzen M, Pellegrino M, Vosshall LB. Insect odorant receptors are molecular targets of the insect repellent. DEET Sci. 2008;319:1838–42.CrossRef Ditzen M, Pellegrino M, Vosshall LB. Insect odorant receptors are molecular targets of the insect repellent. DEET Sci. 2008;319:1838–42.CrossRef
87.
Zurück zum Zitat Tyagi B. Advances in vector mosquito control technologies, with particular reference to herbal products. In: Veer V, Gopalakrishnan R, editors. Herbal insecticides, repellents and biomedicines: effectiveness and commercialization. New Delhi: Springer; 2016. p. 1–9. Tyagi B. Advances in vector mosquito control technologies, with particular reference to herbal products. In: Veer V, Gopalakrishnan R, editors. Herbal insecticides, repellents and biomedicines: effectiveness and commercialization. New Delhi: Springer; 2016. p. 1–9.
88.
Zurück zum Zitat Lupi E, Hatz C, Schlagenhauf P. The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp. A literature review. Trav Med Infect Dis. 2013;11:374–411.CrossRef Lupi E, Hatz C, Schlagenhauf P. The efficacy of repellents against Aedes, Anopheles, Culex and Ixodes spp. A literature review. Trav Med Infect Dis. 2013;11:374–411.CrossRef
89.
Zurück zum Zitat Yogananth N, Anuradha V, Ali MYS, Muthezhilan R, Chanthuru A, Prabu MM. Chemical properties of essential oil from Rhizophora mucronata mangrove leaf against malarial mosquito Anopheles stephensi and filarial mosquito Culex quinquefasciatus. Asian Pac J Trop Med. 2015;5(suppl 1):S67–72.CrossRef Yogananth N, Anuradha V, Ali MYS, Muthezhilan R, Chanthuru A, Prabu MM. Chemical properties of essential oil from Rhizophora mucronata mangrove leaf against malarial mosquito Anopheles stephensi and filarial mosquito Culex quinquefasciatus. Asian Pac J Trop Med. 2015;5(suppl 1):S67–72.CrossRef
Metadaten
Titel
Effectiveness of plant-based repellents against different Anopheles species: a systematic review
verfasst von
Amin Asadollahi
Mehdi Khoobdel
Alireza Zahraei-Ramazani
Sahar Azarmi
Sayed Hussain Mosawi
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Malaria Journal / Ausgabe 1/2019
Elektronische ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-019-3064-8

Weitere Artikel der Ausgabe 1/2019

Malaria Journal 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Chronisches Koronarsyndrom: Gefahr von Hospitalisierung wegen Herzinsuffizienz

06.05.2024 Herzinsuffizienz Nachrichten

Obwohl ein rezidivierender Herzinfarkt bei chronischem Koronarsyndrom wahrscheinlich die Hauptsorge sowohl der Patienten als auch der Ärzte ist, sind andere Ereignisse womöglich gefährlicher. Laut einer französischen Studie stellt eine Hospitalisation wegen Herzinsuffizienz eine größere Gefahr dar.

„Restriktion auf vier Wochen Therapie bei Schlaflosigkeit ist absurd!“

06.05.2024 Insomnie Nachrichten

Chronische Insomnie als eigenständiges Krankheitsbild ernst nehmen und adäquat nach dem aktuellen Forschungsstand behandeln: Das forderte der Schlafmediziner Dr. Dieter Kunz von der Berliner Charité beim Praxis Update.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.