Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2017

Open Access 01.12.2017 | Review

Clinical implications of genome-wide DNA methylation studies in acute myeloid leukemia

verfasst von: Yan Li, Qingyu Xu, Na Lv, Lili Wang, Hongmei Zhao, Xiuli Wang, Jing Guo, Chongjian Chen, Yonghui Li, Li Yu

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2017

Abstract

Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. AML is a heterogeneous malignancy characterized by distinct genetic and epigenetic abnormalities. Recent genome-wide DNA methylation studies have highlighted an important role of dysregulated methylation signature in AML from biological and clinical standpoint. In this review, we will outline the recent advances in the methylome study of AML and overview the impacts of DNA methylation on AML diagnosis, treatment, and prognosis.
Abkürzungen
5-mC
5-Methylcytosine
AML
Acute myeloid leukemia
AML1/ETO
AML1 and eight twenty-one rearrangements
APL
Acute promyelocytic leukemia
BDAP
The BLUEPRINT Data Analysis Portal
CBFB-MYH11
Core-binding factor beta and myosin heavy chain 11 rearrangements
CDH
E-cadherin
CDKN2A/2B
Cyclin dependent kinase inhibitor 2A/2B
CEBPA
CCAAT/enhancer binding protein alpha
CN-AML
Cytogenetically normal AML
CR
Complete response
DFS
Disease-free survival
DGGE
Bisulfite-denaturing gradient gel electrophoresis
DHRS3
Dehydrogenase/reductase 3
DMP
DNA methylation profiles
DMR
Different methylation region
DNA
Deoxyribonucleic acid
DNMT3A
DNMT 3 alpha
DNMTs
DNA methyltransferases
eFORGE
The tool for identifying cell type-specific signal in epigenomic data
EPM
The global metric eloci per million loci
ERBBS
Enhanced reduced representation bisulfite sequencing
FAB
French–American–British
FLT3-ITD
Fms-related tyrosine kinase 3 internal tandem duplication
GEP
Gene expression profiles
HELP
HpaII tiny fragment enrichment by ligation-mediated PCR
HIC1
Hypermethylated in cancer 1
HMAs
Hypomethylating agents
HSCs
Hematopoietic stem cells
ID4
Inhibitor of DNA binding 4
IDH1/2
Isocitrate dehydrogenase (NADP(+)) 1/2
IHEC
Data Portal the International Human Epigenome Consortium Data Portal
Klf4
Kruppel-like factor 4
LUMA
Luminometric methylation assay
MLL
Mixed lineage leukemia
MN1
MN1 proto-oncogene, transcriptional regulator
MYC
v-Myc avian myelocytomatosis viral oncogene homolog
NCCN
National Comprehensive Cancer Network
NGS
Next-generation sequencing
NPM1
Nucleophosmin
OCT4
Organic cation/carnitine transporter4
OS
Overall survival
PBX3
PBX homeobox 3
PML-RARa
Promyelocytic leukemia and retinoic acid receptor alpha rearrangements
RUNX1
Runt related transcription factor 1
SOX2
SRY-box 2
SPARC
Secreted protein acidic and cysteine rich
ST18
ST18, C2H2C-type zinc finger
TCGA
The Cancer Genome Atlas Research Network
TET2
Tet methylcytosine dioxygenase 2
WBC
White blood cell
WHO
World Health Organization
xMELP
Expedited HpaII small fragment enrichment by ligation-mediated PCR

Background

Acute myeloid leukemia (AML) is characterized by clonal expansion of undifferentiated myeloid precursors, resulting in impaired hematopoiesis and bone marrow failure [1]. AML is a predominantly fatal hematopoietic malignancy with high heterogeneity [25]. Genetic heterogeneity has been appreciated in AML since early karyotyping studies [6]. With next-generation sequencing (NGS), genome studies of somatic mutations have shown a comprehensive landscape of AML and contributed to the understanding of the pathogenesis and progression of AML [5, 79]. A latest study of 1540 AML patients revealed distinct molecular subgroups that reflect discrete paths in the evolution of AML, informing disease classification and prognostic stratification [5]. It is well established that genetic aberrations play a critical role on the diagnosis, treatment, and prognosis of AML, which is fully reflected in the National Comprehensive Cancer Network (NCCN) guidelines for AML. However, nearly 50% of AML samples have a normal karyotype and many patients carry no mutation [1012]. Meanwhile, DNA methylation patterns are altered in numerous cancers and often correlate with clinically relevant information such as subtypes, prognosis, and drug response [1315]. Indeed, aberrant DNA methylation patterns are a hallmark of AML [1618]. Despite the recognized relationship between DNA methylation and AML, the development of methylome assessment is limited by the lack of rapid, reliable assays that provide validated information. Recently, the advance of technologies, e.g., DNA methylation microarrays and next-generation sequencing [1925], has made methylome analysis less time-consuming, reproducible, and cost-effective [24, 26], and the genome-wide coverage has been extended to non-CpG island regions, e.g., enhancer, exon, intron, and intergenic [21, 24, 25, 27]. With high accuracy and robustness, DNA methylation analysis has been confirmed to be feasible and reliable in clinical diagnosis and precision medicine, especially for highly heterogeneous diseases such as AML [26, 28, 29]. There are now an increasing number of studies reporting aberrant DNA methylation in AML [3034], and new methods for detecting DNA methylation on a genome-wide scale have significantly widened our knowledge about aberrant methylation patterns in AML. For example, distinct DNA methylation patterns are used to define AML subgroups and a set of aberrantly methylated genes are identified and linked to the clinical outcome [9, 30, 35]. Additionally, DNA methylation and mutation patterns may occur with distinct kinetics to affect the biological and clinical features of AML [9].

Distinct DNA methylation patterns identified in AML

AML is a highly heterogeneous disease with fewer mutations than most other adult cancers [7]. This difference suggests that other mechanisms, e.g., epigenetics or post-transcriptional regulations to play a pivotal role in determining the biological behavior of the disease. DNA methylation is the major mode of epigenetic modification [3638], which plays an important role in carcinogenesis (Fig. 1). Aberrant DNA methylation patterns are a characteristic feature of AML [7, 17, 18]. Several studies have evaluated genome-wide methylation in AML [7, 9, 30, 39]. The Cancer Genome Atlas Research Network (TCGA) performed methylation profiling for 192 samples of AML using Illumina Infinium HumanMethylation450 BeadChip and identified significant changes in DNA methylation at 160,519 CpG loci, which accounted for 42% of sites tested, with 67% resulting in hypermethylation and 33% resulting in hypomethylation [7]. A pairwise AML cohort study examining the DNA methylation by enhanced reduced representation bisulfite sequencing (ERBBS) based on NGS platform suggested that global DNA methylation allele shifting was a universal feature of AML relative to normal bone marrow controls [9]. Another detailed study on the genomic DNA methylation landscape profiling using HpaII tiny fragment enrichment by ligation-mediated PCR (HELP) methylation microarrays revealed the existence of 16 distinct DNA methylation patterns in AML [30]. Each of these DNA methylation-defined AML subtypes displayed a unique epigenetic signature when compared with the normal bone marrow CD34+ cells. Though 11 of 16 clusters correspond to AML subtypes defined by the World Health Organization (WHO) or related to specific genetic and epigenetic lesions, 5 new clusters could not be explained based on known morphologic, cytogenetic, or molecular features. In fact, each of these AML subtypes displays a distinct DNA methylation pattern. Although this scenario was previously proposed, the findings represent an important progress made possible by the use of large-scale genome-wide DNA methylation profiling technology.
Cytogenetically normal AML (CN-AML), which constitutes between 40 to 50% of all AML cases [40], is the most heterogeneous group in AML. Interestingly, a genome-wide differential methylation study in CN-AML using Illumina 450 K methylation array found that the most pronounced changes in DNA methylation occurred in non-CpG island regions, whereas hypermethylation enrichment was only represented in CpG islands [41].
It is foreseeable that future research will provide more clarity and precision to the methylome landscape of AML.

DNA methylation in diagnosis classification of AML

Recent genome-wide studies identified DNA methylation signatures unique for subtypes of AML patients [30], which could be valuable for diagnosis classification of AML [7, 9, 30]. Li et al. [9] examined the epigenetic heterogeneity by ERRBS in serial diagnosis-relapse pairwise AML samples and defined three categories of DNA methylation-shifted loci: loci unique to diagnosis, loci unique to relapse, or loci present at both diagnosis and relapse. This analysis segregated AML patients into three clusters with no significant association with age, white blood cell count (WBC), or the French–American–British (FAB) classification, suggesting that DNA methylation pattern could be an independent diagnosis classification for AML patients. Furthermore, different cytogenetic and molecular subtypes were found to exhibit highly distinct DNA methylation profiles [7, 17, 30, 39, 42], providing a new perspective for diagnosis classification of AML. For cases with t(8;21), inv(16) or t(16;16), t(15;17) or t(v;11q23) translocations, or the presence of the relevant fusion genes, unique DNA methylation signatures can define these AML subtypes [7, 17, 30, 39]. Accentuated DNA hyper- and hypomethylation were both identified in t(8;21)-AML1/ETO and inv(16)-t(16;16)-CBFB-MYH11 by Illumina 450 K, with hypomethylation being the predominant feature. However, almost equally accentuated DNA hyper- and hypomethylation was found in t(15,17)-PML-RARa. Unlike these DNA methylation patterns, a very pronounced DNA hypomethylation signature was found in t(v;11q23)-MLL translocations [7, 30, 33]. It is proposed that the underlying mechanism of aberrant DNA methylation induction in these AML was that these fusion genes might recruit DNA methyltransferases (DNMTs) to their binding site [4345]. In addition, secondary epigenetic dysregulation might also contribute to the aberrant methylation, which includes the binding of PML-RARa to genomic regions of epigenetic modifiers such as DNMT3A and/or DNA methylation disruption of AML1-ETO target genes [4648]. In a recent study of 60 acute promyelocytic leukemia (APL) primary samples at diagnosis, methylation of DAPK1, miR-34a and -34b/c were tumor-specific in APL [49]. Hájková et al. reported a novel hypomethylation pattern specific to CBFB-MYH11 fusion resulting from inv(16) rearrangement using targeted bisulfite sequencing in AML patients [42]. They found that average levels of DNA methylation in assigned regulatory regions of MN1, SPARC, ST18, and DHRS3 were significantly lower for inv(16) compared to non-inv(16) AML M4, other AML subtypes, and healthy controls (p < 0.0001).
Apart from translocations or the relevant fusion genes, recurrent mutations (e.g., NPM1, CEBPA, RUNX1) in AML can be defined by DNA methylation differences, especially for mutations in epigenetic regulator genes (e.g., DNMT3A, TET2, IDH1/2) [7, 30, 42]. For NPM1 mutations, four DNA methylation clusters were identified: one hypermethylated and three both hyper- and hypomethylated identified using HELP [30], the strong hypomethylation signature identified using Illumia 450 K [7], and the hypermethylation signature identified using MethylCap-seq [50]. For CEBPA double mutations, the cases could be split to two distinct subtypes with different methylation signatures: one hypermethylated and one hypomethylated identified using HELP [30], and the DNA hypermethylated signature identified using Illumina 450 K [7]. However, discrete hyper- and hypomethylation signatures were showed for RUNX1 mutations using Illumina 450 K [7].
DNMTs (DNMT1, DNMT3A, and DNMT3B) encode methyltransferases that catalyze the addition of a methyl group to the cytosine residue of CpG dinucleotide to maintain methylation status of hematopoietic stem and progenitor cells [51, 52]. DNMT3A is the essential DNA methylation regulator, was thought to have a severe impact on DNA methylation patterns [53, 54]. Mutations in DNMT3A contribute to dysregulation of DNA methylation may result in global shifts in gene expression in hematologic malignancies, which frequently leads to increased self-renewal in blood cells at the expense of normal differentiation [51, 55, 56]. DNMT3A mutations are present in preleukemic hematopoietic stem cells (HSCs), and it is considered an early event in AML [57]. Qu et al. demonstrated that DNMT3A mutations were a main genetic contributor to the global methylation pattern, and two CN-AML subtypes were generated according to the samples with or without DNMT3A mutations [41]. Additionally, Marcucci et al. noted that only DNMT3A-R882 mutations were associated with hypermethylation [50]. Furthermore, TET2 and IDH1/2 mutations resulted in genome-wide DNA hypermethylation signature, especially for IDH1/2 mutations [7, 16, 39, 50]. A meta-analysis also supported the diagnostic value of DNA methylation in leukemia with 41 case-control studies [58]. In this study, 20 genes were found to be aberrantly methylated in the leukemia patients, and CDKN2A, CDKN2B, and ID4 genes were significantly hypermethylated in AML. Though recent studies have identified the relationship between DNA methylation abnormalities and AML variability [17, 30, 39], more details remain to be revealed and many mechanisms remain unclear [17, 59]. Nevertheless, the value of DNA methylation in the diagnosis stratification of AML cannot be underappreciated.

DNA methylation in prognostic stratification of AML

Many studies have found that DNA methylation could predict clinical outcome in AML patients and aberrant DNA methylation can serve as a biomarker for risk stratification (Table 1) [9, 16, 31, 3335]. However, the results were inconsistent due to the difference in AML cohort, genomic regions analyzed, functions of annotated methylated genes, and methods of detection and analysis. Deneberg et al. [31] reported that global and gene-specific methylation patterns were independently associated with the clinical outcome in AML patients. They analyzed the methylation of CDKN2B, E-cadherin (CDH) and hypermethylated in cancer 1 (HIC1) promoters, and global DNA methylation in 107 AML patients by the luminometric methylation assay (LUMA). They also assessed genome-wide promoter associated methylation using the Illumina HumanMethylation27 array in 20 patients. Multivariate analysis suggested that low global DNA methylation was associated with higher complete response (CR) rate, and increased genome-wide promoter associated methylation was associated with better overall survival (OS) and disease-free survival (DFS). Furthermore, P15 methylation was associated with better OS and PFS, while CDH and HIC1 methylation was not associated with clinical outcome [31].
Table 1
Prognostic genes regulated by DNA methylation identified in AML by genome-wide, large sample studies
Reference
DNA methylation detection methods
AML group
Prognostic genes regulated by DNA methylation
Figueroa et al. [16]
HELP
344 Newly diagnosed AML
BLR1 (CXCR5), BTBD3, E2F1, FAM110A, FAM30A, GALNT5, KIAA1305, LCK, LMCD1, PRMT7, SLC7A6OS, SMG6, SRR, USP50, VWF, ZFP161
Li et al. [9]
ERRBS
138 Paried AML (diagnosis and relapse)
CCDC85C, CHL1, ELAVL2, FAM115A, FAM196A, GPR146, GPR6, HELZ2, ID4, IL2RA, KCNG3, LOC254559, LOC284801, NPAS2, PCDHAC2, PROB1, SHISA6, SLC18A3, SOCS2, TRIM67, ZFP42
Marcucci et al. [50]
MethylCap-seq
134 CN-AML (355 CN-AML validated)
AATK, ACAP3, ADCK2, ADCY6, AGPAT9, AHCY, ALOX15B, ANXA6, APBB1, APOD, AQP11, ARHGAP27, AXL, BRF1, C15orf62, C17orf77, C8orf51, CABLES1, CARD11, CD34 a , CHMP7, CISH, CLDN15, CLEC3B, DDIT4, DHCR24, DHRS12, EGFL7, ETS1, EVC, F2RL1 a , FAM92A1 a , FCHO1, FKBP4, FLVCR1, FLVCR1-AS1, FZD6, GAL3ST3, GCNT2, GIT1, GPR56, H1F0, HCN2, HIVEP3, IQSEC1, KCNK6, KDM2B, KLHL3, KNCN, LOC646627, MDFI, ME3, MEOX1, MIR126, MIR155HG a , MVD, NAV1, NBL1, NLRP1, PLK3, PMM1, PRKCZ, PRKG2, RAB36, RGS3, RHOC a , RHPN1, SCARF1, SCRN1 a , SH3TC1, SPRY1, SRC, TBL2, TCEA3, TENC1, UBXN6, VWA8 a , WDR16, WDR86, WRAP53, ZNF623, ZNF70
a Seven genes (CD34, RHOC, SCRN1, F2RL1, FAM92A1, MIR155HG, and VWA8) had not only DNA methylation regions (DMRs) but also expression levels that were associated with outcome
Figueroa et al. analyzed distinct DNA methylation signatures, identified new AML subtypes, and explored the potential use of aberrant DNA methylation as a predictor of important clinical features. With a three-step approach of model development and validation using a large data set, they reported a 15-gene methylation classifier predictive of OS [30]. These results suggested that DNA methylation classifier could serve as a clinically useful biomarker. Luskin et al. [35] recently reported a validated clinical measure of DNA methylation, M score, generated from expedited HpaII small fragment enrichment by ligation-mediated PCR (xMELP) assays [60, 61] that represent a binary prognostic classifier for patients with de novo AML. The M score was robustly associated with CR and OS in both univariable and multivariable models in multiple independent AML cohorts, as well as for AML patients aged ≤60 years with intermediate cytogenetics [35]. A high M score represented a shorter 2-year OS (24 vs 56%) and a lower CR rate (61 vs 84%) compared with a low M score. These findings confirmed the association of M score with clinical outcome, which has been further validated in an independent cohort of patients with APL and secondary AML [62]. Remarkably, the association of M score with clinical outcome was stronger than that of many established prognostic factors, including cytogenetics, FLT3-ITD status, and other genetic lesions. Additionally, the M score classifier also defined subgroups with significantly OS within a traditionally high-risk subgroup with intermediate cytogenetics and FLT3-ITD mutation. These results suggest that DNA methylation can be used for risk stratification, which might decrease the need for comprehensive genetic testing for risk stratification at diagnosis due to its better prognostic performance [35].
Similarly, a recent NGS study pointed out that epigenetic and genetic heterogeneity occurred with distinct kinetics in AML. The changes in DNA methylation burden were independent of the abundance of somatic mutations in patients, and relapsed AMLs showed variable changes in DNA methylation burden, which was antecedent to the genetic evolution. Furthermore, the variance of CpG methylation patterns (measured as EPM) were associated with the time to relapse, whereas the burden of somatic mutations was not. The patients with high EPM at diagnosis had a shorter time to relapse compared to the low-EPM cohort (p = 0.0396), which was most significant for EPM values assessed from promoter-annotated epigenetically shifted loci (p = 0.0077) [9]. The study also detected a specific set of 21 promoter-annotated DNA methylation shifted loci to be associated with a shorter time to relapse, which could be used as outcome biomarkers [9]. Using MethylCap-seq, Marcucci et al. identified 82 individual genes, the promoter different methylation regions (DMRs) of which were associated with OS in a set of older patients with CN-AML [50]. For 80 genes, higher DMR methylation was related to longer OS. Combined with the expression data, a novel seven-gene score for clinical prognosis was generated validated in four independent CN-AML patient sets (n = 355). In multivariable analyses, patients with low scores had a more than 80% increase in the odds of achieving CR and approximately 3.5-fold decrease in the risk of disease relapse or death compared with patients with high scores [50]. Using targeted bisulfite sequencing, Hájková et al. [42] revealed that PBX3 differential methylation could impact on prognosis of AML. They found that the hypomethylation of PBX3 regulatory region was involved in higher relapse rates and shorter relapse-free survival in AML patients with overexpressed PBX3. However, this methylation signature was not related to OS.

DNA methylation in therapeutic decision-making of AML

Variable responses to chemotherapy in AML represent a major treatment challenge, and the ability to predict therapeutic response is essential for improving the care of patients with AML. However, clinical and genetic features incompletely predict outcome, especially for CN-AML and AML with no mutation [1012]. In general, DNA methylation might only be able to predict the response of hypomethylating agents [6365]. For example, in a study investigating the impact of global and gene-specific DNA methylation status (promoters of 5 stem cell-related transcription factor genes SOX2, OCT4, KLF4, MYC, and NANO) in AML patients treated with decitabine [65], Zhang et al. showed that patients with a high level of 5-mC had a poor prognosis after demethylation therapy, and higher methylation status of the SOX2 and OCT4 genes was associated with differential response to demethylation therapy. This study found that relatively low methylation percentage in one or both of these two genes was also associated with longer OS after decitabine-based chemotherapy.
In fact, due to the complex epigenetic regulation mechanisms in AML, DNA methylation contributed to the overall biological and clinical features of AML and was also correlated with conventional chemotherapy [35, 66]. A decade ago, Grövdal et al. showed a significant effect of the methylation status of three genes (P15ink4b (P15), E-cadherin (CDH), and hypermethylated in cancer1 (HIC)) on the outcome of conventional chemotherapy using bisulfite-denaturing gradient gel electrophoresis (DGGE) [66]. Luskin et al., as mentioned previously, also assessed the impact of high-dose (90 mg/m2) or standard-dose (45 mg/m2) daunorubicin induction chemotherapy on a cohort AML patients by dividing the patients into low and high M score subgroups. They found that high-dose daunorubicin (90 mg/m2) was beneficial for patients with high M scores but not for those with low M scores. The different responses suggested that M score may be correlated with chemoresistance and could be used for identifying patients that might benefit from high-dose chemotherapy, which will contribute to therapeutic decision-making of AML [35].
In addition, the mutations in genes involved in DNA methylation (e.g., DNMT3A, IDH1/2, TET2) play an important role in genome-wide methylation signature in AML and contribute to the leukemogenesis and prognosis [16, 53, 6769]. The applications of DNMTs and IDH1/2 inhibitors have been more extensive and improved the outcome of AML via reversing abnormal DNA methylation and restoring normal hematopoiesis [52, 56, 70]. Two DNMTs inhibitors, azacitidine and decitabine, have been approved for MDS and AML due to the increasing data to support the efficacy of these hypomethylating agents (HMAs) [7176]. Especially, the particular gene mutations, such as those in DNMT3A and TET2 and methylation signatures, may predict for responsiveness to treatment with HMAs according to the studies in MDS [27, 77]. TET2 mutations and/or DNMT3A mutations were independent predictors of better response (p = 0.03) and improved PFS (p = 0.04) [77]. While a 21 selected tile regions revealing the DNA methylation differences can served as an epigenetic classifier that accurately predicted decitabine response at the time of diagnosis [27]. Following this line, it is possible that defined AML subtypes with certain changes associated DNA methylation are more responsive to HMAs than others. With DNA methylation profiling identified in AML subgroups and the evaluation of DNA methylation level with clinical outcome, extending the methylome analysis to comparable studies is of great interest as these results would have immediate implications for design of therapeutic regimens, especially dissect which AML subtypes may benefit from treatment with HMAs [16, 35, 62].
Similar to DNMT3A and TET2 mutations, IDH1/2 mutations also could predict a favorable response with a significantly higher clinical remission rate during treatment with HMAs, and the odds of achieving response with an IDH mutation was 14.2 when compared to patients without an IDH mutation (95%CI, 1.3–150.4) [78]. Furthermore, hypermethylated signature in AML with IDH mutations could be reversed via IDH inhibition [16, 79]. IDH1/2 inhibitors (e.g., IDH305, AG-220, AG-221) have been developed and are already being evaluated in clinical trials (Table 2) [70, 80]. Primary results suggest a prominent effect of these drugs in AML prognosis [8185]. AG-120, an oral, first-in-class IDH1 inhibitor, has shown the efficacy and safety with determined IDH1 clearance as a single agent in patients with IDH1-mutant hematologic malignancies. The overall response rate (ORR) was 38.5% (30/78) [84]. A phase I study with IDH305 including 21 relapsed/refractory AML subjects enrolled reported similar results that 7 (33%) patients obtained objective responses with a favorable safety profile [83]. AG-221 is an oral first in class inhibitor of the IDH2-mutant protein. Preliminary results of a phase 1/2 study enrolled relapsed/refractory AML patients showed that AG-221 was well-tolerated and -induced responses in heavily pretreated RR-AML. Of the 138 enrolled AML patients, 128 were evaluated for efficacy and the ORR was 41% (52/128) [86]. Therefore, identification of mutations associated DNA methylation and evaluation the change of methylation signature would contribute to individual therapy of AML.
Table 2
Clinical trials with compounds of IDH inhibitors in patients with hematologic malignancies
Compound
Target
Phase
Registration number
Reference
IDH305
IDH1
1
NCT02381886
83
AG120
IDH1
1
NCT02074839
84
AG120
IDH1
1
NCT02073994
82
AG221
IDH2
1/2
NCT01915498
86
AG221
IDH2
1/2
NCT02273739
NA
AG221
IDH2
3
NCT02577406
NA
AG-120/AG-221
IDH1/IDH2
1
NCT02632708
NA
AG-120/AG-221
IDH1/IDH2
1b/2
NCT02677922
NA
NA no data about reference

DNA methylation, genetic aberrations, and expression in AML

Genetic lesions and epigenetic abnormalities have been shown to play important roles in AML. Although the relationship of DNA methylation, genetic aberrations, and expression is unclear, it is likely that these parameters are closely related with each other [7, 30, 64, 8789]. The TCGA study generated a genomic and epigenomic landscapes of AML, which would serve as a foundation for investigations AML pathogenesis, classification, and risk stratification [7]. A recent study by Papaemmanuil et al. identified 5234 driver mutations across 76 genes or genomic regions in 1540 patients with AML. The mutations in genes that encode DNA methylation regulators (e.g., DNMT3A, IDH1/2, TET2) were often acquired the earliest and with a high recurrence rate. Particularly, 73% of the largest class in their cohort, NPM1-mutated AML, also carried mutations in DNA methylation genes (DNMT3A, IDH1, IDH2R140, and TET2). Besides, they identified a subgroup of AML with IDH2R172 mutations [5]. Since these mutations resulted in abnormalities of genome-wide DNA methylation signature, the relationship between genetic aberrations and DNA methylation were inseparable in AML [18, 50, 89]. Furthermore, Taskesen et al. created the three different classification strategies based on gene expression and DNA methylation profiles (GEP and DMP) from 344 well-characterized AML samples [87]. They demonstrated that prediction of known cytogenetic and molecular abnormalities in AML could be further improved by integrating GEP and DMP profiles. Raj et al. also provided insight into the clinical relevance of prognostic mutations and the mutation-associated gene DNA methylation promoter and expression patterns [63]. In a mouse model that has a defined leukemia stem cell population with a characteristic transcriptional and epigenetic profile, it was confirmed that TET2 and FLT3 mutations cooperated to induce AML, and the methylation changes exhibit the cooperation of disease alleles to target multiple loci. The data also suggested that leukemic transformation by these epigenetic changes is reversible and therapies that reactivate silenced genes might improve outcomes for AML patients [88].

Conclusions

DNA methylation is a common theme in acute myelogenous leukemogenesis. With the progress of technologies in identifying DNA methylation [2426, 28, 29], especially the milestones in data integration, sharing, and analysis strategies, such as the International Human Epigenome Consortium Data Portal (IHEC Data Portal) [90], the BLUEPRINT Data Analysis Portal (BDAP) [91], and the tool for identifying cell type-specific signal in epigenomic data (eFORGE) [92], DNA methylation will be more widely used in clinical practice and become more valuable in diagnosis classification, prognostic stratification, and therapeutic decision-making of AML. This will contribute to the development of precision medicine in AML. Besides, a further understanding of the relationship among DNA methylation, genetic aberrations, and expression might provide unprecedented insights into the pathogenesis of AML (Fig. 2).

Acknowledgements

The authors are grateful to Yaojie Liang for the preparation of the graphical illustrations.

Funding

This work was supported by the National Natural Science Foundation of China (8167016, 81370635, 81170518, 81270611, 81570137, 81470010, and 81400135), Capital Medical Development Scientific Research Fund (SF2001-5001-07), Beijing Natural Science Foundation (7151009), National Public Health Grant Research Foundation (No.201202017), The capital of the public health project (Z111107067311070), and Technology Innovation Nursery Foundation (13KMM01). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials

This is a review article, and the specific datasets supporting the conclusions of this article were generated by other research groups. Our supporting data was obtained from the referenced publications.

Authors’ contributions

LY and YL designed this review. YL, QYX, NL, HMZ, and XLW searched literatures and contributed suggestions. YL and QYX reviewed the literatures. YL drafted the manuscript and designed the figure and table, while QYX edited and LY critically revised the manuscript. LLW, CJC, and YHL provided valuable advice and also revised the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Not applicable.
Not applicable.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.CrossRefPubMed Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.CrossRefPubMed
2.
3.
Zurück zum Zitat Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, Wheatley K, Harrison CJ, Burnett AK, National Cancer Research Institute Adult Leukaemia Working G. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council Trials. Blood. 2010;116(3):354–65.CrossRefPubMed Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, Wheatley K, Harrison CJ, Burnett AK, National Cancer Research Institute Adult Leukaemia Working G. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council Trials. Blood. 2010;116(3):354–65.CrossRefPubMed
4.
Zurück zum Zitat Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Lowenberg B, Bloomfield CD, European L. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74.CrossRefPubMed Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Lowenberg B, Bloomfield CD, European L. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74.CrossRefPubMed
5.
Zurück zum Zitat Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, Gundem G, Van Loo P, Martincorena I, Ganly P, Mudie L, McLaren S, O'Meara S, Raine K, Jones DR, Teague JW, Butler AP, Greaves MF, Ganser A, Dohner K, Schlenk RF, Dohner H, Campbell PJ. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21.CrossRefPubMedPubMedCentral Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, Gundem G, Van Loo P, Martincorena I, Ganly P, Mudie L, McLaren S, O'Meara S, Raine K, Jones DR, Teague JW, Butler AP, Greaves MF, Ganser A, Dohner K, Schlenk RF, Dohner H, Campbell PJ. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Testa JR, Mintz U, Rowley JD, Vardiman JW, Golomb HM. Evolution of karyotypes in acute nonlymphocytic leukemia. Cancer Res. 1979;39(9):3619–27.PubMed Testa JR, Mintz U, Rowley JD, Vardiman JW, Golomb HM. Evolution of karyotypes in acute nonlymphocytic leukemia. Cancer Res. 1979;39(9):3619–27.PubMed
7.
Zurück zum Zitat Cancer Genome Atlas Research N. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74.CrossRef Cancer Genome Atlas Research N. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74.CrossRef
8.
Zurück zum Zitat Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia J, Kandoth C, Fulton RS, McLellan MD, Dooling DJ, Wallis JW, Chen K, Harris CC, Schmidt HK, Kalicki-Veizer JM, Lu C, Zhang Q, Lin L, O'Laughlin MD, McMichael JF, Delehaunty KD, Fulton LA, Magrini VJ, McGrath SD, Demeter RT, Vickery TL, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264–78.CrossRefPubMedPubMedCentral Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia J, Kandoth C, Fulton RS, McLellan MD, Dooling DJ, Wallis JW, Chen K, Harris CC, Schmidt HK, Kalicki-Veizer JM, Lu C, Zhang Q, Lin L, O'Laughlin MD, McMichael JF, Delehaunty KD, Fulton LA, Magrini VJ, McGrath SD, Demeter RT, Vickery TL, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264–78.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, Patel J, Dillon R, Vijay P, Brown AL, Perl AE, Cannon J, Bullinger L, Luger S, Becker M, Lewis ID, To LB, Delwel R, Lowenberg B, Dohner H, Dohner K, Guzman ML, Hassane DC, Roboz GJ, Grimwade D, Valk PJ, D'Andrea RJ, Carroll M, Park CY, Neuberg D, et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med. 2016;22(7):792–9.CrossRefPubMedPubMedCentral Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, Patel J, Dillon R, Vijay P, Brown AL, Perl AE, Cannon J, Bullinger L, Luger S, Becker M, Lewis ID, To LB, Delwel R, Lowenberg B, Dohner H, Dohner K, Guzman ML, Hassane DC, Roboz GJ, Grimwade D, Valk PJ, D'Andrea RJ, Carroll M, Park CY, Neuberg D, et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med. 2016;22(7):792–9.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Bullinger L, Kronke J, Schon C, Radtke I, Urlbauer K, Botzenhardt U, Gaidzik V, Cario A, Senger C, Schlenk RF, Downing JR, Holzmann K, Dohner K, Dohner H. Identification of acquired copy number alterations and uniparental disomies in cytogenetically normal acute myeloid leukemia using high-resolution single-nucleotide polymorphism analysis. Leukemia. 2010;24(2):438–49.CrossRefPubMed Bullinger L, Kronke J, Schon C, Radtke I, Urlbauer K, Botzenhardt U, Gaidzik V, Cario A, Senger C, Schlenk RF, Downing JR, Holzmann K, Dohner K, Dohner H. Identification of acquired copy number alterations and uniparental disomies in cytogenetically normal acute myeloid leukemia using high-resolution single-nucleotide polymorphism analysis. Leukemia. 2010;24(2):438–49.CrossRefPubMed
11.
Zurück zum Zitat Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD, Fulton LA, Locke DP, Magrini VJ, Abbott RM, Vickery TL, Reed JS, Robinson JS, Wylie T, Smith SM, Carmichael L, Eldred JM, Harris CC, Walker J, Peck JB, Du F, Dukes AF, Sanderson GE, Brummett AM, Clark E, McMichael JF, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–66.CrossRefPubMedPubMedCentral Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD, Fulton LA, Locke DP, Magrini VJ, Abbott RM, Vickery TL, Reed JS, Robinson JS, Wylie T, Smith SM, Carmichael L, Eldred JM, Harris CC, Walker J, Peck JB, Du F, Dukes AF, Sanderson GE, Brummett AM, Clark E, McMichael JF, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–66.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Shen Y, Zhu YM, Fan X, Shi JY, Wang QR, Yan XJ, Gu ZH, Wang YY, Chen B, Jiang CL, Yan H, Chen FF, Chen HM, Chen Z, Jin J, Chen SJ. Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood. 2011;118(20):5593–603.CrossRefPubMed Shen Y, Zhu YM, Fan X, Shi JY, Wang QR, Yan XJ, Gu ZH, Wang YY, Chen B, Jiang CL, Yan H, Chen FF, Chen HM, Chen Z, Jin J, Chen SJ. Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood. 2011;118(20):5593–603.CrossRefPubMed
13.
Zurück zum Zitat Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34.CrossRefPubMedPubMedCentral Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Ruike Y, Imanaka Y, Sato F, Shimizu K, Tsujimoto G. Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics. 2010;11:137.CrossRefPubMedPubMedCentral Ruike Y, Imanaka Y, Sato F, Shimizu K, Tsujimoto G. Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing. BMC Genomics. 2010;11:137.CrossRefPubMedPubMedCentral
15.
16.
Zurück zum Zitat Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Lowenberg B, Licht JD, Godley LA, Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67.CrossRefPubMedPubMedCentral Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Lowenberg B, Licht JD, Godley LA, Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Schoofs T, Berdel WE, Muller-Tidow C. Origins of aberrant DNA methylation in acute myeloid leukemia. Leukemia. 2014;28(1):1–14.CrossRefPubMed Schoofs T, Berdel WE, Muller-Tidow C. Origins of aberrant DNA methylation in acute myeloid leukemia. Leukemia. 2014;28(1):1–14.CrossRefPubMed
19.
Zurück zum Zitat Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, Fan JB, Shen R. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98(4):288–95.CrossRefPubMed Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, Fan JB, Shen R. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98(4):288–95.CrossRefPubMed
20.
Zurück zum Zitat Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F. Evaluation of the Infinium Methylation 450 K technology. Epigenomics. 2011;3(6):771–84.CrossRefPubMed Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F. Evaluation of the Infinium Methylation 450 K technology. Epigenomics. 2011;3(6):771–84.CrossRefPubMed
21.
Zurück zum Zitat Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8(3):389–99.CrossRefPubMed Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8(3):389–99.CrossRefPubMed
22.
Zurück zum Zitat Keating GM. Azacitidine: a review of its use in the management of myelodysplastic syndromes/acute myeloid leukaemia. Drugs. 2012;72(8):1111–36.CrossRefPubMed Keating GM. Azacitidine: a review of its use in the management of myelodysplastic syndromes/acute myeloid leukaemia. Drugs. 2012;72(8):1111–36.CrossRefPubMed
23.
Zurück zum Zitat Gao F, Wang J, Ji G, Liu S, Yao Y, Wang T, Wu H, Xia Y, Gong D, Jiang H, Yang H, Zhang X. Clustering of cancer cell lines using a promoter-targeted liquid hybridization capture-based bisulfite sequencing approach. Technol Cancer Res Treat. 2015;14(4):383–94.CrossRefPubMed Gao F, Wang J, Ji G, Liu S, Yao Y, Wang T, Wu H, Xia Y, Gong D, Jiang H, Yang H, Zhang X. Clustering of cancer cell lines using a promoter-targeted liquid hybridization capture-based bisulfite sequencing approach. Technol Cancer Res Treat. 2015;14(4):383–94.CrossRefPubMed
24.
Zurück zum Zitat Allum F, Shao X, Guenard F, Simon MM, Busche S, Caron M, Lambourne J, Lessard J, Tandre K, Hedman AK, Kwan T, Ge B, Multiple Tissue Human Expression Resource Consurtium, Ronnblom L, McCarthy MI, Deloukas P, Richmond T, Burgess D, Spector TD, Tchernof A, Marceau S, Lathrop M, Vohl MC, Pastinen T, Grundberg E. Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants. Nat Commun. 2015;6:7211.CrossRefPubMedPubMedCentral Allum F, Shao X, Guenard F, Simon MM, Busche S, Caron M, Lambourne J, Lessard J, Tandre K, Hedman AK, Kwan T, Ge B, Multiple Tissue Human Expression Resource Consurtium, Ronnblom L, McCarthy MI, Deloukas P, Richmond T, Burgess D, Spector TD, Tchernof A, Marceau S, Lathrop M, Vohl MC, Pastinen T, Grundberg E. Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants. Nat Commun. 2015;6:7211.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Stirzaker C, Taberlay PC, Statham AL, Clark SJ. Mining cancer methylomes: prospects and challenges. Trends Genet. 2014;30(2):75–84.CrossRefPubMed Stirzaker C, Taberlay PC, Statham AL, Clark SJ. Mining cancer methylomes: prospects and challenges. Trends Genet. 2014;30(2):75–84.CrossRefPubMed
26.
Zurück zum Zitat consortium B. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol. 2016;34(7):726–37.CrossRef consortium B. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol. 2016;34(7):726–37.CrossRef
27.
Zurück zum Zitat Meldi K, Qin T, Buchi F, Droin N, Sotzen J, Micol JB, Selimoglu-Buet D, Masala E, Allione B, Gioia D, Poloni A, Lunghi M, Solary E, Abdel-Wahab O, Santini V, Figueroa ME. Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J Clin Invest. 2015;125(5):1857–72.CrossRefPubMedPubMedCentral Meldi K, Qin T, Buchi F, Droin N, Sotzen J, Micol JB, Selimoglu-Buet D, Masala E, Allione B, Gioia D, Poloni A, Lunghi M, Solary E, Abdel-Wahab O, Santini V, Figueroa ME. Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J Clin Invest. 2015;125(5):1857–72.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Libertini E, Heath SC, Hamoudi RA, Gut M, Ziller MJ, Herrero J, Czyz A, Ruotti V, Stunnenberg HG, Frontini M, Ouwehand WH, Meissner A, Gut IG, Beck S. Saturation analysis for whole-genome bisulfite sequencing data. Nat Biotechnol. 2016. doi:10.1038/nbt.3524. Libertini E, Heath SC, Hamoudi RA, Gut M, Ziller MJ, Herrero J, Czyz A, Ruotti V, Stunnenberg HG, Frontini M, Ouwehand WH, Meissner A, Gut IG, Beck S. Saturation analysis for whole-genome bisulfite sequencing data. Nat Biotechnol. 2016. doi:10.​1038/​nbt.​3524.
29.
Zurück zum Zitat Libertini E, Heath SC, Hamoudi RA, Gut M, Ziller MJ, Czyz A, Ruotti V, Stunnenberg HG, Frontini M, Ouwehand WH, Meissner A, Gut IG, Beck S. Information recovery from low coverage whole-genome bisulfite sequencing. Nat Commun. 2016;7:11306.CrossRefPubMedPubMedCentral Libertini E, Heath SC, Hamoudi RA, Gut M, Ziller MJ, Czyz A, Ruotti V, Stunnenberg HG, Frontini M, Ouwehand WH, Meissner A, Gut IG, Beck S. Information recovery from low coverage whole-genome bisulfite sequencing. Nat Commun. 2016;7:11306.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, Schifano E, Booth J, van Putten W, Skrabanek L, Campagne F, Mazumdar M, Greally JM, Valk PJ, Lowenberg B, Delwel R, Melnick A. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 2010;17(1):13–27.CrossRefPubMedPubMedCentral Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, Schifano E, Booth J, van Putten W, Skrabanek L, Campagne F, Mazumdar M, Greally JM, Valk PJ, Lowenberg B, Delwel R, Melnick A. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 2010;17(1):13–27.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Deneberg S, Grovdal M, Karimi M, Jansson M, Nahi H, Corbacioglu A, Gaidzik V, Dohner K, Paul C, Ekstrom TJ, Hellstrom-Lindberg E, Lehmann S. Gene-specific and global methylation patterns predict outcome in patients with acute myeloid leukemia. Leukemia. 2010;24(5):932–41.CrossRefPubMed Deneberg S, Grovdal M, Karimi M, Jansson M, Nahi H, Corbacioglu A, Gaidzik V, Dohner K, Paul C, Ekstrom TJ, Hellstrom-Lindberg E, Lehmann S. Gene-specific and global methylation patterns predict outcome in patients with acute myeloid leukemia. Leukemia. 2010;24(5):932–41.CrossRefPubMed
32.
Zurück zum Zitat Yalcin A, Kreutz C, Pfeifer D, Abdelkarim M, Klaus G, Timmer J, Lubbert M, Hackanson B. MeDIP coupled with a promoter tiling array as a platform to investigate global DNA methylation patterns in AML cells. Leuk Res. 2013;37(1):102–11.CrossRefPubMed Yalcin A, Kreutz C, Pfeifer D, Abdelkarim M, Klaus G, Timmer J, Lubbert M, Hackanson B. MeDIP coupled with a promoter tiling array as a platform to investigate global DNA methylation patterns in AML cells. Leuk Res. 2013;37(1):102–11.CrossRefPubMed
33.
Zurück zum Zitat Bullinger L, Ehrich M, Dohner K, Schlenk RF, Dohner H, Nelson MR, van den Boom D. Quantitative DNA methylation predicts survival in adult acute myeloid leukemia. Blood. 2010;115(3):636–42.CrossRefPubMed Bullinger L, Ehrich M, Dohner K, Schlenk RF, Dohner H, Nelson MR, van den Boom D. Quantitative DNA methylation predicts survival in adult acute myeloid leukemia. Blood. 2010;115(3):636–42.CrossRefPubMed
34.
Zurück zum Zitat Deneberg S, Guardiola P, Lennartsson A, Qu Y, Gaidzik V, Blanchet O, Karimi M, Bengtzen S, Nahi H, Uggla B, Tidefelt U, Hoglund M, Paul C, Ekwall K, Dohner K, Lehmann S. Prognostic DNA methylation patterns in cytogenetically normal acute myeloid leukemia are predefined by stem cell chromatin marks. Blood. 2011;118(20):5573–82.CrossRefPubMed Deneberg S, Guardiola P, Lennartsson A, Qu Y, Gaidzik V, Blanchet O, Karimi M, Bengtzen S, Nahi H, Uggla B, Tidefelt U, Hoglund M, Paul C, Ekwall K, Dohner K, Lehmann S. Prognostic DNA methylation patterns in cytogenetically normal acute myeloid leukemia are predefined by stem cell chromatin marks. Blood. 2011;118(20):5573–82.CrossRefPubMed
35.
Zurück zum Zitat Luskin MR, Gimotty PA, Smith C, Loren AW, Figueroa ME, Harrison J, Sun Z, Tallman MS, Paietta EM, Litzow MR, Melnick AM, Levine RL, Fernandez HF, Luger SM, Carroll M, Master SR, Wertheim GB. A clinical measure of DNA methylation predicts outcome in de novo acute myeloid leukemia. JCI insight. 2016;1(9):e87323. Luskin MR, Gimotty PA, Smith C, Loren AW, Figueroa ME, Harrison J, Sun Z, Tallman MS, Paietta EM, Litzow MR, Melnick AM, Levine RL, Fernandez HF, Luger SM, Carroll M, Master SR, Wertheim GB. A clinical measure of DNA methylation predicts outcome in de novo acute myeloid leukemia. JCI insight. 2016;1(9):e87323.
36.
Zurück zum Zitat Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.CrossRefPubMed Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92.CrossRefPubMed
37.
Zurück zum Zitat Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20.CrossRefPubMed Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–20.CrossRefPubMed
38.
Zurück zum Zitat Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu YC, Pfenning AR, Wang X, Claussnitzer M, Liu Y, Coarfa C, Harris RA, Shoresh N, Epstein CB, Gjoneska E, Leung D, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.CrossRefPubMedCentral Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu YC, Pfenning AR, Wang X, Claussnitzer M, Liu Y, Coarfa C, Harris RA, Shoresh N, Epstein CB, Gjoneska E, Leung D, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–30.CrossRefPubMedCentral
39.
Zurück zum Zitat Akalin A, Garrett-Bakelman FE, Kormaksson M, Busuttil J, Zhang L, Khrebtukova I, Milne TA, Huang Y, Biswas D, Hess JL, Allis CD, Roeder RG, Valk PJ, Lowenberg B, Delwel R, Fernandez HF, Paietta E, Tallman MS, Schroth GP, Mason CE, Melnick A, Figueroa ME. Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet. 2012;8(6):e1002781.CrossRefPubMedPubMedCentral Akalin A, Garrett-Bakelman FE, Kormaksson M, Busuttil J, Zhang L, Khrebtukova I, Milne TA, Huang Y, Biswas D, Hess JL, Allis CD, Roeder RG, Valk PJ, Lowenberg B, Delwel R, Fernandez HF, Paietta E, Tallman MS, Schroth GP, Mason CE, Melnick A, Figueroa ME. Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet. 2012;8(6):e1002781.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Arber DA, Attilio O, Robert H, J¨urgen T, Borowitz MJ, Le Beau MM, Bloomfield CD, Mario C, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.CrossRefPubMed Arber DA, Attilio O, Robert H, J¨urgen T, Borowitz MJ, Le Beau MM, Bloomfield CD, Mario C, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.CrossRefPubMed
41.
Zurück zum Zitat Qu Y, Lennartsson A, Gaidzik VI, Deneberg S, Karimi M, Bengtzen S, Hoglund M, Bullinger L, Dohner K, Lehmann S. Differential methylation in CN-AML preferentially targets non-CGI regions and is dictated by DNMT3A mutational status and associated with predominant hypomethylation of HOX genes. Epigenetics. 2014;9(8):1108–19.CrossRefPubMedPubMedCentral Qu Y, Lennartsson A, Gaidzik VI, Deneberg S, Karimi M, Bengtzen S, Hoglund M, Bullinger L, Dohner K, Lehmann S. Differential methylation in CN-AML preferentially targets non-CGI regions and is dictated by DNMT3A mutational status and associated with predominant hypomethylation of HOX genes. Epigenetics. 2014;9(8):1108–19.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Hajkova H, Fritz MH, Haskovec C, Schwarz J, Salek C, Markova J, Krejcik Z, Dostalova Merkerova M, Kostecka A, Vostry M, Fuchs O, Michalova K, Cetkovsky P, Benes V. CBFB-MYH11 hypomethylation signature and PBX3 differential methylation revealed by targeted bisulfite sequencing in patients with acute myeloid leukemia. J Hematol Oncol. 2014;7:66.CrossRefPubMedPubMedCentral Hajkova H, Fritz MH, Haskovec C, Schwarz J, Salek C, Markova J, Krejcik Z, Dostalova Merkerova M, Kostecka A, Vostry M, Fuchs O, Michalova K, Cetkovsky P, Benes V. CBFB-MYH11 hypomethylation signature and PBX3 differential methylation revealed by targeted bisulfite sequencing in patients with acute myeloid leukemia. J Hematol Oncol. 2014;7:66.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo Coco F, Kouzarides T, Nervi C, Minucci S, Pelicci PG. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 2002;295(5557):1079–82.CrossRefPubMed Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo Coco F, Kouzarides T, Nervi C, Minucci S, Pelicci PG. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 2002;295(5557):1079–82.CrossRefPubMed
44.
Zurück zum Zitat Liu S, Shen T, Huynh L, Klisovic MI, Rush LJ, Ford JL, Yu J, Becknell B, Li Y, Liu C, Vukosavljevic T, Whitman SP, Chang KS, Byrd JC, Perrotti D, Plass C, Marcucci G. Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res. 2005;65(4):1277–84.CrossRefPubMed Liu S, Shen T, Huynh L, Klisovic MI, Rush LJ, Ford JL, Yu J, Becknell B, Li Y, Liu C, Vukosavljevic T, Whitman SP, Chang KS, Byrd JC, Perrotti D, Plass C, Marcucci G. Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res. 2005;65(4):1277–84.CrossRefPubMed
45.
Zurück zum Zitat Cole CB, Verdoni AM, Ketkar S, Leight ER, Russler-Germain DA, Lamprecht TL, Demeter RT, Magrini V, Ley TJ. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest. 2016;126(1):85–98.CrossRefPubMed Cole CB, Verdoni AM, Ketkar S, Leight ER, Russler-Germain DA, Lamprecht TL, Demeter RT, Magrini V, Ley TJ. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest. 2016;126(1):85–98.CrossRefPubMed
46.
Zurück zum Zitat Schoofs T, Rohde C, Hebestreit K, Klein HU, Gollner S, Schulze I, Lerdrup M, Dietrich N, Agrawal-Singh S, Witten A, Stoll M, Lengfelder E, Hofmann WK, Schlenke P, Buchner T, Hansen K, Berdel WE, Rosenbauer F, Dugas M, Muller-Tidow C. DNA methylation changes are a late event in acute promyelocytic leukemia and coincide with loss of transcription factor binding. Blood. 2013;121(1):178–87.CrossRefPubMed Schoofs T, Rohde C, Hebestreit K, Klein HU, Gollner S, Schulze I, Lerdrup M, Dietrich N, Agrawal-Singh S, Witten A, Stoll M, Lengfelder E, Hofmann WK, Schlenke P, Buchner T, Hansen K, Berdel WE, Rosenbauer F, Dugas M, Muller-Tidow C. DNA methylation changes are a late event in acute promyelocytic leukemia and coincide with loss of transcription factor binding. Blood. 2013;121(1):178–87.CrossRefPubMed
47.
Zurück zum Zitat Martens JH, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F, Altucci L, Stunnenberg HG. PML-RARalpha/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell. 2010;17(2):173–85.CrossRefPubMed Martens JH, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F, Altucci L, Stunnenberg HG. PML-RARalpha/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell. 2010;17(2):173–85.CrossRefPubMed
48.
Zurück zum Zitat Saeed S, Logie C, Stunnenberg HG, Martens JH. Genome-wide functions of PML-RARalpha in acute promyelocytic leukaemia. Br J Cancer. 2011;104(4):554–8.CrossRefPubMedPubMedCentral Saeed S, Logie C, Stunnenberg HG, Martens JH. Genome-wide functions of PML-RARalpha in acute promyelocytic leukaemia. Br J Cancer. 2011;104(4):554–8.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Ng HY, Wan TS, So CC, Chim CS. Epigenetic inactivation of DAPK1, p14ARF, mir-34a and -34b/c in acute promyelocytic leukaemia. J Clin Pathol. 2014;67(7):626–31.CrossRefPubMed Ng HY, Wan TS, So CC, Chim CS. Epigenetic inactivation of DAPK1, p14ARF, mir-34a and -34b/c in acute promyelocytic leukaemia. J Clin Pathol. 2014;67(7):626–31.CrossRefPubMed
50.
Zurück zum Zitat Marcucci G, Yan P, Maharry K, Frankhouser D, Nicolet D, Metzeler KH, Kohlschmidt J, Mrozek K, Wu YZ, Bucci D, Curfman JP, Whitman SP, Eisfeld AK, Mendler JH, Schwind S, Becker H, Bar C, Carroll AJ, Baer MR, Wetzler M, Carter TH, Powell BL, Kolitz JE, Byrd JC, Plass C, Garzon R, Caligiuri MA, Stone RM, Volinia S, Bundschuh R, et al. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(6):548–56.CrossRef Marcucci G, Yan P, Maharry K, Frankhouser D, Nicolet D, Metzeler KH, Kohlschmidt J, Mrozek K, Wu YZ, Bucci D, Curfman JP, Whitman SP, Eisfeld AK, Mendler JH, Schwind S, Becker H, Bar C, Carroll AJ, Baer MR, Wetzler M, Carter TH, Powell BL, Kolitz JE, Byrd JC, Plass C, Garzon R, Caligiuri MA, Stone RM, Volinia S, Bundschuh R, et al. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(6):548–56.CrossRef
51.
Zurück zum Zitat Li KK, Luo LF, Shen Y, Xu J, Chen Z, Chen SJ. DNA methyltransferases in hematologic malignancies. Semin Hematol. 2013;50(1):48–60.CrossRefPubMed Li KK, Luo LF, Shen Y, Xu J, Chen Z, Chen SJ. DNA methyltransferases in hematologic malignancies. Semin Hematol. 2013;50(1):48–60.CrossRefPubMed
52.
Zurück zum Zitat Liu X, Jia X, Yuan H, Ma K, Chen Y, Jin Y, Deng M, Pan W, Chen S, Chen Z, de The H, Zon LI, Zhou Y, Zhou J, Zhu J. DNA methyltransferase 1 functions through C/ebpa to maintain hematopoietic stem and progenitor cells in zebrafish. J Hematol Oncol. 2015;8:15.CrossRefPubMedPubMedCentral Liu X, Jia X, Yuan H, Ma K, Chen Y, Jin Y, Deng M, Pan W, Chen S, Chen Z, de The H, Zon LI, Zhou Y, Zhou J, Zhu J. DNA methyltransferase 1 functions through C/ebpa to maintain hematopoietic stem and progenitor cells in zebrafish. J Hematol Oncol. 2015;8:15.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, Bock C, Vasanthakumar A, Gu H, Xi Y, Liang S, Lu Y, Darlington GJ, Meissner A, Issa JP, Godley LA, Li W, Goodell MA. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet. 2012;44(1):23–31.CrossRef Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, Bock C, Vasanthakumar A, Gu H, Xi Y, Liang S, Lu Y, Darlington GJ, Meissner A, Issa JP, Godley LA, Li W, Goodell MA. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet. 2012;44(1):23–31.CrossRef
54.
Zurück zum Zitat Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O'Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33.CrossRefPubMedPubMedCentral Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O'Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y, Sasaki H. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001;97(5):1172–9.CrossRefPubMed Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y, Sasaki H. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001;97(5):1172–9.CrossRefPubMed
56.
Zurück zum Zitat Deveau AP, Forrester AM, Coombs AJ, Wagner GS, Grabher C, Chute IC, Leger D, Mingay M, Alexe G, Rajan V, Liwski R, Hirst M, Steigmaier K, Lewis SM, Look AT, Berman JN. Epigenetic therapy restores normal hematopoiesis in a zebrafish model of NUP98-HOXA9-induced myeloid disease. Leukemia. 2015;29(10):2086–97.CrossRefPubMed Deveau AP, Forrester AM, Coombs AJ, Wagner GS, Grabher C, Chute IC, Leger D, Mingay M, Alexe G, Rajan V, Liwski R, Hirst M, Steigmaier K, Lewis SM, Look AT, Berman JN. Epigenetic therapy restores normal hematopoiesis in a zebrafish model of NUP98-HOXA9-induced myeloid disease. Leukemia. 2015;29(10):2086–97.CrossRefPubMed
57.
Zurück zum Zitat Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, Kennedy JA, Schimmer AD, Schuh AC, Yee KW, McLeod JL, Doedens M, Medeiros JJ, Marke R, Kim HJ, Lee K, McPherson JD, Hudson TJ, Consortium HP-LGP, Brown AM, Yousif F, Trinh QM, Stein LD, Minden MD, Wang JC, Dick JE. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506(7488):328–33.CrossRefPubMedPubMedCentral Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, Kennedy JA, Schimmer AD, Schuh AC, Yee KW, McLeod JL, Doedens M, Medeiros JJ, Marke R, Kim HJ, Lee K, McPherson JD, Hudson TJ, Consortium HP-LGP, Brown AM, Yousif F, Trinh QM, Stein LD, Minden MD, Wang JC, Dick JE. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506(7488):328–33.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Jiang D, Hong Q, Shen Y, Xu Y, Zhu H, Li Y, Xu C, Ouyang G, Duan S. The diagnostic value of DNA methylation in leukemia: a systematic review and meta-analysis. PLoS One. 2014;9(5):e96822.CrossRefPubMedPubMedCentral Jiang D, Hong Q, Shen Y, Xu Y, Zhu H, Li Y, Xu C, Ouyang G, Duan S. The diagnostic value of DNA methylation in leukemia: a systematic review and meta-analysis. PLoS One. 2014;9(5):e96822.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Gao XN, Yan F, Lin J, Gao L, Lu XL, Wei SC, Shen N, Pang JX, Ning QY, Komeno Y, Deng AL, Xu YH, Shi JL, Li YH, Zhang DE, Nervi C, Liu SJ, Yu L. AML1/ETO cooperates with HIF1alpha to promote leukemogenesis through DNMT3a transactivation. Leukemia. 2015;29(8):1730–40.CrossRefPubMed Gao XN, Yan F, Lin J, Gao L, Lu XL, Wei SC, Shen N, Pang JX, Ning QY, Komeno Y, Deng AL, Xu YH, Shi JL, Li YH, Zhang DE, Nervi C, Liu SJ, Yu L. AML1/ETO cooperates with HIF1alpha to promote leukemogenesis through DNMT3a transactivation. Leukemia. 2015;29(8):1730–40.CrossRefPubMed
60.
Zurück zum Zitat Wertheim GB, Smith C, Figueroa ME, Kalos M, Bagg A, Carroll M, Master SR. Microsphere-based multiplex analysis of DNA methylation in acute myeloid leukemia. J Mol Diagn. 2014;16(2):207–15.CrossRefPubMedPubMedCentral Wertheim GB, Smith C, Figueroa ME, Kalos M, Bagg A, Carroll M, Master SR. Microsphere-based multiplex analysis of DNA methylation in acute myeloid leukemia. J Mol Diagn. 2014;16(2):207–15.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Wertheim GB, Smith C, Luskin M, Rager A, Figueroa ME, Carroll M, Master SR. Validation of DNA methylation to predict outcome in acute myeloid leukemia by use of xMELP. Clin Chem. 2015;61(1):249–58.CrossRefPubMed Wertheim GB, Smith C, Luskin M, Rager A, Figueroa ME, Carroll M, Master SR. Validation of DNA methylation to predict outcome in acute myeloid leukemia by use of xMELP. Clin Chem. 2015;61(1):249–58.CrossRefPubMed
62.
Zurück zum Zitat DiNardo CD, Luskin MR, Carroll M, Smith C, Harrison J, Pierce S, Kornblau S, Konopleva M, Kadia T, Kantarjian H, Wertheim GB, Master SR. Validation of a clinical assay of multi-locus DNA methylation for prognosis of newly diagnosed AML. Am J Hematol. 2017;92(2):E14-5. DiNardo CD, Luskin MR, Carroll M, Smith C, Harrison J, Pierce S, Kornblau S, Konopleva M, Kadia T, Kantarjian H, Wertheim GB, Master SR. Validation of a clinical assay of multi-locus DNA methylation for prognosis of newly diagnosed AML. Am J Hematol. 2017;92(2):E14-5.
63.
Zurück zum Zitat Raj K, John A, Ho A, Chronis C, Khan S, Samuel J, Pomplun S, Thomas NS, Mufti GJ. CDKN2B methylation status and isolated chromosome 7 abnormalities predict responses to treatment with 5-azacytidine. Leukemia. 2007;21(9):1937–44.CrossRefPubMed Raj K, John A, Ho A, Chronis C, Khan S, Samuel J, Pomplun S, Thomas NS, Mufti GJ. CDKN2B methylation status and isolated chromosome 7 abnormalities predict responses to treatment with 5-azacytidine. Leukemia. 2007;21(9):1937–44.CrossRefPubMed
64.
Zurück zum Zitat Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E, Fernandez H, Tallman MS, Greally JM, Carraway H, Licht JD, Gore SD, Melnick A. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood. 2009;114(16):3448–58.CrossRefPubMedPubMedCentral Figueroa ME, Skrabanek L, Li Y, Jiemjit A, Fandy TE, Paietta E, Fernandez H, Tallman MS, Greally JM, Carraway H, Licht JD, Gore SD, Melnick A. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood. 2009;114(16):3448–58.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Zhang LY, Yuan YQ, Zhou DM, Wang ZY, Ju SG, Sun Y, Li J, Fu JX. Impact of global and gene-specific DNA methylation in de novo or relapsed acute myeloid leukemia patients treated with decitabine. Asian Pac J Cancer Prev. 2016;17(1):431–7.CrossRefPubMed Zhang LY, Yuan YQ, Zhou DM, Wang ZY, Ju SG, Sun Y, Li J, Fu JX. Impact of global and gene-specific DNA methylation in de novo or relapsed acute myeloid leukemia patients treated with decitabine. Asian Pac J Cancer Prev. 2016;17(1):431–7.CrossRefPubMed
66.
Zurück zum Zitat Grovdal M, Khan R, Aggerholm A, Antunovic P, Astermark J, Bernell P, Engstrom LM, Kjeldsen L, Linder O, Nilsson L, Olsson A, Wallvik J, Tangen JM, Oberg G, Jacobsen SE, Hokland P, Porwit A, Hellstrom-Lindberg E. Negative effect of DNA hypermethylation on the outcome of intensive chemotherapy in older patients with high-risk myelodysplastic syndromes and acute myeloid leukemia following myelodysplastic syndrome. Clin Cancer Res. 2007;13(23):7107–12.CrossRefPubMed Grovdal M, Khan R, Aggerholm A, Antunovic P, Astermark J, Bernell P, Engstrom LM, Kjeldsen L, Linder O, Nilsson L, Olsson A, Wallvik J, Tangen JM, Oberg G, Jacobsen SE, Hokland P, Porwit A, Hellstrom-Lindberg E. Negative effect of DNA hypermethylation on the outcome of intensive chemotherapy in older patients with high-risk myelodysplastic syndromes and acute myeloid leukemia following myelodysplastic syndrome. Clin Cancer Res. 2007;13(23):7107–12.CrossRefPubMed
67.
Zurück zum Zitat Ribeiro AF, Pratcorona M, Erpelinck-Verschueren C, Rockova V, Sanders M, Abbas S, Figueroa ME, Zeilemaker A, Melnick A, Lowenberg B, Valk PJ, Delwel R. Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood. 2012;119(24):5824–31.CrossRefPubMed Ribeiro AF, Pratcorona M, Erpelinck-Verschueren C, Rockova V, Sanders M, Abbas S, Figueroa ME, Zeilemaker A, Melnick A, Lowenberg B, Valk PJ, Delwel R. Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood. 2012;119(24):5824–31.CrossRefPubMed
68.
Zurück zum Zitat Abbas S, Lugthart S, Kavelaars FG, Schelen A, Koenders JE, Zeilemaker A, van Putten WJ, Rijneveld AW, Lowenberg B, Valk PJ. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. 2010;116(12):2122–6.CrossRefPubMed Abbas S, Lugthart S, Kavelaars FG, Schelen A, Koenders JE, Zeilemaker A, van Putten WJ, Rijneveld AW, Lowenberg B, Valk PJ. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. 2010;116(12):2122–6.CrossRefPubMed
69.
Zurück zum Zitat Gaidzik VI, Paschka P, Spath D, Habdank M, Kohne CH, Germing U, von Lilienfeld-Toal M, Held G, Horst HA, Haase D, Bentz M, Gotze K, Dohner H, Schlenk RF, Bullinger L, Dohner K. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(12):1350–7.CrossRef Gaidzik VI, Paschka P, Spath D, Habdank M, Kohne CH, Germing U, von Lilienfeld-Toal M, Held G, Horst HA, Haase D, Bentz M, Gotze K, Dohner H, Schlenk RF, Bullinger L, Dohner K. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(12):1350–7.CrossRef
70.
Zurück zum Zitat Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood. 2016;127(1):42–52.CrossRefPubMed Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood. 2016;127(1):42–52.CrossRefPubMed
72.
Zurück zum Zitat Chau D, Ng K, Chan TS, Cheng YY, Fong B, Tam S, Kwong YL, Tse E. Azacytidine sensitizes acute myeloid leukemia cells to arsenic trioxide by up-regulating the arsenic transporter aquaglyceroporin 9. J Hematol Oncol. 2015;8:46.CrossRefPubMedPubMedCentral Chau D, Ng K, Chan TS, Cheng YY, Fong B, Tam S, Kwong YL, Tse E. Azacytidine sensitizes acute myeloid leukemia cells to arsenic trioxide by up-regulating the arsenic transporter aquaglyceroporin 9. J Hematol Oncol. 2015;8:46.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Tibes R, Al-Kali A, Oliver GR, Delman DH, Hansen N, Bhagavatula K, Mohan J, Rakhshan F, Wood T, Foran JM, Mesa RA, Bogenberger JM. The Hedgehog pathway as targetable vulnerability with 5-azacytidine in myelodysplastic syndrome and acute myeloid leukemia. J Hematol Oncol. 2015;8:114.CrossRefPubMedPubMedCentral Tibes R, Al-Kali A, Oliver GR, Delman DH, Hansen N, Bhagavatula K, Mohan J, Rakhshan F, Wood T, Foran JM, Mesa RA, Bogenberger JM. The Hedgehog pathway as targetable vulnerability with 5-azacytidine in myelodysplastic syndrome and acute myeloid leukemia. J Hematol Oncol. 2015;8:114.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Nieto M, Demolis P, Behanzin E, Moreau A, Hudson I, Flores B, Stemplewski H, Salmonson T, Gisselbrecht C, Bowen D, Pignatti F. The European Medicines Agency Review of Decitabine (Dacogen) for the treatment of adult patients with acute myeloid leukemia: summary of the scientific assessment of the committee for medicinal products for human use. Oncologist. 2016;21(6):692–700.CrossRefPubMed Nieto M, Demolis P, Behanzin E, Moreau A, Hudson I, Flores B, Stemplewski H, Salmonson T, Gisselbrecht C, Bowen D, Pignatti F. The European Medicines Agency Review of Decitabine (Dacogen) for the treatment of adult patients with acute myeloid leukemia: summary of the scientific assessment of the committee for medicinal products for human use. Oncologist. 2016;21(6):692–700.CrossRefPubMed
75.
Zurück zum Zitat Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH, Kumar R, Cavenagh J, Schuh AC, Candoni A, Recher C, Sandhu I, Bernal del Castillo T, Al-Ali HK, Martinelli G, Falantes J, Noppeney R, Stone RM, Minden MD, McIntyre H, Songer S, Lucy LM, Beach CL, Dohner H. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126(3):291–9.CrossRefPubMedPubMedCentral Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH, Kumar R, Cavenagh J, Schuh AC, Candoni A, Recher C, Sandhu I, Bernal del Castillo T, Al-Ali HK, Martinelli G, Falantes J, Noppeney R, Stone RM, Minden MD, McIntyre H, Songer S, Lucy LM, Beach CL, Dohner H. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126(3):291–9.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Han S, Kim YJ, Lee J, Jeon S, Hong T, Park GJ, Yoon JH, Yahng SA, Shin SH, Lee SE, Eom KS, Kim HJ, Min CK, Lee S, Yim DS. Model-based adaptive phase I trial design of post-transplant decitabine maintenance in myelodysplastic syndrome. J Hematol Oncol. 2015;8:118.CrossRefPubMedPubMedCentral Han S, Kim YJ, Lee J, Jeon S, Hong T, Park GJ, Yoon JH, Yahng SA, Shin SH, Lee SE, Eom KS, Kim HJ, Min CK, Lee S, Yim DS. Model-based adaptive phase I trial design of post-transplant decitabine maintenance in myelodysplastic syndrome. J Hematol Oncol. 2015;8:118.CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E, Sugimoto Y, Szpurka H, Makishima H, O'Keefe CL, Sekeres MA, Advani AS, Kalaycio M, Copelan EA, Saunthararajah Y, Olalla Saad ST, Maciejewski JP, Tiu RV. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014;28(1):78–87.CrossRefPubMed Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E, Sugimoto Y, Szpurka H, Makishima H, O'Keefe CL, Sekeres MA, Advani AS, Kalaycio M, Copelan EA, Saunthararajah Y, Olalla Saad ST, Maciejewski JP, Tiu RV. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014;28(1):78–87.CrossRefPubMed
78.
Zurück zum Zitat Emadi A, Faramand R, Carter-Cooper B, Tolu S, Ford LA, Lapidus RG, Wetzler M, Wang ES, Etemadi A, Griffiths EA. Presence of isocitrate dehydrogenase mutations may predict clinical response to hypomethylating agents in patients with acute myeloid leukemia. Am J Hematol. 2015;90(5):E77–9.CrossRefPubMed Emadi A, Faramand R, Carter-Cooper B, Tolu S, Ford LA, Lapidus RG, Wetzler M, Wang ES, Etemadi A, Griffiths EA. Presence of isocitrate dehydrogenase mutations may predict clinical response to hypomethylating agents in patients with acute myeloid leukemia. Am J Hematol. 2015;90(5):E77–9.CrossRefPubMed
80.
Zurück zum Zitat Stein EM. Molecular pathways: IDH2 mutations-co-opting cellular metabolism for malignant transformation. Clin Cancer Res. 2016;22(1):16–9.CrossRefPubMed Stein EM. Molecular pathways: IDH2 mutations-co-opting cellular metabolism for malignant transformation. Clin Cancer Res. 2016;22(1):16–9.CrossRefPubMed
82.
Zurück zum Zitat Hansen E, Quivoron C, Straley K, Lemieux RM, Popovici-Muller J, Sadrzadeh H, Fathi AT, Gliser C, David M, Saada V, Micol JB, Bernard O, Dorsch M, Yang H, Su M, Agresta S, de Botton S, Lacronique VP, Yen K. AG-120, an oral, selective, first-in-Class, potent inhibitor of mutant IDH1, reduces intracellular 2HG and induces cellular differentiation in TF-1 R132H cells and primary human IDH1 mutant AML patient samples treated ex vivo. Blood. 2014;124(21):3734. Hansen E, Quivoron C, Straley K, Lemieux RM, Popovici-Muller J, Sadrzadeh H, Fathi AT, Gliser C, David M, Saada V, Micol JB, Bernard O, Dorsch M, Yang H, Su M, Agresta S, de Botton S, Lacronique VP, Yen K. AG-120, an oral, selective, first-in-Class, potent inhibitor of mutant IDH1, reduces intracellular 2HG and induces cellular differentiation in TF-1 R132H cells and primary human IDH1 mutant AML patient samples treated ex vivo. Blood. 2014;124(21):3734.
83.
Zurück zum Zitat DiNardo CD, Schimmer A, Yee KWL, Hochhaus A, Kraemer A, Carvajal RD, Janku F, Bedard P, Carpio C, Wick A, Schwartz GK, Schöffski P, Wen P, van den Bent MJ, Rosenthal M, O'Keeffe J, Chen X, Pagliarini R, Schuck V, Myers A, Wei A. A phase I study of IDH305 in patients with advanced malignancies including relapsed/refractory AML and MDS that harbor IDH1R132 mutations. Blood. 2016;128(22):1073. DiNardo CD, Schimmer A, Yee KWL, Hochhaus A, Kraemer A, Carvajal RD, Janku F, Bedard P, Carpio C, Wick A, Schwartz GK, Schöffski P, Wen P, van den Bent MJ, Rosenthal M, O'Keeffe J, Chen X, Pagliarini R, Schuck V, Myers A, Wei A. A phase I study of IDH305 in patients with advanced malignancies including relapsed/refractory AML and MDS that harbor IDH1R132 mutations. Blood. 2016;128(22):1073.
84.
Zurück zum Zitat DiNardo CD, de Botton S, Stein EM, Roboz GJ, Swords RT, Pollyea DA, Fathi AT, Collins R, Altman JK, Flinn IW, Mannis GN, Mims AS, Foran JM, Pigneux A, Prince GT, Uy GL, Tallman MS, Kantarjian HM, Liu H, Attar EC, Sacolick J, Yen K, Hurov JB, Choe S, Wu B, Stone RM. Determination of IDH1 mutational burden and clearance via next-generation sequencing in patients with IDH1 mutation-positive hematologic malignancies receiving AG-120, a first-in-class inhibitor of mutant IDH1. Blood. 2016;128(22):1070. DiNardo CD, de Botton S, Stein EM, Roboz GJ, Swords RT, Pollyea DA, Fathi AT, Collins R, Altman JK, Flinn IW, Mannis GN, Mims AS, Foran JM, Pigneux A, Prince GT, Uy GL, Tallman MS, Kantarjian HM, Liu H, Attar EC, Sacolick J, Yen K, Hurov JB, Choe S, Wu B, Stone RM. Determination of IDH1 mutational burden and clearance via next-generation sequencing in patients with IDH1 mutation-positive hematologic malignancies receiving AG-120, a first-in-class inhibitor of mutant IDH1. Blood. 2016;128(22):1070.
85.
Zurück zum Zitat Stein EM, Fathi AT, DiNardo CD, Pollyea DA, Swords RT, Roboz GJ, Collins R, Sekeres MA, Stone RM, Attar EC, Tosolini A, Xu Q, Amatangelo M, Gupta I, Knight RD, De Botton S, Tallman MS, Kantarjian HM. Enasidenib (AG-221), a potent oral inhibitor of mutant isocitrate dehydrogenase 2 (IDH2) enzyme, induces hematologic responses in patients with myelodysplastic syndromes (MDS). Blood. 2016;128(22):343. Stein EM, Fathi AT, DiNardo CD, Pollyea DA, Swords RT, Roboz GJ, Collins R, Sekeres MA, Stone RM, Attar EC, Tosolini A, Xu Q, Amatangelo M, Gupta I, Knight RD, De Botton S, Tallman MS, Kantarjian HM. Enasidenib (AG-221), a potent oral inhibitor of mutant isocitrate dehydrogenase 2 (IDH2) enzyme, induces hematologic responses in patients with myelodysplastic syndromes (MDS). Blood. 2016;128(22):343.
86.
Zurück zum Zitat Stein EM, DiNardo CD, Altman JK, Collins R, DeAngelo DJ, Kantarjian HM, Sekeres MA, Fathi AT, Flinn LW, Frankel AE, Levine RL, Medeiros BC, Patel MR, Pollyea DA, Roboz GJ, Stone RM, Swords RT, Tallman MS, Yen K, Attar EC, Xu Q, Tosolini A, Mei JM, Thakurta A, Knight RD, De Botton S. Safety and efficacy of AG-221, a potent inhibitor of mutant IDH2 that promotes differentiation of myeloid cells in patients with advanced hematologic malignancies: results of a phase 1/2 trial. Blood. 2015;126(23):323. Stein EM, DiNardo CD, Altman JK, Collins R, DeAngelo DJ, Kantarjian HM, Sekeres MA, Fathi AT, Flinn LW, Frankel AE, Levine RL, Medeiros BC, Patel MR, Pollyea DA, Roboz GJ, Stone RM, Swords RT, Tallman MS, Yen K, Attar EC, Xu Q, Tosolini A, Mei JM, Thakurta A, Knight RD, De Botton S. Safety and efficacy of AG-221, a potent inhibitor of mutant IDH2 that promotes differentiation of myeloid cells in patients with advanced hematologic malignancies: results of a phase 1/2 trial. Blood. 2015;126(23):323.
87.
Zurück zum Zitat Taskesen E, Babaei S, Reinders MM, de Ridder J. Integration of gene expression and DNA-methylation profiles improves molecular subtype classification in acute myeloid leukemia. BMC Bioinf. 2015;16 Suppl 4:S5.CrossRef Taskesen E, Babaei S, Reinders MM, de Ridder J. Integration of gene expression and DNA-methylation profiles improves molecular subtype classification in acute myeloid leukemia. BMC Bioinf. 2015;16 Suppl 4:S5.CrossRef
88.
Zurück zum Zitat Shih AH, Jiang Y, Meydan C, Shank K, Pandey S, Barreyro L, Antony-Debre I, Viale A, Socci N, Sun Y, Robertson A, Cavatore M, de Stanchina E, Hricik T, Rapaport F, Woods B, Wei C, Hatlen M, Baljevic M, Nimer SD, Tallman M, Paietta E, Cimmino L, Aifantis I, Steidl U, Mason C, Melnick A, Levine RL. Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia. Cancer Cell. 2015;27(4):502–15.CrossRefPubMedPubMedCentral Shih AH, Jiang Y, Meydan C, Shank K, Pandey S, Barreyro L, Antony-Debre I, Viale A, Socci N, Sun Y, Robertson A, Cavatore M, de Stanchina E, Hricik T, Rapaport F, Woods B, Wei C, Hatlen M, Baljevic M, Nimer SD, Tallman M, Paietta E, Cimmino L, Aifantis I, Steidl U, Mason C, Melnick A, Levine RL. Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia. Cancer Cell. 2015;27(4):502–15.CrossRefPubMedPubMedCentral
89.
Zurück zum Zitat Ohgami RS, Arber DA. The diagnostic and clinical impact of genetics and epigenetics in acute myeloid leukemia. Int J Lab Hematol. 2015;37 Suppl 1:122–32.CrossRefPubMed Ohgami RS, Arber DA. The diagnostic and clinical impact of genetics and epigenetics in acute myeloid leukemia. Int J Lab Hematol. 2015;37 Suppl 1:122–32.CrossRefPubMed
90.
Zurück zum Zitat Bujold D, Morais DA, Gauthier C, Cote C, Caron M, Kwan T, Chen KC, Laperle J, Markovits AN, Pastinen T, Caron B, Veilleux A, Jacques PE, Bourque G. The International Human Epigenome Consortium Data Portal. Cell Syst. 2016;3(5):496–9. e492.CrossRefPubMed Bujold D, Morais DA, Gauthier C, Cote C, Caron M, Kwan T, Chen KC, Laperle J, Markovits AN, Pastinen T, Caron B, Veilleux A, Jacques PE, Bourque G. The International Human Epigenome Consortium Data Portal. Cell Syst. 2016;3(5):496–9. e492.CrossRefPubMed
91.
Zurück zum Zitat Fernandez JM, de la Torre V, Richardson D, Royo R, Puiggros M, Moncunill V, Fragkogianni S, Clarke L, Consortium B, Flicek P, Rico D, Torrents D, Carrillo de Santa Pau E, Valencia A. The BLUEPRINT Data Analysis Portal. Cell Syst. 2016;3(5):491–5. e495.CrossRefPubMed Fernandez JM, de la Torre V, Richardson D, Royo R, Puiggros M, Moncunill V, Fragkogianni S, Clarke L, Consortium B, Flicek P, Rico D, Torrents D, Carrillo de Santa Pau E, Valencia A. The BLUEPRINT Data Analysis Portal. Cell Syst. 2016;3(5):491–5. e495.CrossRefPubMed
92.
Zurück zum Zitat Breeze CE, Paul DS, van Dongen J, Butcher LM, Ambrose JC, Barrett JE, Lowe R, Rakyan VK, Iotchkova V, Frontini M, Downes K, Ouwehand WH, Laperle J, Jacques PE, Bourque G, Bergmann AK, Siebert R, Vellenga E, Saeed S, Matarese F, Martens JH, Stunnenberg HG, Teschendorff AE, Herrero J, Birney E, Dunham I, Beck S. eFORGE: a tool for identifying cell type-specific signal in epigenomic data. Cell Rep. 2016;17(8):2137–50.CrossRefPubMedPubMedCentral Breeze CE, Paul DS, van Dongen J, Butcher LM, Ambrose JC, Barrett JE, Lowe R, Rakyan VK, Iotchkova V, Frontini M, Downes K, Ouwehand WH, Laperle J, Jacques PE, Bourque G, Bergmann AK, Siebert R, Vellenga E, Saeed S, Matarese F, Martens JH, Stunnenberg HG, Teschendorff AE, Herrero J, Birney E, Dunham I, Beck S. eFORGE: a tool for identifying cell type-specific signal in epigenomic data. Cell Rep. 2016;17(8):2137–50.CrossRefPubMedPubMedCentral
Metadaten
Titel
Clinical implications of genome-wide DNA methylation studies in acute myeloid leukemia
verfasst von
Yan Li
Qingyu Xu
Na Lv
Lili Wang
Hongmei Zhao
Xiuli Wang
Jing Guo
Chongjian Chen
Yonghui Li
Li Yu
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2017
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-017-0409-z

Weitere Artikel der Ausgabe 1/2017

Journal of Hematology & Oncology 1/2017 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.