Skip to main content
Erschienen in: Arthritis Research & Therapy 1/2017

Open Access 01.12.2017 | Research article

Decrease in bone mineral density during three months after diagnosis of early rheumatoid arthritis measured by digital X-ray radiogrammetry predicts radiographic joint damage after one year

verfasst von: Michael Ziegelasch, Kristina Forslind, Thomas Skogh, Katrine Riklund, Alf Kastbom, Ewa Berglin

Erschienen in: Arthritis Research & Therapy | Ausgabe 1/2017

Abstract

Background

Periarticular osteopenia is an early sign of incipient joint injury in rheumatoid arthritis (RA), but cannot be accurately quantified using conventional radiography. Digital X-ray radiogrammetry (DXR) is a computerized technique to estimate bone mineral density (BMD) from hand radiographs. The aim of this study was to evaluate whether decrease in BMD of the hands (BMD loss), as determined by DXR 3 months after diagnosis, predicts radiographic joint damage after 1 and 2 years in patients with early RA.

Methods

Patients (n = 176) with early RA (<12 months after onset of symptoms) from three different Swedish rheumatology centers were consecutively included in the study, and 167 of these patients were included in the analysis. Medication was given in accordance with Swedish guidelines, and the patients were followed for 2 years. Rheumatoid factor and antibodies to cyclic citrullinated peptides (anti-CCP) were measured at baseline, and 28-joint Disease Activity Score (DAS28) was assessed at each visit. Radiographs of the hands and feet were obtained at baseline, 3 months (hands only) and 1 and 2 years. Baseline and 1-year and 2-year radiographs were evaluated by the Larsen score. Radiographic progression was defined as a difference in Larsen score above the smallest detectable change. DXR-BMD was measured at baseline and after 3 months. BMD loss was defined as moderate when the decrease in BMD was between 0.25 and 2.5 mg/cm2/month and as severe when the decrease was greater than 2.5 mg/cm2/month. Multivariate regression was applied to test the association between DXR-BMD loss and radiographic damage, including adjustments for possible confounders.

Results

DXR-BMD loss during the initial 3 months occurred in 59% of the patients (44% moderate, 15% severe): 32 patients (19%) had radiographic progression at 1 year and 45 (35%) at 2 years. In multiple regression analyses, the magnitude of DXR-BMD loss was significantly associated with increase in Larsen score between baseline and 1 year (p = 0.033, adjusted R-squared = 0.069).

Conclusion

DXR-BMD loss during the initial 3 months independently predicted radiographic joint damage at 1 year in patients with early RA. Thus, DXR-BMD may be a useful tool to detect ongoing joint damage and thereby to improve individualization of therapy in early RA.
Abkürzungen
ACR
American College of Rheumatology
bDMARD
Biologic disease modifying anti-rheumatic drug
BMD
Bone mineral density
CCP
Cyclic citrullinated peptides
csDMARD
Conventional synthetic disease modifying anti-rheumatic drug
CRP
C-reactive protein
DAS
Disease Activity Score
DAS28
DAS with 28 joints
DXR
Digital X-ray radiogrammetry
DXR-BMD
Bone mineral density measured by digital X-ray radiogrammetry
ESR
Erythrocyte sedimentation rate
EULAR
European League Against Rheumatism
GC
Glucocorticoid
HAQ
Health Assessment Questionnaire
ICC
Intraclass correlation coefficient
MRI
Magnetic resonance imaging
MTX
Methotrexate
RA
Rheumatoid arthritis
RF
Rheumatoid factor
SDC
Smallest detectable change
TNF
Tumor necrosis factor

Background

Early stages of rheumatoid arthritis (RA) are characterized by gradually developing joint swelling, stiffness and pain, and the patients often have a history of several months of symptoms when first presenting to the rheumatologist. Periarticular bone loss may already be present at this stage, representing an early radiologic manifestation visible on plain radiographs [1, 2]. The disease course in RA shows considerable inter-individual variation, ranging from mild and self-limiting to severe erosive disease, sometimes with extra-articular manifestations. Early treatment with disease-modifying anti-rheumatic drugs (DMARDs) is known to improve disease outcome [35], and may limit disease-associated bone loss [6]. However, further improved individual prediction of the disease course and outcome remains an important issue in order to optimize anti-rheumatic therapy.
Digital X-ray radiogrammetry (DXR) is a technique that uses computerized analyses of standard hand radiographs to estimate peripheral bone mineral density (BMD) of the three middle metacarpal bones (DXR-BMD) [7, 8]. DXR-BMD loss has repeatedly been shown to predict radiographic joint progression in early RA [914]. However, the majority of previous DXR-BMD studies have been based on 12-month change, and by that time, conventional X-ray assessments of joint damage are at least as informative about disease progression [9, 1114]. A Dutch study addressing DXR-BMD change after 4 months, reported an independent association between DXR-BMD loss and subsequent radiographic damage [10]. This study was part of a clinical trial with selected patients, and the treatment regimens were slightly different from standard care in Sweden. Therefore, we wished to investigate whether 3-month change in DXR-BMD predicts radiographic joint damage after 1 and 2 years in “real-world” patients with recent-onset RA.

Methods

Patients

Patients (n = 176) with early RA (64% women, symptom duration < 12 months), fulfilling the inclusion criteria (see subsequent text) and giving their informed consent, were consecutively included from three Swedish regions (one in Northern and two in Southern Sweden) in 2008–2014 and were followed for 2 years. All patients fulfilled the 2010 American College of Rheumatology (ACR)/European League Against Rheumatism (EULAR) [15] and/or the 1987 ACR [16] classification criteria. Pharmacotherapy was prescribed as found appropriate by the treating rheumatologist, according to Swedish guidelines. Baseline characteristics are detailed in Table 1.
Table 1
Baseline characteristics by radiographic progression at 1 year and bone mineral density loss after 3 months
 
Total
Radiographic progression
BMD loss
  
No
Yes
p value
No
Yes
p value
Age
58 (14.5)
57.9 (14.4)
60.3 (14.7)
0.41
55.7 (15.5)
60.3 (13.4)
0.042
Women, n (%)
107 (64)
84/135 (62.2)
23/32 (71.9)
0.41
38/69 (55.1)
69/98 (70.4)
0.05
Symptom duration (months)
6 (3.7)
5.5 (3.3)
6.4 (5.0)
0.35
6 (3.2)
5.5 (3.9)
0.31
Anti-CCP2 positive, n (%)
107 (64)
88/135 (65.2)
19/32 (59.4)
0.54
42/69 (60.8)
65/98 (66.3)
0.51
RF positive, n (%)
103 (63)
83/131 (63.4)
20/32 (62.5)
1.0
40/68 (58.8)
63/95 (66.3)
0.41
ESR (mm/h)
29 (21.4)
27.3 (21.1)
35.4 (21.8)
0.055
25.4 (18.2)
31.3 (23.2)
0.066
CRP (mg/ml)
22 (24.4)
21.6 (25.0)
24.7 (22.2)
0.51
18.2 (23)
25 (25.1)
0.074
DAS 28
4.86 (1.30)
4.79 (1.3)
5.12 (1.4)
0.21
4.57 (1.27)
5.06 (1.29)
0.023
HAQ
0.94 (0.60)
0.91 (0.59)
1.08 (0.59)
0.15
0.86 (0.55)
1 (0.62)
0.16
Larsen total
4.1 (4.9)
3.57 (4.63)
6.25 (5.46)
0.005
3.16 ((4.23)
4.73 (5.24)
0.034
DXR-BMD
579.5 (86.1)
584.7 (84.2)
558.0 (91.7)
0.115
600.6 (84.2)
564.8 (84.7)
0.008
DXR-BMD loss
0.68 (1.81)
−0.52 (1.65)
−1.37 (2.31)
0.058
0.83 (1.05)
−1.74 (1.45)
< 0.001
Values are mean (SD) unless otherwise stated
Abbreviations: CCP cyclic citrullinated peptides, RF rheumatoid factor, ESR erythrocyte sedimentation rate, CRP C-reactive protein, DAS28 Disease Activity Score, HAQ Health Assessment Questionnaire, DXR-BMD bone mineral density measured by digital X-ray radiogrammetry
p values in italics are statistically significant
At baseline, 83% of patients were prescribed oral prednisolone, 49% received osteoporosis prophylaxis with low-dose calcium phosphate and vitamin D, and 6% with bisphosphonates. 91% received conventional synthetic DMARDs (csDMARD) (88% methotrexate, 2.4% other csDMARDs and 0.6% combination therapy). One patient (0.6%) was started on a tumor necrosis factor (TNF) inhibitor at baseline. During the follow-up period 14.4% received biologic therapy (bDMARDs) as displayed in Table 2.
Table 2
Treatment characteristics
Treatment
Number (percentage) of patients
csDMARDs/biologics started at baseline, n (%)
152 (91.0)
 - MTX, n (%)
147 (88.0)
 - Other csDMARDs, n (%)
4 (2.4)
 - csDMARD triple therapy, n (%)
1 (0.6)
Anti-TNF at baseline, n (%)
1 (0.6)
Anti-TNF ever, n (%)
18 (10.8)
Other bDMARDs
6 (3.6)
Oral glucocorticoids, n (%)
138 (82.6)
Calcium supplements, n (%)a
79 (49.1)
Bisphosphonates, n (%)b
7 (6.0)
Abbreviations: MTX methotrexte, cDMARDs conventional disease modifying anti-rheumatic drugs, TNF tumor necrosis factor, bDMARDs biologic disease modifying anti-rheumatic drugs
aData available for 161 patients
bData available for 124 patients

Radiographic assessment and digital X-ray radiogrammetry (DXR)

Radiographs (posterior-anterior projection) of the hands, wrists and forefeet were performed at baseline, 3 months (hands only) and 1 and 2 years. The baseline and 1-year and 2-year radiographs were read in chronological order and evaluated according to the Larsen score [17] by one investigator at each center (MZ, KF and EB). The scoring system included 32 areas; metacarpal-phalangeal joints II − V, all proximal interphalangeal joints, the wrists divided into four areas and the metatarsophalangeal joints II–V. Each joint and joint area was graded 0–5. The maximum total score was 160. The smallest detectable change (SDC) was calculated for the three readers individually (EB, 2; KF, 1; MZ, 3) according to the method of Bruynesteyn [18]. Radiographic progression was defined as a difference in Larsen score above the SDC of the corresponding reader. The intra-rater and inter-rater reliability of the readers was assessed by calculating the intraclass correlation coefficient (ICC). The ICC was 0.903.
BMD was estimated on hand radiographs of the second, third and fourth metacarpal bones using DXR (the online Pronosco X-posure System, SECTRA, Linköping, Sweden), a computerized version of the traditional technique of radiogrammetry measuring cortical bone thickness [8, 19]. DXR-BMD was assessed at inclusion and after 3 months. The mean value of both hands was used in all analyses. DXR-BMD values are given in mg/cm2. DXR-BMD loss was categorized either as a moderate decrease in DXR-BMD (≥ 0.25 but < 2.5 mg/cm2 per month) or a severe decrease (≥ 2.5 mg/cm2 per month), as defined by the provider (Sectra) [20]. To ensure consistent image acquisition, the images for each patient were always taken in a frontal position of the hands using the same X-ray machine. The images were sent unprocessed to Sectra for DXR analysis.

Clinical and laboratory assessments

The erythrocyte sedimentation rate (ESR, mm/1 h) and C-reactive protein (CRP, mg/L) were determined at baseline and after 3, 6, 12 and 24 months. At the same time points, the 28-joint Disease Activity Score (DAS28) was calculated by the patient’s regular physician [21]. Therapy response was determined according to EULAR response criteria [22]. Functional status was evaluated using the Swedish version of the Stanford Health Assessment Questionnaire (HAQ) [23]. Rheumatoid factor (RF) and antibodies to cyclic citrullinated peptides (anti-CCP2) were analyzed in baseline serum samples at the clinical immunology units of the local hospitals.

Statistics

Statistical calculations were performed using SPSS software (version 23, IBM Corporation, Armonk, USA). Linear regression analyses were used to explore the effect of DXR-BMD alone, and in combination with various clinical and laboratory variables, chosen with respect to clinical assumptions, for associations with change in Larsen score after 1 and 2 years. After testing each variable in a simple regression analysis with change in Larsen score at 1 and 2 years as the dependent variable, multiple regression analyses were performed including variables with p < 0.2. Radiographic progression was defined as a difference in Larsen score above the SDC between baseline and 1 and 2 years, respectively. Thus, for example, radiographs assessed by KF with a difference > 1 between the two time points were graded as the actual difference, otherwise as 0. As sensitivity analyses, we also performed linear regression with the same variables, but with absolute changes in Larsen, i.e. not considering the SDC. In addition, logistic regression analysis was performed, in which radiographic progression was defined as change in Larsen score greater than SDC. The Pearson chi2 test or Fisher’s exact test were used for categorical variables, and the independent samples t test was used for continuous variables. All p values are two-sided, and p values less than 0.05 were considered statistically significant.

Results

In total, 176 patients without previous DMARD exposure were included in the study. Table 1 shows the patient characteristics and Table 2 the anti-rheumatic therapy including glucocorticoids (GC), and treatments that influence BMD, initiated at baseline. There were no significant differences in these background characteristics between the participating sites (data not shown). Nine patients were lost because of missing radiographs at 3 months. Thus, the evaluation included 167 patients with radiographs at baseline, 3 months and 1 year (Helsingborg, n = 38; Linköping, n = 65; Umeå, n = 64). Of the 167 patients, 129 also underwent radiography at 2 years (Fig. 1). Compared with the patients with 2-year radiographs available, patients without 2-year radiographs had lower mean Larsen score at baseline (2.1 (SD = 3.17) vs 4. 7 (SD = 5.17); p < 0.001) and at 1 year (2.6 (SD = 3.34) vs 5.8 (SD = 5.66); p < 0.001), and were to a lesser extent RF positive (48.6% vs 67.5%; p = 0.037). Other baseline characteristics, as detailed in Tables 1 and 2 did not significantly differ from those in patients with radiographs available at 2 years.
At 3 months, 105 (63%) patients had low disease activity (DAS28 ≤ 3.2) and 80 (48%) had reached EULAR remission (DAS28 ≤ 2.6): 46 (28%) of the patients had moderate and 6 (4%) high disease activity (DAS28 > 5.2). DAS28 values from the 3-month visits were missing for 10 (6%) patients. After 1 year, 108 (65%) of the patients had low disease activity, 36 (22%) patients had moderate and 7 (4%) high disease activity: 88 (53%) of the patients had reached EULAR remission. DAS28 values from the 1-year visit were missing in 16 patients (10%).
The mean age of the male patients (n = 60) at baseline was 61 years (SD = 14.5) and the mean age of the female patients (n = 107) was 57 years (SD = 14.3). Comparing our DXR-BMD values with a Danish reference cohort of healthy individuals [24], 92 patients (55.1%) in our cohort had bone loss in the hand exceeding the age-related bone loss in the hand among the Danish controls.
Of the 167 patients, 32 (19%) had radiographic progression at 1 year and 45 of 129 patients (35%) had radiographic progression at 2 years. The change in DXR-BMD over 3 months showed BMD loss in 98 patients (59%). The DXR-BMD loss was moderate in 73/167 patients (44%) and severe in 25/167 patients (15%). Radiographic joint damage was significantly different across the three categories of DXR-BMD loss at baseline and at 1 year (p = 0.039 and p = 0.024, respectively) and there was a trend towards statistical significance after 2 years (p = 0.056) (Table 3). Categorizing DXR-BMD loss according to the age-related reference material presented by Ornbjerg et al. [24] yielded very similar results (data not shown).
Table 3
Mean Larsen scores and 3-month bone mineral density loss in early rheumatoid arthritis
 
Mean (SD) Larsen score
p value
No BMD loss
Moderate BMD loss
Severe BMD loss
Baseline (SD)
3.2 (4,23)
4.3 (4.81)
6.0 (6.28)
0.039
1 year (SD)
4.0 (4.68)
5.3 (5.45)
7.3 (6.38)
0.024
2 years (SD)
5.4 (5.1)
6.9 (5.6)
8.8 (6.04)
0.056
BMD bone mineral density
Patients with change in Larsen score greater than the SDC after 1 year had significantly higher Larsen scores (mean) at baseline (3.6 vs 6.2; p = 0.005). Compared with patients without DXR-BMD loss, patients with DXR-BMD loss after 3 months were significantly older (60.3 years vs 55.7; p = 0.042), had significantly higher baseline DAS28 (5.1 vs 4.6; p = 0.023) and significantly higher Larsen scores at baseline (4.7 vs 3.2; p = 0.034). Also, the proportion of women was significantly higher (70.4% vs 55.1%; p = 0.05) among patients with BMD loss (Table 2). There was no significant difference in the DXR value at baseline in the anti-CCP2-positive compared with the anti-CCP-negative patients (576 vs 587 mg/cm2; p = 0.426).
Simple regression analyses with change in Larsen score greater than the SDC at 1 year as the dependent variable were performed, including the following covariates: age, sex, oral corticosteroid treatment, DXR-BMD loss/month, baseline DAS28, CRP, ESR, Larsen score, anti-CCP2 status, and RF status. Also, DAS28 > 2.6 at 3 months (yes/no) was included. Covariates with a p value < 0.2 in these analyses were included in a multiple regression model (Table 4). This model, adjusting for sex and baseline values of ESR, DAS28, Larsen score and anti-CCP2 status, showed a significant association between 3-month BMD loss and increase in Larsen score above the SDC after 1 year (p = 0.033, adjusted R-squared = 0.069) (Table 4). No significant association was observed between early bone loss and increase in the Larsen score above the SDC at 2 years (p = 0.604). When using the same covariates but with change in Larsen score without considering the SDC as the dependent variable, DXR-BMD loss was significantly associated with the 1-year Larsen score (p = 0.048), but not the Larsen score at 2 years (p = 0.491). In logistic regression analysis, there was no significant association between DXR-BMD loss and 1-year radiographic progression defined as a change in Larsen score above the SDC (p = 0.158). Treatment with bisphosphonates, calcium and vitamin D did not influence the DXR-BMD loss (data not shown).
Table 4
Regression analyses with change in Larsen score between baseline and 12 months as dependent variable
 
Simple regression
Multiple regression
Variable
Adjusted R-square
β-coeff
p value
Adjusted R-square
β-coeff
p value
DXR decrease (mg/cm2/month)a
0.049
−0.235
0.002
0.069
−0.181
0.033
DAS28b
0.015
0.148
0.070
 
0.028
0.767
Larsen scoreb
0.017
0.153
0.049
 
0.068
0.404
Ageb
0.001
0.082
0.291
   
Gender
0.007
0.114
0.143
 
0.071
0.381
anti-CCP2 statusb
0.010
−0.125
0.107
 
−0.128
0.114
RFb
−0.001
−0.069
0.385
   
Corticosteroid treatment
−0.002
0.042
0.417
   
Disease duration (months)b
−0.006
0.026
0.739
   
CRP (mg/L)b
−0.004
0.045
0.566
   
ESR (mm/h)b
0.024
0.173
0.025
 
0.133
0.165
DAS28 > 2.6 at 3 months
−0.002
0.065
0.422
   
Abbreviations: DXR digital X-ray radiogrammetry, DAS28 Disease Activity Score in 28 joints, CCP cyclic citrullinated peptides, RF rheumatoid factor, CRP C-reactive protein, ESR erythrocyte sedimentation rate, BMD bone mineral density
aDecrease in DXR-BMD between baseline and 3 months
bBaseline value
When analyzing only patients without erosions at baseline (n = 123), using the same multivariate model (adjusted for the same variables but not for the Larsen score at baseline), 3-month DXR-BMD loss remained associated with radiographic progression after 1 year (p = 0.021, R-squared = 0.07). Also, when analyzing the 1-year outcome among the 129 patients with 2-year radiographs available, the association between DXR-BMD loss and radiographic progression remained statistically significant (p = 0.039, adjusted R-squared = 0.08).

Discussion

To our knowledge, this is the first study addressing the predictive value of 3-month DXR-BMD in patients with recent-onset RA compared with radiography and clinical data. In clinical practice, evaluation of prescribed DMARDs is commonly performed 3 months after initiation. At this occasion, particularly in early disease, additional information on the patient’s radiographic prognosis would be highly valuable in order to optimize therapy decisions. In this study, we found DXR-BMD loss during the first 3 months to independently predict radiographic joint damage at 1 year and the 1-year progression from baseline.
Our results on metacarpal bone loss among patients with early RA are in line with previous reports [914]. The shortest interval of DXR-BMD assessments among previous studies was 3 months in the study from Bøyesen et al. [25], addressing 3-month change in DXR-BMD as a predictive factor for erosive progression identified on magnetic resonance imaging (MRI) in patients with early RA. In the 53 patients completing that study there was only a trend towards higher MRI synovitis score and 3-month DXR BMD loss in patients developing MRI erosions, and no significant changes. Wevers-de Boer and coworkers [10] presented 4-month data with similar findings on the 1-year radiographic outcome as in the current study. Thus, early DXR-BMD assessments seem to be of clinical value, in order to optimize early institution of anti-rheumatic pharmacotherapy and thereby diminish the risk of future disability [4, 2630]. However, we found no predictive value of DXR-BMD loss in relation to the 2-year radiographic outcome. This was somewhat surprising, since existing radiographic damage often predicts radiographic progression. One possible explanation for the disparate 1-year and 2-year findings in our study could be that potent instituted pharmacotherapy attenuated radiographic differences over time. Also, missing data from 2-year radiographs (n = 38) need to be considered, but the association between DXR-BMD loss and radiographic damage at 1 year remained statistically significant, also after excluding the 38 patients without 2-year radiographs. Thus, difference in statistical power appears to be an unlikely explanation for the discordance between 1-year and 2-year data. A previous study by Forslind et al. [9] showed that patients with early RA, who were on prednisolone 7.5 mg per day in addition to conventional DMARDS, had significantly less DXR-BMD loss as compared with patients with RA who were not receiving corticosteroids. This finding was attributed to the anti-inflammatory effect of prednisolone, hampering osteopenia induced by inflammation. Although not primarily designed to address this, our study did not identify a significant impact of oral corticosteroid on BMD loss or radiographic progression. Similarly, treatment with bisphosphonates, calcium and vitamin D did not significantly impact BMD loss.
In our study we did not observe a significant difference in the DXR value at baseline in the anti-CCP2-positive compared with the anti-CCP-negative patients. This fact is contrary to the findings in other studies [3133] in which BMD loss was significantly more widespread in anti-CCP-positive patients. Different methods for estimating BMD loss (comparative micro computed tomography (micro-CT) analysis and dual-energy X-ray absorptiometry) may influence the differing results. Also, it needs to be pointed out that our study was not primarily designed to address the influence of anti-CCP on BMD loss.
Whenever a patient with RA presents with erosions at the time of diagnosis, an aggressive disease course is assumed, and treatment is chosen accordingly. Thus, information on the radiographic prognosis is even more important in the large category of patients without evidence of erosive disease at diagnosis. Interestingly, we found that 3-month DXR-BMD loss also predicted 1-year radiographic damage in this subgroup of patients. However, the comparative value of DXR-BMD compared with other imaging modalities needs to be assessed.
Limitations of this study are the missing 2-year radiographs in 38 patients (23%), and the fact that the baseline Larsen score and RF status differed between patients with radiographs available at 2 years and those without. Nevertheless, analyzing the 129 patients with all radiographs available up to 2 years did not substantially alter the findings.

Conclusion

In this real-world study of patients with early RA, we found that DXR-BMD loss during the initial 3 months independently predicted radiologic damage at 1 year. However, DXR-BMD loss predicts only a minor part of the variation in radiographic damage, and an association was not established after 2 years of disease. Future studies should compare the value of DXR-BMD with other imaging modalities.

Acknowledgements

This work was financially supported by the Swedish Rheumatism Association, the Norrbacka-Eugenia foundation, the King Gustav V 80-year Foundation, the Swedish Medical Society, ALF Grants from Region Östergötland, the Linköping University Hospital Research Fund and the Foundation for Assistance to Disabled People in Skane (Stiftelsen för Bistånd åt Rörelsehindrade i Skåne).

Funding

Not applicable.

Availability of data and materials

Not applicable.
All patients gave their written informed consent. The regional ethics committees in Linköping (DNR 2012/273-31), Lund (DNR Lu 464/2008), and Umeå (DNR 09-095 M) approved the study protocol, which was performed in accordance with the Declaration of Helsinki.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
2.
Zurück zum Zitat Grassi W, et al. The clinical features of rheumatoid arthritis. Eur J Radiol. 1998;27 Suppl 1:S18–24.CrossRefPubMed Grassi W, et al. The clinical features of rheumatoid arthritis. Eur J Radiol. 1998;27 Suppl 1:S18–24.CrossRefPubMed
3.
Zurück zum Zitat Darawankul B, et al. The good EULAR response at the first year is strongly predictive of clinical remission in rheumatoid arthritis: results from the TARAC cohort. Clin Rheumatol. 2015;34(1):43–9.CrossRefPubMed Darawankul B, et al. The good EULAR response at the first year is strongly predictive of clinical remission in rheumatoid arthritis: results from the TARAC cohort. Clin Rheumatol. 2015;34(1):43–9.CrossRefPubMed
4.
Zurück zum Zitat Markusse IM, et al. Long-term outcomes of patients with recent-onset rheumatoid arthritis after 10 years of tight controlled treatment: a randomized trial. Ann Intern Med. 2016;164(8):523–31.CrossRefPubMed Markusse IM, et al. Long-term outcomes of patients with recent-onset rheumatoid arthritis after 10 years of tight controlled treatment: a randomized trial. Ann Intern Med. 2016;164(8):523–31.CrossRefPubMed
5.
Zurück zum Zitat Schneider M, Kruger K. Rheumatoid arthritis–early diagnosis and disease management. Dtsch Arztebl Int. 2013;110(27-28):477–84.PubMedPubMedCentral Schneider M, Kruger K. Rheumatoid arthritis–early diagnosis and disease management. Dtsch Arztebl Int. 2013;110(27-28):477–84.PubMedPubMedCentral
6.
Zurück zum Zitat Dolan AL, et al. Does active treatment of rheumatoid arthritis limit disease-associated bone loss? Rheumatology (Oxford). 2002;41(9):1047–51.CrossRef Dolan AL, et al. Does active treatment of rheumatoid arthritis limit disease-associated bone loss? Rheumatology (Oxford). 2002;41(9):1047–51.CrossRef
7.
Zurück zum Zitat Jorgensen JT, et al. Digital X-ray radiogrammetry: a new appendicular bone densitometric method with high precision. Clin Physiol. 2000;20(5):330–5.CrossRefPubMed Jorgensen JT, et al. Digital X-ray radiogrammetry: a new appendicular bone densitometric method with high precision. Clin Physiol. 2000;20(5):330–5.CrossRefPubMed
8.
Zurück zum Zitat Rosholm A, et al. Estimation of bone mineral density by digital X-ray radiogrammetry: theoretical background and clinical testing. Osteoporos Int. 2001;12(11):961–9.CrossRefPubMed Rosholm A, et al. Estimation of bone mineral density by digital X-ray radiogrammetry: theoretical background and clinical testing. Osteoporos Int. 2001;12(11):961–9.CrossRefPubMed
9.
Zurück zum Zitat Forslind K, et al. Hand bone loss measured by digital X-ray radiogrammetry is a predictor of joint damage in early rheumatoid arthritis. Scand J Rheumatol. 2009;38(6):431–8.CrossRefPubMed Forslind K, et al. Hand bone loss measured by digital X-ray radiogrammetry is a predictor of joint damage in early rheumatoid arthritis. Scand J Rheumatol. 2009;38(6):431–8.CrossRefPubMed
10.
Zurück zum Zitat Wevers-de Boer KV, et al. Four-month metacarpal bone mineral density loss predicts radiological joint damage progression after 1 year in patients with early rheumatoid arthritis: exploratory analyses from the IMPROVED study. Ann Rheum Dis. 2015;74(2):341–6.CrossRefPubMed Wevers-de Boer KV, et al. Four-month metacarpal bone mineral density loss predicts radiological joint damage progression after 1 year in patients with early rheumatoid arthritis: exploratory analyses from the IMPROVED study. Ann Rheum Dis. 2015;74(2):341–6.CrossRefPubMed
11.
Zurück zum Zitat Guler-Yuksel M, et al. Changes in hand and generalised bone mineral density in patients with recent-onset rheumatoid arthritis. Ann Rheum Dis. 2009;68(3):330–6.CrossRefPubMed Guler-Yuksel M, et al. Changes in hand and generalised bone mineral density in patients with recent-onset rheumatoid arthritis. Ann Rheum Dis. 2009;68(3):330–6.CrossRefPubMed
12.
Zurück zum Zitat Hoff M, et al. Cortical hand bone loss after 1 year in early rheumatoid arthritis predicts radiographic hand joint damage at 5-year and 10-year follow-up. Ann Rheum Dis. 2009;68(3):324–9.CrossRefPubMed Hoff M, et al. Cortical hand bone loss after 1 year in early rheumatoid arthritis predicts radiographic hand joint damage at 5-year and 10-year follow-up. Ann Rheum Dis. 2009;68(3):324–9.CrossRefPubMed
13.
Zurück zum Zitat Rezaei H, et al. Evaluation of hand bone loss by digital X-ray radiogrammetry as a complement to clinical and radiographic assessment in early rheumatoid arthritis: results from the SWEFOT trial. BMC Musculoskelet Disord. 2013;14:79.CrossRefPubMedPubMedCentral Rezaei H, et al. Evaluation of hand bone loss by digital X-ray radiogrammetry as a complement to clinical and radiographic assessment in early rheumatoid arthritis: results from the SWEFOT trial. BMC Musculoskelet Disord. 2013;14:79.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Forslind K, et al. Does digital X-ray radiogrammetry have a role in identifying patients at increased risk for joint destruction in early rheumatoid arthritis? Arthritis Res Ther. 2012;14(5):R219.CrossRefPubMedPubMedCentral Forslind K, et al. Does digital X-ray radiogrammetry have a role in identifying patients at increased risk for joint destruction in early rheumatoid arthritis? Arthritis Res Ther. 2012;14(5):R219.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Aletaha D, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–81.CrossRefPubMed Aletaha D, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–81.CrossRefPubMed
16.
Zurück zum Zitat Arnett FC, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31(3):315–24.CrossRefPubMed Arnett FC, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31(3):315–24.CrossRefPubMed
17.
Zurück zum Zitat Larsen A. How to apply Larsen score in evaluating radiographs of rheumatoid arthritis in long-term studies. J Rheumatol. 1995;22(10):1974–5.PubMed Larsen A. How to apply Larsen score in evaluating radiographs of rheumatoid arthritis in long-term studies. J Rheumatol. 1995;22(10):1974–5.PubMed
18.
Zurück zum Zitat Bruynesteyn K, et al. Deciding on progression of joint damage in paired films of individual patients: smallest detectable difference or change. Ann Rheum Dis. 2005;64(2):179–82.CrossRefPubMed Bruynesteyn K, et al. Deciding on progression of joint damage in paired films of individual patients: smallest detectable difference or change. Ann Rheum Dis. 2005;64(2):179–82.CrossRefPubMed
19.
Zurück zum Zitat Barnett E, Nordin BE. The radiological diagnosis of osteoporosis: a new approach. Clin Radiol. 1960;11:166–74.CrossRefPubMed Barnett E, Nordin BE. The radiological diagnosis of osteoporosis: a new approach. Clin Radiol. 1960;11:166–74.CrossRefPubMed
20.
Zurück zum Zitat de Rooy DP, et al. Loss of metacarpal bone density predicts RA development in recent-onset arthritis. Rheumatology (Oxford). 2012;51(6):1037–41.CrossRef de Rooy DP, et al. Loss of metacarpal bone density predicts RA development in recent-onset arthritis. Rheumatology (Oxford). 2012;51(6):1037–41.CrossRef
21.
Zurück zum Zitat Prevoo ML, et al. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995;38(1):44–8.CrossRefPubMed Prevoo ML, et al. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995;38(1):44–8.CrossRefPubMed
22.
Zurück zum Zitat van Gestel AM, Haagsma CJ, van Riel PL. Validation of rheumatoid arthritis improvement criteria that include simplified joint counts. Arthritis Rheum. 1998;41(10):1845–50.CrossRefPubMed van Gestel AM, Haagsma CJ, van Riel PL. Validation of rheumatoid arthritis improvement criteria that include simplified joint counts. Arthritis Rheum. 1998;41(10):1845–50.CrossRefPubMed
23.
Zurück zum Zitat Ekdahl C, et al. Assessing disability in patients with rheumatoid arthritis. Use of a Swedish version of the Stanford Health Assessment Questionnaire. Scand J Rheumatol. 1988;17(4):263–71.CrossRefPubMed Ekdahl C, et al. Assessing disability in patients with rheumatoid arthritis. Use of a Swedish version of the Stanford Health Assessment Questionnaire. Scand J Rheumatol. 1988;17(4):263–71.CrossRefPubMed
24.
Zurück zum Zitat Ornbjerg LM, et al. Establishment of age- and sex-adjusted reference data for hand bone mass and investigation of hand bone loss in patients with rheumatoid arthritis treated in clinical practice: an observational study from the DANBIO registry and the Copenhagen Osteoarthritis Study. Arthritis Res Ther. 2016;18:53.CrossRefPubMedPubMedCentral Ornbjerg LM, et al. Establishment of age- and sex-adjusted reference data for hand bone mass and investigation of hand bone loss in patients with rheumatoid arthritis treated in clinical practice: an observational study from the DANBIO registry and the Copenhagen Osteoarthritis Study. Arthritis Res Ther. 2016;18:53.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Boyesen P, et al. Prediction of MRI erosive progression: a comparison of modern imaging modalities in early rheumatoid arthritis patients. Ann Rheum Dis. 2011;70(1):176–9.CrossRefPubMed Boyesen P, et al. Prediction of MRI erosive progression: a comparison of modern imaging modalities in early rheumatoid arthritis patients. Ann Rheum Dis. 2011;70(1):176–9.CrossRefPubMed
26.
Zurück zum Zitat Goekoop-Ruiterman YP, et al. Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study): A randomized, controlled trial. Arthritis Rheum. 2008;58(2 Suppl):S126–35.PubMed Goekoop-Ruiterman YP, et al. Clinical and radiographic outcomes of four different treatment strategies in patients with early rheumatoid arthritis (the BeSt study): A randomized, controlled trial. Arthritis Rheum. 2008;58(2 Suppl):S126–35.PubMed
27.
Zurück zum Zitat Breedveld F. The value of early intervention in RA − a window of opportunity. Clin Rheumatol. 2011;30 Suppl 1:S33–9.CrossRefPubMed Breedveld F. The value of early intervention in RA − a window of opportunity. Clin Rheumatol. 2011;30 Suppl 1:S33–9.CrossRefPubMed
28.
Zurück zum Zitat Ahlstrand I, et al. Pain and activity limitations in women and men with contemporary treated early RA compared to 10 years ago: the Swedish TIRA project. Scand J Rheumatol. 2015;44(4):259–64.CrossRefPubMed Ahlstrand I, et al. Pain and activity limitations in women and men with contemporary treated early RA compared to 10 years ago: the Swedish TIRA project. Scand J Rheumatol. 2015;44(4):259–64.CrossRefPubMed
29.
Zurück zum Zitat Kudo-Tanaka E, et al. Early therapeutic intervention with methotrexate prevents the development of rheumatoid arthritis in patients with recent-onset undifferentiated arthritis: A prospective cohort study. Mod Rheumatol. 2015;25(6):831–6.CrossRefPubMed Kudo-Tanaka E, et al. Early therapeutic intervention with methotrexate prevents the development of rheumatoid arthritis in patients with recent-onset undifferentiated arthritis: A prospective cohort study. Mod Rheumatol. 2015;25(6):831–6.CrossRefPubMed
30.
Zurück zum Zitat Kyburz D, Finckh A. The importance of early treatment for the prognosis of rheumatoid arthritis. Swiss Med Wkly. 2013;143:w13865.PubMed Kyburz D, Finckh A. The importance of early treatment for the prognosis of rheumatoid arthritis. Swiss Med Wkly. 2013;143:w13865.PubMed
31.
Zurück zum Zitat Kleyer A, et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis. 2014;73(5):854–60.CrossRefPubMed Kleyer A, et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis. 2014;73(5):854–60.CrossRefPubMed
32.
Zurück zum Zitat Bugatti S, et al. Anti-citrullinated protein antibodies and high levels of rheumatoid factor are associated with systemic bone loss in patients with early untreated rheumatoid arthritis. Arthritis Res Ther. 2016;18(1):226.CrossRefPubMedPubMedCentral Bugatti S, et al. Anti-citrullinated protein antibodies and high levels of rheumatoid factor are associated with systemic bone loss in patients with early untreated rheumatoid arthritis. Arthritis Res Ther. 2016;18(1):226.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Orsolini G, et al. Titer-dependent effect of anti-citrullinated protein antibodies on systemic bone mass in rheumatoid arthritis patients. Calcif Tissue Int. 2017;101(1):17–23.CrossRefPubMed Orsolini G, et al. Titer-dependent effect of anti-citrullinated protein antibodies on systemic bone mass in rheumatoid arthritis patients. Calcif Tissue Int. 2017;101(1):17–23.CrossRefPubMed
Metadaten
Titel
Decrease in bone mineral density during three months after diagnosis of early rheumatoid arthritis measured by digital X-ray radiogrammetry predicts radiographic joint damage after one year
verfasst von
Michael Ziegelasch
Kristina Forslind
Thomas Skogh
Katrine Riklund
Alf Kastbom
Ewa Berglin
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Arthritis Research & Therapy / Ausgabe 1/2017
Elektronische ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-017-1403-0

Weitere Artikel der Ausgabe 1/2017

Arthritis Research & Therapy 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.