Skip to main content
Erschienen in: Alzheimer's Research & Therapy 1/2020

Open Access 05.06.2020 | COVID-19 | Viewpoint

Immediate and long-term consequences of COVID-19 infections for the development of neurological disease

verfasst von: Michael T. Heneka, Douglas Golenbock, Eicke Latz, Dave Morgan, Robert Brown

Erschienen in: Alzheimer's Research & Therapy | Ausgabe 1/2020

Abstract

Increasing evidence suggests that infection with Sars-CoV-2 causes neurological deficits in a substantial proportion of affected patients. While these symptoms arise acutely during the course of infection, less is known about the possible long-term consequences for the brain. Severely affected COVID-19 cases experience high levels of proinflammatory cytokines and acute respiratory dysfunction and often require assisted ventilation. All these factors have been suggested to cause cognitive decline. Pathogenetically, this may result from direct negative effects of the immune reaction, acceleration or aggravation of pre-existing cognitive deficits, or de novo induction of a neurodegenerative disease. This article summarizes the current understanding of neurological symptoms of COVID-19 and hypothesizes that affected patients may be at higher risk of developing cognitive decline after overcoming the primary COVID-19 infection. A structured prospective evaluation should analyze the likelihood, time course, and severity of cognitive impairment following the COVID-19 pandemic.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AD
Alzheimer’s disease
ARDS
Acute respiratory distress syndrome
COVID-19
Coronavirus SARS-CoV-2
CSF
Cerebrospinal fluid
NLRP3
NOD-, LRR-, and pyrin domain-containing protein 3
ORF3a
Not characterized yet (UNIPROT)

Background

The COVID-19 pandemic represents an unprecedented immediate but also persisting threat to our health care systems. The immediate urgency is clear, as the total number of affected patients exceeds most of the health care system capacities worldwide, particularly for the treatment of patients requiring assisted ventilation. Less immediately apparent, but potentially very significant are long-term consequences of COVID-19 infections.
During the acute phase of COVID-19 infection, about 36% of cases develop neurological symptoms of which 25% can be attributed to the direct involvement of the central nervous system. The main symptoms include but are not restricted to dizziness, headache, impaired consciousness, and seizure [1]. Patients who show neurological symptoms included cases with or without pre-existing neurological disorders [2]. While on intensive care units, patients showed agitation, confusion, and corticospinal tract signs such as enhanced tendon reflexes and clonus. In mild to moderate disease cases, patients reported olfactory (85.6%) and gustatory (88.0%) dysfunctions. Importantly, in about 11% of patients, anosmia occurred prior to any other clinical symptoms [3]. COVID-19 can further lead to changes of coagulation and, in particular, to inflammation-induced disseminated intravascular coagulation (DIC). Together with endothelial dysfunction, DIC can cause cerebrovascular ischemia even in young patients, many of whom suffer from large vessel ischemic stroke [4, 5]. Overall, this may also be influenced by the severity of the COVID-19 infection, as 5.7% of the severe cases suffered from ischemic stroke [1] or had pre-existing vascular risk factors, especially in the elderly, in whom ischemic stroke rather occurred as a delayed complication [6, 7]. Additionally, as sub-acute signs that occurred 3–10 days after the development of Covid-19 symptoms, Guillain-Barré syndrome [8] and Miller-Fisher syndrome [9] cases have been reported. Also, clinically striking are cases of Kawaski-like multisystem inflammatory syndromes now being recognized in children and teenagers.

Main text

There are at least four possible pathogenic mechanisms that may account for the detrimental effect of COVID-19 on the CNS: (1) direct viral encephalitis, (2) systemic inflammation, (3) peripheral organ dysfunction (liver, kidney, lung), and (4) cerebrovascular changes. In most cases, however, neurological manifestations of COVID-19 may arise from a combination of the above.
Any one or a combination of these mechanisms put COVID-19 survivors at risk for developing long-term neurological consequences, either by aggravating a pre-existing neurological disorder or by initiating a new disorder. This concern is supported by findings that show that one third of patients at the time of discharge have evidence of cognitive impairment and motor deficits [2]. This is particularly relevant because overall COVID-19 clinically affects the elderly most severely [10]. There is a large overlap of the age range when people typically develop neurodegenerative or cerebrovascular disease and the age of risk for the most several COVID-19 infections. This overlap argues that there is a compelling need for prospective neurological surveillance and care.
COVID-19 is associated with a severe innate immune response and sustained rise of systemic cytokine levels. Importantly, this innate immune response has been suggested to drive and predict mortality and severity [11]. Cytokines and related inflammatory mediators found to be elevated include interleukin-1β, interleukin-2, interleukin-2 receptor, interleukin-4, interleukin-10, interleukin-18, interferon-γ, C-reactive protein, granulocyte colony-stimulating factor, interferon-γ, CXCL10, monocyte chemoattractant protein 1, macrophage inflammatory protein 1-α, and tumor necrosis factor-α [10, 12]. Concomitantly, most patients show signs of T cell exhaustion with lower lymphocyte counts. The fact that systemic inflammation has been shown to promote cognitive decline and neurodegenerative disease makes it likely that COVID-19 survivors will experience neurodegeneration in the following years [13, 14]. Of note, cytokine levels can predict the subsequent occurrence of hippocampal atrophy in patients that experience severe sepsis [15]. In keeping with this, the most frequent clinical presentation of COVID-19 is the development of acute respiratory distress syndrome (ARDS) [16], the latter being, along with chronic ventilation, highly associated with subsequent cognitive decline, executive dysfunction, and reduced quality of life, often persisting months and years after hospital discharge [17] reviewed in [18]. The causative role of systemic inflammatory damage to the brain is further supported by the fact that none of the cerebrospinal fluid samples investigated in the study by Helms et al. found evidence for a direct presence of SARS-CoV-2 in the cerebrospinal fluid [2]. That being said, one should not ignore the potential importance of the single case report of direct viral infiltration of the brain and viral encephalitis, either by hematogenous or neuronal retrograde dissemination [19].
Evidence from murine lung injury models and ARDS patient samples emphasize the role of the NLRP3 inflammasome in the pathogenesis and detrimental outcome of ARDS [20, 21]. In keeping with this, the coronavirus ORF3a protein has been shown to induce NLRP3 inflammasome activity [22]. Moreover, ventilation-induced hypercapnia has been experimentally shown to lead to cognitive impairment in a NLRP3 inflammasome-interleukin-1β-dependent manner [23]. Given the above cytokine findings in COVID-19 patients and in particular the rise of interleukin-1β and interleukin-18, it seems highly likely that COVID-19 patients suffer from NLRP3 inflammasome activation. This activation and the subsequent increased activity of proinflammatory immune pathways are likely to exert a negative impact on cerebral homeostasis and function.
This conclusion is based on not only epidemiological evidence but also on experiments that showed that systemic, NLRP3 inflammasome-mediated inflammation adversely affects beneficial immune functions in the brain and thereby causes the pathological accumulation of neurodegeneration-associated peptides such as fibrillar amyloid-β [24]. Thus, both peripheral and central induction of the NLRP3 inflammasome can directly induce or aggravate neurodegenerative processes that lead to functional impairment in AD [25] or strongly contribute to the spreading of pathology and thus the progression of the disease [26]. The recent finding showing that NLRP3-driven and interleukin-1β-mediated modulation of phosphokinases and phosphatases largely accounts for the pathological formation of neurofibrillary tangles in murine models of tauopathy raises the concern that COVID-19 patients are likely to experience an induction or strong aggravation of neurodegenerative processes [27].

Conclusion

Evidence strongly suggests that patients surviving COVID-19 are at high risk for subsequent development of neurological disease and in particular Alzheimer’s disease. Neurologists, psychiatrists, and caregivers should be alerted to a possible increase in such cases in COVID-19 survivors. Prospective studies are needed to investigate potential correlations between acute and sub-acute COVID-19 infections and long-term neurological sequalae in this patient cohort.

Acknowledgements

This work was supported by the NIH grant (R01 AG059752-02) to DG and MTH.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020:e201127. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020:e201127.
2.
Zurück zum Zitat Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020:NEJMc2008597. Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020:NEJMc2008597.
3.
Zurück zum Zitat Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020;6:1–11. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020;6:1–11.
4.
Zurück zum Zitat Gonzalez-Pinto T, Luna-Rodriguez A, Moreno-Estebanez A, Agirre-Beitia G, Rodriguez-Antiguedad A, Ruiz-Lopez M. Emergency room neurology in times of COVID-19: malignant ischemic stroke and SARS-COV2 infection. Eur J Neurol. 2020:ene.14286. Gonzalez-Pinto T, Luna-Rodriguez A, Moreno-Estebanez A, Agirre-Beitia G, Rodriguez-Antiguedad A, Ruiz-Lopez M. Emergency room neurology in times of COVID-19: malignant ischemic stroke and SARS-COV2 infection. Eur J Neurol. 2020:ene.14286.
5.
Zurück zum Zitat Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med. 2020;382(20):e60.CrossRef Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med. 2020;382(20):e60.CrossRef
6.
Zurück zum Zitat Beyrouti R, Adams ME, Benjamin L, Cohen H, Farmer SF, Goh YY, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry. 2020:jnnp-2020-323586. Beyrouti R, Adams ME, Benjamin L, Cohen H, Farmer SF, Goh YY, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry. 2020:jnnp-2020-323586.
7.
Zurück zum Zitat Viguier A, Delamarre L, Duplantier J, Olivot JM, Bonneville F. Acute ischemic stroke complicating common carotid artery thrombosis during a severe COVID-19 infection. J Neuroradiol. 2020:S0150-9861(20)30159-0. Viguier A, Delamarre L, Duplantier J, Olivot JM, Bonneville F. Acute ischemic stroke complicating common carotid artery thrombosis during a severe COVID-19 infection. J Neuroradiol. 2020:S0150-9861(20)30159-0.
8.
Zurück zum Zitat Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al. Guillain-Barre syndrome associated with SARS-CoV-2. N Engl J Med. 2020:NEJMc2009191. Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al. Guillain-Barre syndrome associated with SARS-CoV-2. N Engl J Med. 2020:NEJMc2009191.
10.
Zurück zum Zitat Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130:2620–9. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130:2620–9.
11.
Zurück zum Zitat Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.CrossRef Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.CrossRef
12.
Zurück zum Zitat Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4.CrossRef Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4.CrossRef
13.
Zurück zum Zitat Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304(16):1787–94.CrossRef Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304(16):1787–94.CrossRef
14.
Zurück zum Zitat Widmann CN, Heneka MT. Long-term cerebral consequences of sepsis. Lancet Neurol. 2014;13(6):630–6.CrossRef Widmann CN, Heneka MT. Long-term cerebral consequences of sepsis. Lancet Neurol. 2014;13(6):630–6.CrossRef
15.
Zurück zum Zitat Lindlau A, Widmann CN, Putensen C, Jessen F, Semmler A, Heneka MT. Predictors of hippocampal atrophy in critically ill patients. Eur J Neurol. 2015;22(2):410–5.CrossRef Lindlau A, Widmann CN, Putensen C, Jessen F, Semmler A, Heneka MT. Predictors of hippocampal atrophy in critically ill patients. Eur J Neurol. 2015;22(2):410–5.CrossRef
16.
Zurück zum Zitat Rodriguez-Morales AJ, Cardona-Ospina JA, Gutierrez-Ocampo E, Villamizar-Pena R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutierrez-Ocampo E, Villamizar-Pena R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis. 2020;34:101623.
17.
Zurück zum Zitat Girard TD, Thompson JL, Pandharipande PP, Brummel NE, Jackson JC, Patel MB, et al. Clinical phenotypes of delirium during critical illness and severity of subsequent long-term cognitive impairment: a prospective cohort study. Lancet Respir Med. 2018;6(3):213–22.CrossRef Girard TD, Thompson JL, Pandharipande PP, Brummel NE, Jackson JC, Patel MB, et al. Clinical phenotypes of delirium during critical illness and severity of subsequent long-term cognitive impairment: a prospective cohort study. Lancet Respir Med. 2018;6(3):213–22.CrossRef
18.
Zurück zum Zitat Sasannejad C, Ely EW, Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit Care. 2019;23(1):352.CrossRef Sasannejad C, Ely EW, Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit Care. 2019;23(1):352.CrossRef
19.
Zurück zum Zitat Zhou L, Zhang M, Wang J, Gao J. Sars-Cov-2: underestimated damage to nervous system. Travel Med Infect Dis. 2020;101642. Zhou L, Zhang M, Wang J, Gao J. Sars-Cov-2: underestimated damage to nervous system. Travel Med Infect Dis. 2020;101642.
20.
Zurück zum Zitat Jones HD, Crother TR, Gonzalez-Villalobos RA, Jupelli M, Chen S, Dagvadorj J, et al. The NLRP3 inflammasome is required for the development of hypoxemia in LPS/mechanical ventilation acute lung injury. Am J Respir Cell Mol Biol. 2014;50(2):270–80.PubMedPubMedCentral Jones HD, Crother TR, Gonzalez-Villalobos RA, Jupelli M, Chen S, Dagvadorj J, et al. The NLRP3 inflammasome is required for the development of hypoxemia in LPS/mechanical ventilation acute lung injury. Am J Respir Cell Mol Biol. 2014;50(2):270–80.PubMedPubMedCentral
21.
Zurück zum Zitat Feng Z, Qi S, Zhang Y, Qi Z, Yan L, Zhou J, et al. Ly6G+ neutrophil-derived miR-223 inhibits the NLRP3 inflammasome in mitochondrial DAMP-induced acute lung injury. Cell Death Dis. 2017;8(11):e3170.CrossRef Feng Z, Qi S, Zhang Y, Qi Z, Yan L, Zhou J, et al. Ly6G+ neutrophil-derived miR-223 inhibits the NLRP3 inflammasome in mitochondrial DAMP-induced acute lung injury. Cell Death Dis. 2017;8(11):e3170.CrossRef
22.
Zurück zum Zitat Siu KL, Yuen KS, Castano-Rodriguez C, Ye ZW, Yeung ML, Fung SY, et al. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J. 2019;33(8):8865–77.CrossRef Siu KL, Yuen KS, Castano-Rodriguez C, Ye ZW, Yeung ML, Fung SY, et al. Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC. FASEB J. 2019;33(8):8865–77.CrossRef
23.
Zurück zum Zitat Ding HG, Deng YY, Yang RQ, Wang QS, Jiang WQ, Han YL, et al. Hypercapnia induces IL-1beta overproduction via activation of NLRP3 inflammasome: implication in cognitive impairment in hypoxemic adult rats. J Neuroinflammation. 2018;15(1):4.CrossRef Ding HG, Deng YY, Yang RQ, Wang QS, Jiang WQ, Han YL, et al. Hypercapnia induces IL-1beta overproduction via activation of NLRP3 inflammasome: implication in cognitive impairment in hypoxemic adult rats. J Neuroinflammation. 2018;15(1):4.CrossRef
24.
Zurück zum Zitat Tejera D, Mercan D, Sanchez-Caro JM, Hanan M, Greenberg D, Soreq H, et al. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. EMBO J. 2019;38(17):e101064.CrossRef Tejera D, Mercan D, Sanchez-Caro JM, Hanan M, Greenberg D, Soreq H, et al. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. EMBO J. 2019;38(17):e101064.CrossRef
25.
Zurück zum Zitat Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493(7434):674–8.CrossRef Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493(7434):674–8.CrossRef
26.
Zurück zum Zitat Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, et al. Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer’s disease. Nature. 2017;552(7685):355–61.CrossRef Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, et al. Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer’s disease. Nature. 2017;552(7685):355–61.CrossRef
27.
Zurück zum Zitat Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575(7784):669–73.CrossRef Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;575(7784):669–73.CrossRef
Metadaten
Titel
Immediate and long-term consequences of COVID-19 infections for the development of neurological disease
verfasst von
Michael T. Heneka
Douglas Golenbock
Eicke Latz
Dave Morgan
Robert Brown
Publikationsdatum
05.06.2020
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
Alzheimer's Research & Therapy / Ausgabe 1/2020
Elektronische ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-020-00640-3

Weitere Artikel der Ausgabe 1/2020

Alzheimer's Research & Therapy 1/2020 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.